KMP算法

关于算法部分,网上有比较多写的好的博客了,下面是我看到的一篇。https://blog.csdn.net/liu88010988/article/details/50789960

这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

  1.

  首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

  2.

  因为B与A不匹配,搜索词再往后移。

  3.

  就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

  4.

  接着比较字符串和搜索词的下一个字符,还是相同。

  5.

  直到字符串有一个字符,与搜索词对应的字符不相同为止。

  6.

  这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

  7.

  一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

  8.

  怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

  9.

  已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

  因为 6 - 2 等于4,所以将搜索词向后移动4位。

  10.

  因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

  11.

  因为空格与A不匹配,继续后移一位。

  12.

  逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

  13.

  逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

  14.

  下面介绍《部分匹配表》是如何产生的。

  首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

  15.

  "部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

  16.

  "部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

分割线


KMP中的关键就是求公共最长匹配前缀和后缀的长度了(多读几遍这句话 你就懂了),不过下面的代码里面采取的方式和上述已经匹配长度-部分匹配值有点不太一样,直接求了next[]数组,一般KMP要么是通过前者,要么是通过后者这种方式来讲解的。

next[]数组定义

next[]数组的定义,这里先给出数学形式化的描述,可能有点抽象,不过没事,记住,一切能用数学公式或字母来形式化的东西,都是为了辅助我们更好的表述,它是无二义的,请不要害怕它。
next[j]={−1,j=0max{k∣1≤k≤j且t[0]...t[k−1]=t[j−k]...t[j−1]},集合非空0,其他情况next[j]=\begin{cases} -1,\quad j=0 \\ max\{k | 1\le k\le j 且 t[0]...t[k-1]=t[j-k]...t[j-1]\}, \quad 集合非空 \\ 0,\quad 其他情况 \end{cases} next[j]=⎩⎪⎨⎪⎧​−1,j=0max{k∣1≤k≤j且t[0]...t[k−1]=t[j−k]...t[j−1]},集合非空0,其他情况​

next[j]就是待匹配串从t[0]开始到t[j-1]结尾的这个子串中,前缀和后缀相等时对应前缀/后缀的最大长度,请看下图,j=10(下标从0开始):

那么,next[j]即next[10]就是待匹配串从t[0]开始到t[9]结尾的这个子串(即aabcaabcaa)中,它的前缀有很多,后缀也有很多,前缀和后缀对应相等的也有一些,不过长度最大的那个是aabcaa子串,所以next[j]=6,注意一下,我们定义next[0]=-1,因为这个时候t[0]到t[j-1]这个子串是不存在的,请注意和next[j]=0的意义区分一下。

至于说next[j]=0的情况嘛,你可以考虑一下这种情况,这个时候t[0]到t[j-1]这个子串是存在的,但是前缀和后缀相等的序列是不存在的:

#include<iostream>
using namespace std;
#define MAX_LEN 100/*
*   求待匹配串的next数组
*/
void get_next_arr(char* t, int* next)
{// next[i]的求解方法是,找到从t[0]~t[i-1]的公共最长匹配前缀和后缀的长度next[0]=-1;  // next[0]定义为-1next[1]=0;   // next[1]肯定是0// 只要待匹配串还没到底,都要求相应位的next[i]值for (int i = 2;t[i] != '\0';i++) {int max_len=i-1;        // 最长长度为i-1int len,j;for (len = max_len;len >= 1;len--)  // 从最长的情况开始搜索{for (j = 0;j < len;j++){if(t[j]!=t[j+i-len])  // 只要有任何一位不对应相等,那么当前len就不成立,试探下一个len break;}// 如果上一个循环是正常退出,即都对应相等了,那就把当前的len赋给next[i],并不再往下试探了if(j==len)  {next[i]=len;break;}}if (len < 1)  // 如果len=1的情况都不成立,那next[i]肯定是0了{next[i]=0;}}
}int KMP_match(char* s, char* t)
{// 先求待匹配串的next集合int next[MAX_LEN];get_next_arr(t, next);// 再开始匹配,匹配时,在搜索串中的下标不回溯,在待匹配串中的下标根据下标j和对应的next[j]进行回溯int i=0,j=0;while (s[i]!='\0'&&t[j] != '\0'){if (s[i] == t[j])  // 如果匹配,继续往下搜索{i++;j++;}// 否则的话,更新索引jelse{j = next[j];// 注意处理一下-1的情况if (-1 == j){i++;j++;}}      }if (t[j] == '\0')  // 如果匹配到了最后,那就是匹配成功,返回串首的下标return i-strlen(t);else  // 否则返回-1return -1;
}
int main()
{char* s="abcdabbcdabcdabd";char* t="abcdabd";cout<<KMP_match(s,t);return 0;
}

