前言

根据黑马程序员C++课程内容,结合讲义,将自己学习C++的过程中将自己觉得有必要记下的笔记进行整理,方便复习回顾,编程环境为VSCode。

本阶段主要针对C++面向对象编程技术做详细讲解,探讨C++中的核心和精髓。

1 内存分区模型

C++程序在执行时,将内存大方向划分为4个区域

  • 代码区:存放函数体的二进制代码,由操作系统进行管理的
  • 全局区:存放全局变量和静态变量以及常量
  • 栈区:由编译器自动分配释放, 存放函数的参数值,局部变量等
  • 堆区:由程序员分配和释放,若程序员不释放,程序结束时由操作系统回收

内存四区意义:

不同区域存放的数据,赋予不同的生命周期, 给我们更大的灵活编程

1.1 程序运行前

在程序编译后,生成了exe可执行程序,未执行该程序前分为两个区域

​ 代码区:

​ 存放 CPU 执行的机器指令

代码区是共享的,共享的目的是对于频繁被执行的程序,只需要在内存中有一份代码即可

代码区是只读的,使其只读的原因是防止程序意外地修改了它的指令

​ 全局区:

​ 全局变量和静态变量存放在此.

​ 全局区还包含了常量区, 字符串常量和其他常量也存放在此.

​ 该区域的数据在程序结束后由操作系统释放.

示例:

#include <iostream>
using namespace std;//全局变量
int g_a = 10;
int g_b = 10;//全局常量
const int c_g_a = 10;
const int c_g_b = 10;int main() {//局部变量int a = 10;int b = 10;//打印地址cout << "局部变量a地址为: " << (int)&a << endl;cout << "局部变量b地址为: " << (int)&b << endl;cout << "全局变量g_a地址为: " <<  (int)&g_a << endl;cout << "全局变量g_b地址为: " <<  (int)&g_b << endl;//静态变量static int s_a = 10;static int s_b = 10;cout << "静态变量s_a地址为: " << (int)&s_a << endl;cout << "静态变量s_b地址为: " << (int)&s_b << endl;cout << "字符串常量地址为: " << (int)&"hello world" << endl;cout << "字符串常量地址为: " << (int)&"hello world1" << endl;cout << "全局常量c_g_a地址为: " << (int)&c_g_a << endl;cout << "全局常量c_g_b地址为: " << (int)&c_g_b << endl;const int c_l_a = 10;const int c_l_b = 10;cout << "局部常量c_l_a地址为: " << (int)&c_l_a << endl;cout << "局部常量c_l_b地址为: " << (int)&c_l_b << endl;system("pause");return 0;
}

打印结果:

总结:

  • C++中在程序运行前分为全局区和代码区
  • 代码区特点是共享和只读
  • 全局区中存放全局变量、静态变量、常量
  • 常量区中存放 const修饰的全局常量 和 字符串常量

1.2 程序运行后

栈区:

​ 由编译器自动分配释放, 存放函数的参数值,局部变量等

注意事项:不要返回局部变量的地址,栈区开辟的数据由编译器自动释放

#include <iostream>
using namespace std;int * func()
{int a = 10;return &a;
}int main() {int *p = func();cout << *p << endl;cout << *p << endl;system("pause");return 0;
}

打印结果:

这里程序编译警告了,不知道为啥不能运行。。。

​ 堆区:

​ 由程序员分配释放,若程序员不释放,程序结束时由操作系统回收

​ 在C++中主要利用new在堆区开辟内存

示例:

#include <iostream>
using namespace std;int* func()
{int* a = new int(10);return a;
}int main() {int *p = func();cout << *p << endl;cout << *p << endl;system("pause");return 0;
}

打印结果:

总结:

堆区数据由程序员管理开辟和释放

堆区数据利用new关键字进行开辟内存

1.3 new操作符

​ C++中利用new操作符在堆区开辟数据

​ 堆区开辟的数据,由程序员手动开辟,手动释放,释放利用操作符 delete

​ 语法:new 数据类型

利用new创建的数据,会返回该数据对应的类型的指针

示例1:基本语法

#include <iostream>
using namespace std;int* func()
{int* a = new int(10);return a;
}int main() {int *p = func();cout << *p << endl;cout << *p << endl;//利用delete释放堆区数据delete p;//cout << *p << endl; //报错,释放的空间不可访问system("pause");return 0;
}