二更


细心看了代码的朋友可能会发现,在上面的求next[]数组的代码中,我采用的是简单的暴力搜索的方式,即对于各个next[i],代码都会去搜索t[0]~t[i-1]这个子串的所有长度的前缀和后缀,找的时候从最长的可能开始找起,一旦找到就将这个长度赋给next[i]。简单从代码上来看,有3个for循环,自然复杂度为O(m3)O(m^3)O(m3),m指的是待匹配串的长度。一般来说,待匹配串的长度m都是比较小的,不过,肯定有更好的算法去避开这个O(m3)O(m^3)O(m3),最好结果是O(m)O(m)O(m),下面开始讲解,我会画一些图来辅助理解。

读到这里,请务必回顾一下next[]数组的定义。

请看下面的例子:

现在我们知道了next[j]=6,那么怎么求next[j+1]呢?且看下面的分析过程:

既然next[j]=6,这里我们记next[j]=k,在上图中,k对应等于6,也就是说t[0]...t[k−1]t[0] ... t[k-1]t[0]...t[k−1]和t[j−k]...t[j−1]t[j-k] ... t[j-1]t[j−k]...t[j−1]是对应相等的,也就是图上的两个蓝色条。

好,现在我们注意到,t[j]=t[k],也就是说,如果我们在两个蓝条后面都加一个相等的字符,那肯定也是对应相等的,这种情况最简单了,此时next[j+1]=next[j]+1。

我们再考虑t[j]≠t[k]的情况:

好,既然你两个蓝色条对应相等,那我取其中的一部分,那也肯定是对应相等的,没毛病,我就取下图中绿色这两段:

选取的依据就是next[k]的大小了,我们记next[k]=k’,于是下面的等式成立:
t[k−next[k]]...t[k−1]=t[j−next[k]]...t[j−1]t[k-next[k]] ... t[k-1]=t[j-next[k]] ... t[j-1]t[k−next[k]]...t[k−1]=t[j−next[k]]...t[j−1]

又根据next[k]的定义,我们可以得到下面的等式:


t[0]...t[next[k]−1]=t[k−next[k]]...t[k−1]t[0] ... t[next[k]-1]=t[k-next[k]] ... t[k-1]t[0]...t[next[k]−1]=t[k−next[k]]...t[k−1]

上述两个等量代换,得到

t[0]...t[next[k]−1]=t[j−next[k]]...t[j−1]t[0] ... t[next[k]-1]=t[j-next[k]] ... t[j-1]t[0]...t[next[k]−1]=t[j−next[k]]...t[j−1]

也就是说,下图中①号对应的黄色条子串和②号对应的绿色条子串是对应相等的:

那么,我们现在只要比较t[j]和t[k’](注意,这里是k’),也就是图中两个紫色的三角形,如果t[j]=t[k’],好办,next[j+1]=k’+1;如果t[j]≠t[k’],额,你还记得我们这种情况下是怎么进来的吗?不就是t[j]≠t[k]嘛!现在又来个t[j]≠t[k’],而k’=next[k],自然而然就会想到递归处理了,事实上,它们之间的确满足这个递归。至于递归退出的条件,就是next[0]这个边界值了。

next[]数组的递归求解

/*
*   求待匹配串的next数组,递归求解
*/
void get_next_arr_2(char* t, int* next)
{next[0] = -1;  // next[0]定义为-1next[1] = 0;    // next[1]肯定是0int k;for (int j = 2;t[j] != '\0';j++){k=next[j-1];if (k == -1){next[j]=0;continue;}else{while (t[j-1] != t[k] && k!=-1)k=next[k];if(t[j-1] == t[k])next[j]=k+1;elsenext[j] = 0;}}
}

写的不对的地方,还请指出

KMP算法讲解(next数组求解)相关推荐

  1. 看了这个你基本就会算kmp算法的next数组了

    看了这个你基本就会算kmp算法的next数组了 kmp算法的next数组求解在计算机专业考研中,以及在大学的数据结构考试中等场合可能会遇到,而遇到后,可能很多同学绕绕脑袋,抓抓头发,却发现还是做不来. ...