打印结果:

示例2:开辟数组

#include <iostream>
using namespace std;//堆区开辟数组
int main() {int* arr = new int[10];for (int i = 0; i < 10; i++){arr[i] = i + 100;}for (int i = 0; i < 10; i++){cout << arr[i] << endl;}//释放数组 delete 后加 []delete[] arr;system("pause");return 0;
}

打印结果:

2 引用

作用: 给变量起别名

语法: 数据类型 &别名 = 原名

示例:

#include <iostream>
using namespace std;int main() {int a = 10;int &b = a;cout << "a = " << a << endl;cout << "b = " << b << endl;b = 100;cout << "a = " << a << endl;cout << "b = " << b << endl;system("pause");return 0;
}

打印结果:

2.2 引用注意事项

  • 引用必须初始化
  • 引用在初始化后,不可以改变

示例:

#include <iostream>
using namespace std;int main() {int a = 10;int b = 20;//int &c; //错误,引用必须初始化int &c = a; //一旦初始化后,就不可以更改c = b; //这是赋值操作,不是更改引用cout << "a = " << a << endl;cout << "b = " << b << endl;cout << "c = " << c << endl;system("pause");return 0;
}

打印结果:

2.3 引用做函数参数

作用: 函数传参时,可以利用引用的技术让形参修饰实参

优点: 可以简化指针修改实参

示例:

#include <iostream>
using namespace std;//1. 值传递
void mySwap01(int a, int b) {int temp = a;a = b;b = temp;
}//2. 地址传递
void mySwap02(int* a, int* b) {int temp = *a;*a = *b;*b = temp;
}//3. 引用传递
void mySwap03(int& a, int& b) {int temp = a;a = b;b = temp;
}int main() {int a = 10;int b = 20;mySwap01(a, b);cout << "a:" << a << " b:" << b << endl;mySwap02(&a, &b);cout << "a:" << a << " b:" << b << endl;mySwap03(a, b);cout << "a:" << a << " b:" << b << endl;system("pause");return 0;
}

打印结果:

总结:通过引用参数产生的效果同按地址传递是一样的。引用的语法更清楚简单

2.4 引用做函数返回值

作用: 引用是可以作为函数的返回值存在的

注意: 不要返回局部变量引用

用法: 函数调用作为左值

示例:

#include <iostream>
using namespace std;//返回局部变量引用
int& test01() {int a = 10; //局部变量return a;
}//返回静态变量引用
int& test02() {static int a = 20;return a;
}int main() {//不能返回局部变量的引用// int& ref = test01();// cout << "ref = " << ref << endl;// cout << "ref = " << ref << endl;//如果函数做左值,那么必须返回引用int& ref2 = test02();cout << "ref2 = " << ref2 << endl;cout << "ref2 = " << ref2 << endl;test02() = 1000;cout << "ref2 = " << ref2 << endl;cout << "ref2 = " << ref2 << endl;system("pause");return 0;
}

打印结果:

2.5 引用的本质

本质:引用的本质在c++内部实现是一个指针常量.

讲解示例:

#include <iostream>
using namespace std;//发现是引用,转换为 int* const ref = &a;
void func(int& ref){ref = 100; // ref是引用,转换为*ref = 100
}
int main(){int a = 10;//自动转换为 int* const ref = &a; 指针常量是指针指向不可改,也说明为什么引用不可更改int& ref = a; ref = 20; //内部发现ref是引用,自动帮我们转换为: *ref = 20;cout << "a:" << a << endl;cout << "ref:" << ref << endl;func(a);return 0;
}

打印结果:

结论:C++推荐用引用技术,因为语法方便,引用本质是指针常量,但是所有的指针操作编译器都帮我们做了

2.6 常量引用

作用: 常量引用主要用来修饰形参,防止误操作

在函数形参列表中,可以加const修饰形参,防止形参改变实参

示例:

#include <iostream>
using namespace std;//引用使用的场景,通常用来修饰形参
void showValue(const int& v) {//v += 10;cout << v << endl;
}int main() {//int& ref = 10;  引用本身需要一个合法的内存空间,因此这行错误//加入const就可以了,编译器优化代码,int temp = 10; const int& ref = temp;const int& ref = 10;//ref = 100;  //加入const后不可以修改变量cout << ref << endl;//函数中利用常量引用防止误操作修改实参int a = 10;showValue(a);system("pause");return 0;
}

打印结果:

3 函数提高

3.1 函数默认参数

在C++中,函数的形参列表中的形参是可以有默认值的。

语法: 返回值类型 函数名 (参数= 默认值){}

示例:

int func(int a, int b = 10, int c = 10) {return a + b + c;
}//1. 如果某个位置参数有默认值,那么从这个位置往后,从左向右,必须都要有默认值
//2. 如果函数声明有默认值,函数实现的时候就不能有默认参数
int func2(int a = 10, int b = 10);
int func2(int a, int b) {return a + b;
}int main() {cout << "ret = " << func(20, 20) << endl;cout << "ret = " << func(100) << endl;system("pause");return 0;
}

运行结果:

3.2 函数占位参数

C++中函数的形参列表里可以有占位参数,用来做占位,调用函数时必须填补该位置

语法: 返回值类型 函数名 (数据类型){}

在现阶段函数的占位参数存在意义不大,但是后面的课程中会用到该技术

示例:

//函数占位参数 ,占位参数也可以有默认参数
void func(int a, int) {cout << "this is func" << endl;
}int main() {func(10,10); //占位参数必须填补system("pause");return 0;
}

3.3 函数重载

3.3.1 函数重载概述

作用: 函数名可以相同,提高复用性

函数重载满足条件:

  • 同一个作用域下
  • 函数名称相同
  • 函数参数类型不同 或者 个数不同 或者 顺序不同

注意: 函数的返回值不可以作为函数重载的条件

示例:

//函数重载需要函数都在同一个作用域下
void func()
{cout << "func 的调用!" << endl;
}
void func(int a)
{cout << "func (int a) 的调用!" << endl;
}
void func(double a)
{cout << "func (double a)的调用!" << endl;
}
void func(int a ,double b)
{cout << "func (int a ,double b) 的调用!" << endl;
}
void func(double a ,int b)
{cout << "func (double a ,int b)的调用!" << endl;
}//函数返回值不可以作为函数重载条件
//int func(double a, int b)
//{//  cout << "func (double a ,int b)的调用!" << endl;
//}int main() {func();func(10);func(3.14);func(10,3.14);func(3.14 , 10);system("pause");return 0;
}

运行结果:

3.3.2 函数重载注意事项

  • 引用作为重载条件
  • 函数重载碰到函数默认参数

示例:

//函数重载注意事项
//1、引用作为重载条件void func(int &a)
{cout << "func (int &a) 调用 " << endl;
}void func(const int &a)
{cout << "func (const int &a) 调用 " << endl;
}//2、函数重载碰到函数默认参数void func2(int a, int b = 10)
{cout << "func2(int a, int b = 10) 调用" << endl;
}void func2(int a)
{cout << "func2(int a) 调用" << endl;
}int main() {int a = 10;func(a); //调用无constfunc(10);//调用有const//func2(10); //碰到默认参数产生歧义,需要避免system("pause");return 0;
}

运行结果:

4 类和对象

C++面向对象的三大特性为:封装、继承、多态

C++认为万事万物都皆为对象,对象上有其属性和行为

例如:

​ 人可以作为对象,属性有姓名、年龄、身高、体重…,行为有走、跑、跳、吃饭、唱歌…

​ 车也可以作为对象,属性有轮胎、方向盘、车灯…,行为有载人、放音乐、放空调…

​ 具有相同性质的对象,我们可以抽象称为类,人属于人类,车属于车类

4.1 封装

4.1.1 封装的意义

封装是C++面向对象三大特性之一

封装的意义:

  • 将属性和行为作为一个整体,表现生活中的事物
  • 将属性和行为加以权限控制

封装意义一:

​ 在设计类的时候,属性和行为写在一起,表现事物

语法: class 类名{ 访问权限: 属性 / 行为 };

示例1: 设计一个圆类,求圆的周长

//圆周率
const double PI = 3.14;//1、封装的意义
//将属性和行为作为一个整体,用来表现生活中的事物//封装一个圆类,求圆的周长
//class代表设计一个类,后面跟着的是类名
class Circle
{public:  //访问权限  公共的权限//属性int m_r;//半径//行为//获取到圆的周长double calculateZC(){//2 * pi  * r//获取圆的周长return  2 * PI * m_r;}
};int main() {//通过圆类,创建圆的对象// c1就是一个具体的圆Circle c1;c1.m_r = 10; //给圆对象的半径 进行赋值操作//2 * pi * 10 = = 62.8cout << "圆的周长为: " << c1.calculateZC() << endl;system("pause");return 0;
}

运行结果:

示例2: 设计一个学生类,属性有姓名和学号,可以给姓名和学号赋值,可以显示学生的姓名和学号

//学生类
class Student {public:void setName(string name) {m_name = name;}void setID(int id) {m_id = id;}void showStudent() {cout << "name:" << m_name << " ID:" << m_id << endl;}
public:string m_name;int m_id;
};int main() {Student stu;stu.setName("德玛西亚");stu.setID(250);stu.showStudent();system("pause");return 0;

运行结果:

封装意义二:

类在设计时,可以把属性和行为放在不同的权限下,加以控制

访问权限有三种:

  • public 公共权限
  • protected 保护权限
  • private 私有权限

示例:

//三种权限
//公共权限  public     类内可以访问  类外可以访问
//保护权限  protected  类内可以访问  类外不可以访问
//私有权限  private    类内可以访问  类外不可以访问class Person
{//姓名  公共权限
public:string m_Name;//汽车  保护权限
protected:string m_Car;//银行卡密码  私有权限
private:int m_Password;public:void func(){m_Name = "张三";m_Car = "拖拉机";m_Password = 123456;}
};int main() {Person p;p.m_Name = "李四";//p.m_Car = "奔驰";  //保护权限类外访问不到//p.m_Password = 123; //私有权限类外访问不到system("pause");return 0;
}

4.1.2 struct和class区别

在C++中 struct和class唯一的区别就在于默认的访问权限不同

区别:

  • struct 默认权限为公共
  • class 默认权限为私有
class C1
{int  m_A; //默认是私有权限
};struct C2
{int m_A;  //默认是公共权限
};int main() {C1 c1;c1.m_A = 10; //错误,访问权限是私有C2 c2;c2.m_A = 10; //正确,访问权限是公共system("pause");return 0;
}

4.1.3 成员属性设置为私有

优点1: 将所有成员属性设置为私有,可以自己控制读写权限

优点2: 对于写权限,我们可以检测数据的有效性

示例:

class Person {public://姓名设置可读可写void setName(string name) {m_Name = name;}string getName(){return m_Name;}//获取年龄 int getAge() {return m_Age;}//设置年龄void setAge(int age) {if (age < 0 || age > 150) {cout << "你个老妖精!" << endl;return;}m_Age = age;}//情人设置为只写void setLover(string lover) {m_Lover = lover;}private:string m_Name; //可读可写  姓名int m_Age; //只读  年龄string m_Lover; //只写  情人
};int main() {Person p;//姓名设置p.setName("张三");cout << "姓名: " << p.getName() << endl;//年龄设置p.setAge(50);cout << "年龄: " << p.getAge() << endl;//情人设置p.setLover("苍井");//cout << "情人: " << p.m_Lover << endl;  //只写属性,不可以读取system("pause");return 0;
}

运行结果:

练习案例1:设计立方体类

设计立方体类(Cube)