  2. KMP算法及next数组(最大公共前后缀)求解

    KMP算法及next数组(最大公共前后缀)求解 2020.12.14理解: 1. KMP算法 网上关于KMP算法讲解较为简单易懂,因此在此只作简述: 在字符串s中匹配字符串t: S: ABE-AB-A ...

  3. KMP算法之NEXT数组代码原理分析 - 数据结构和算法38

    KMP算法之NEXT数组代码原理分析 让编程改变世界 Change the world by program KMP算法之NEXT数组代码原理分析 NEXT数组:当模式匹配串T失配的时候,NEXT数组 ...

  4. KMP算法的next数组通俗解释

    我们在一个母字符串中查找一个子字符串有很多方法.KMP是一种最常见的改进算法,它可以在匹配过程中失配的情况下,有效地多往后面跳几个字符,加快匹配速度. 当然我们可以看到这个算法针对的是子串有对称属性, ...

  5. 数据结构与算法之KMP算法中Next数组代码原理分析

    2019独角兽企业重金招聘Python工程师标准>>> 一.KMP算法之Next数组代码原理分析       1.Next数组定义 当模式匹配串T失配的时候,Next数组对应的元素指 ...

  6. KMP算法之next数组详解

    KMP算法之next数组详解 KMP算法实现原理 KMP算法是一种非常高效的字符串匹配算法,下面我们来讲解一下KMP算如何高效的实现字符串匹配.我们假设如下主串和模式串: int i;//i表示主串的 ...

  7. KMP算法 → 计算next数组

    [KMP算法简介] KMP算法中的next数组仅取决于模式串本身,而与相匹配的主串无关. KMP算法中的next数组,是KMP算法的核心. KMP算法是由克努特(Knuth).莫里斯(Morris)和 ...

  8. KMP 深度讲解next数组的求解

    [经典算法]--KMP,深入讲解next数组的求解 前言 之前对kmp算法虽然了解它的原理,即求出P0···Pi的最大相同前后缀长度k:但是问题在于如何求出这个最大前后缀长度呢?我觉得网上很多帖子都说 ...

  9. KMP算法求next数组

    1.简介 Knuth-Morris-Pratt 算法,简称 \text{KMP}KMP 算法,由 \text{Donald Knuth}Donald Knuth.\text{James H. Morr ...

最新文章

  1. (0048)iOS开发之内存管理探究
  2. 【Core Spring】二、装配beans
  3. 文本框换行_多行文本框的认识以及代码详解
  4. 修改Mysql默认 编码
  5. C#中'??'符的使用
  6. LeetCode 428. 序列化和反序列化 N 叉树(DFS)
  7. 【剑指offer】面试题15:二进制中1的个数(Java)
  8. slqite3库查询数据处理方式_SQLite数据库使用 常用命令
  9. 【NOIP2004】【Luogu1086】花生采摘(枚举,给定顺序的模拟)
  10. Adobe AIR简单的缓存技术
  11. Java Web 后端技术可视化
  12. 对java.lang.UnsupportedOperationException 异常的分析
  13. s7scan 安装使用教程
  14. 当公司企业邮件服务器IP被列黑名单的解决办法
  15. 【Java】为什么不推荐程序员去外包公司?
  16. 图解通信原理与案例分析-2:如何用电信号来表示和传输0和1,远远比我们想象的要复杂得多
  17. C# 求取圆心/球心坐标 ∈ C# 编程笔记
  18. 七牛首席布道师:Go不是在颠覆,就是在逆袭
  19. 国开电大 管理心理学 形考任务1-4
  20. OpenGl太阳地球月亮运动系统

热门文章

  1. [RK3399][Android8.1/9]双屏异显
  2. 3D、沉浸、空间音频?在Fidelio B97的随需环绕面前都是弟弟
  3. CTF----小白篇
  4. 适当的活动可预防腰间盘突出哦!
  5. 这家芯片企业,从创立之初就用 Authing 管理身份
  6. windows的139端口和445端口的区别
  7. Linux安全基线配置全解析
  8. OpenHarmony 官网文档有哪些上新?上篇:应用开发文档上新
  9. PSO(粒子群算法)
  10. 新概念二册 lesson 2 一般现在时 现在进行时