求出立方体的面积和体积

分别用全局函数和成员函数判断两个立方体是否相等。

#include <iostream>
using namespace std;class Cube
{public:void setLong(int l){c_L = l;}int getLong(){return c_L;}void setWidth(int w){c_W = w;}int getWidth(){return c_W;}void setHeight(int h){c_H = h;}int getHeight(){return c_H;}int getArea(){return 2*c_L*c_W + 2*c_L*c_H + 2*c_W*c_H;}int getVolume(){return c_L*c_W*c_H;}bool isSameFromClass(Cube &c2){if(c_L == c2.getLong() && c_W == c2.getWidth() && c_H == c2.getHeight()){return true;}else{return false;}
}private:int c_L;int c_W;int c_H;
};bool isSame(Cube &c1,Cube &c2){if(c1.getLong() == c2.getLong() && c1.getWidth() == c2.getWidth() && c1.getHeight() == c2.getHeight()){return true;}else{return false;}
}int main()
{Cube c1;c1.setLong(10);c1.setWidth(10);c1.setHeight(10);cout << "c1的面积为:" << c1.getArea() << endl;cout << "c1的体积为:" << c1.getVolume() << endl;Cube c2;c2.setLong(20);c2.setWidth(10);c2.setHeight(10);cout << "c2的面积为:" << c1.getArea() << endl;cout << "c2的体积为:" << c1.getVolume() << endl;if(isSame(c1,c2)){cout << "全局函数判断结果为:相等" << endl;}else{cout << "全局函数判断结果为:不相等" << endl;}if(c1.isSameFromClass(c2)){cout << "成员函数判断结果为:相等" << endl;}else{cout << "成员函数判断结果为:不相等" << endl;}return 0;
}

运行结果:

练习案例2:点和圆的关系

设计一个圆形类(Circle),和一个点类(Point),计算点和圆的关系。

#include <iostream>
using namespace std;class Point
{public:void setX(int x){m_X = x;}int getX(){return m_X;} void setY(int y){m_Y = y;}int getY(){return m_Y;}private:int m_X;int m_Y;
};class Circle
{public:void set_R(int r){m_R = r;}int get_R(){return m_R;}void set_Center(Point p){center = p;}Point get_Center(){return center;}
private:int m_R;Point center;
};void isInPoint(Circle &c,Point &p)
{int distance = (c.get_Center().getX() - p.getX()) * (c.get_Center().getX() - p.getX()) + (c.get_Center().getY() - p.getY()) *  (c.get_Center().getY() - p.getY());int r = c.get_R() * c.get_R();if(r == distance){cout << "点在圆上" << endl; }else if(r > distance){cout << "点在圆内" << endl;}else{cout << "点在圆外" << endl;}
}int main()
{Circle c;c.set_R(10);Point center;center.setX(10);center.setY(0);c.set_Center(center);Point p;p.setX(10);p.setY(9);isInPoint(c,p);system("pause");return 0;
}

运行结果:

4.2 对象的初始化和清理

  • 生活中我们买的电子产品都基本会有出厂设置,在某一天我们不用时候也会删除一些自己信息数据保证安全
  • C++中的面向对象来源于生活,每个对象也都会有初始设置以及 对象销毁前的清理数据的设置。

4.2.1 构造函数和析构函数

对象的初始化和清理也是两个非常重要的安全问题

​ 一个对象或者变量没有初始状态,对其使用后果是未知

​ 同样的使用完一个对象或变量,没有及时清理,也会造成一定的安全问题

c++利用了构造函数和析构函数解决上述问题,这两个函数将会被编译器自动调用,完成对象初始化和清理工作。

对象的初始化和清理工作是编译器强制要我们做的事情,因此如果我们不提供构造和析构,编译器会提供

编译器提供的构造函数和析构函数是空实现。

  • 构造函数:主要作用在于创建对象时为对象的成员属性赋值,构造函数由编译器自动调用,无须手动调用。
  • 析构函数:主要作用在于对象销毁前系统自动调用,执行一些清理工作。

构造函数语法: 类名(){}

  • 构造函数,没有返回值也不写void

  • 函数名称与类名相同

  • 构造函数可以有参数,因此可以发生重载

  • 程序在调用对象时候会自动调用构造,无须手动调用,而且只会调用一次

析构函数语法: ~类名(){}

  • 析构函数,没有返回值也不写void

  • 函数名称与类名相同,在名称前加上符号 ~

  • 析构函数不可以有参数,因此不可以发生重载

  • 程序在对象销毁前会自动调用析构,无须手动调用,而且只会调用一次

class Person
{public://构造函数Person(){cout << "Person的构造函数调用" << endl;}//析构函数~Person(){cout << "Person的析构函数调用" << endl;}};void test01()
{Person p;
}int main() {test01();system("pause");return 0;
}

运行结果:

4.2.2 构造函数的分类及调用

两种分类方式:

  • ​ 按参数分为: 有参构造和无参构造
  • ​ 按类型分为: 普通构造和拷贝构造

三种调用方式:

  • ​ 括号法
  • ​ 显示法
  • ​ 隐式转换法

示例:

//1、构造函数分类
// 按照参数分类分为 有参和无参构造   无参又称为默认构造函数
// 按照类型分类分为 普通构造和拷贝构造class Person {public://无参(默认)构造函数Person() {cout << "无参构造函数!" << endl;}//有参构造函数Person(int a) {age = a;cout << "有参构造函数!" << endl;}//拷贝构造函数Person(const Person& p) {age = p.age;cout << "拷贝构造函数!" << endl;}//析构函数~Person() {cout << "析构函数!" << endl;}
public:int age;
};//2、构造函数的调用
//调用无参构造函数
void test01() {Person p; //调用无参构造函数
}//调用有参的构造函数
void test02() {//2.1  括号法,常用Person p1(10);//注意1:调用无参构造函数不能加括号,如果加了编译器认为这是一个函数声明//Person p2();//2.2 显式法Person p2 = Person(10); Person p3 = Person(p2);//Person(10)单独写就是匿名对象  当前行结束之后,马上析构//2.3 隐式转换法Person p4 = 10; // Person p4 = Person(10); Person p5 = p4; // Person p5 = Person(p4); //注意2:不能利用 拷贝构造函数 初始化匿名对象 编译器认为是对象声明//Person p5(p4);
}int main() {test01();//test02();system("pause");return 0;
}

运行结果:

4.2.3 拷贝构造函数调用时机

C++中拷贝构造函数调用时机通常有三种情况

  • 使用一个已经创建完毕的对象来初始化一个新对象
  • 值传递的方式给函数参数传值
  • 以值方式返回局部对象

示例:

class Person {public:Person() {cout << "无参构造函数!" << endl;mAge = 0;}Person(int age) {cout << "有参构造函数!" << endl;mAge = age;}Person(const Person& p) {cout << "拷贝构造函数!" << endl;mAge = p.mAge;}//析构函数在释放内存之前调用~Person() {cout << "析构函数!" << endl;}
public:int mAge;
};//1. 使用一个已经创建完毕的对象来初始化一个新对象
void test01() {Person man(100); //p对象已经创建完毕Person newman(man); //调用拷贝构造函数Person newman2 = man; //拷贝构造//Person newman3;//newman3 = man; //不是调用拷贝构造函数,赋值操作
}//2. 值传递的方式给函数参数传值
//相当于Person p1 = p;
void doWork(Person p1) {}
void test02() {Person p; //无参构造函数doWork(p);
}//3. 以值方式返回局部对象
Person doWork2()
{Person p1;cout << (int *)&p1 << endl;return p1;
}void test03()
{Person p = doWork2();cout << (int *)&p << endl;
}int main() {//test01();//test02();test03();system("pause");return 0;
}

运行结果:

4.2.4 构造函数调用规则

默认情况下,c++编译器至少给一个类添加3个函数

1.默认构造函数(无参,函数体为空)

2.默认析构函数(无参,函数体为空)

3.默认拷贝构造函数,对属性进行值拷贝

构造函数调用规则如下:

  • 如果用户定义有参构造函数,c++不在提供默认无参构造,但是会提供默认拷贝构造
  • 如果用户定义拷贝构造函数,c++不会再提供其他构造函数

示例:

class Person {public://无参(默认)构造函数Person() {cout << "无参构造函数!" << endl;}//有参构造函数Person(int a) {age = a;cout << "有参构造函数!" << endl;}//拷贝构造函数Person(const Person& p) {age = p.age;cout << "拷贝构造函数!" << endl;}//析构函数~Person() {cout << "析构函数!" << endl;}
public:int age;
};void test01()
{Person p1(18);//如果不写拷贝构造,编译器会自动添加拷贝构造,并且做浅拷贝操作Person p2(p1);cout << "p2的年龄为: " << p2.age << endl;
}void test02()
{//如果用户提供有参构造,编译器不会提供默认构造,会提供拷贝构造Person p1; //此时如果用户自己没有提供默认构造,会出错Person p2(10); //用户提供的有参Person p3(p2); //此时如果用户没有提供拷贝构造,编译器会提供//如果用户提供拷贝构造,编译器不会提供其他构造函数Person p4; //此时如果用户自己没有提供默认构造,会出错Person p5(10); //此时如果用户自己没有提供有参,会出错Person p6(p5); //用户自己提供拷贝构造
}int main() {test01();system("pause");return 0;
}

运行结果:

4.2.5 深拷贝与浅拷贝

深浅拷贝是面试经典问题,也是常见的一个坑

  • 浅拷贝:简单的赋值拷贝操作
  • 深拷贝:在堆区重新申请空间,进行拷贝操作

示例:

class Person {public://无参(默认)构造函数Person() {cout << "无参构造函数!" << endl;}//有参构造函数Person(int age ,int height) {cout << "有参构造函数!" << endl;m_age = age;m_height = new int(height);}//拷贝构造函数  Person(const Person& p) {cout << "拷贝构造函数!" << endl;//如果不利用深拷贝在堆区创建新内存,会导致浅拷贝带来的重复释放堆区问题m_age = p.m_age;m_height = new int(*p.m_height);}//析构函数~Person() {cout << "析构函数!" << endl;if (m_height != NULL){delete m_height;}}
public:int m_age;int* m_height;
};void test01()
{Person p1(18, 180);Person p2(p1);cout << "p1的年龄: " << p1.m_age << " 身高: " << *p1.m_height << endl;cout << "p2的年龄: " << p2.m_age << " 身高: " << *p2.m_height << endl;
}int main() {test01();system("pause");return 0;
}

运行结果:

总结:如果属性有在堆区开辟的,一定要自己提供拷贝构造函数,防止浅拷贝带来的问题

4.2.6 初始化列表

作用:

C++提供了初始化列表语法,用来初始化属性

语法: 构造函数():属性1(值1),属性2(值2)... {}

示例:

class Person {public:传统方式初始化//Person(int a, int b, int c) {// m_A = a;// m_B = b;// m_C = c;//}//初始化列表方式初始化Person(int a, int b, int c) :m_A(a), m_B(b), m_C(c) {}void PrintPerson() {cout << "mA:" << m_A << endl;cout << "mB:" << m_B << endl;cout << "mC:" << m_C << endl;}
private:int m_A;int m_B;int m_C;
};int main() {Person p(1, 2, 3);p.PrintPerson();system("pause");return 0;
}

运行结果:

4.2.7 类对象作为类成员

C++类中的成员可以是另一个类的对象,我们称该成员为 对象成员

例如:

class A {}
class B
{A a;
}

B类中有对象A作为成员,A为对象成员

那么当创建B对象时,A与B的构造和析构的顺序是谁先谁后?

示例:

class Phone
{public:Phone(string name){m_PhoneName = name;cout << "Phone构造" << endl;}~Phone(){cout << "Phone析构" << endl;}string m_PhoneName;};class Person
{public://初始化列表可以告诉编译器调用哪一个构造函数Person(string name, string pName) :m_Name(name), m_Phone(pName){cout << "Person构造" << endl;}~Person(){cout << "Person析构" << endl;}void playGame(){cout << m_Name << " 使用" << m_Phone.m_PhoneName << " 牌手机! " << endl;}string m_Name;Phone m_Phone;};
void test01()
{//当类中成员是其他类对象时,我们称该成员为 对象成员//构造的顺序是 :先调用对象成员的构造,再调用本类构造//析构顺序与构造相反Person p("张三" , "苹果X");p.playGame();}int main() {test01();system("pause");return 0;
}

运行结果:

4.2.8 静态成员

静态成员就是在成员变量和成员函数前加上关键字static,称为静态成员

静态成员分为:

静态成员变量

  • 所有对象共享同一份数据
  • 在编译阶段分配内存
  • 类内声明,类外初始化

静态成员函数

  • 所有对象共享同一个函数
  • 静态成员函数只能访问静态成员变量

示例1 : 静态成员变量

class Person
{public:static int m_A; //静态成员变量//静态成员变量特点://1 在编译阶段分配内存//2 类内声明,类外初始化//3 所有对象共享同一份数据private:static int m_B; //静态成员变量也是有访问权限的
};
int Person::m_A = 10;
int Person::m_B = 10;void test01()
{//静态成员变量两种访问方式//1、通过对象Person p1;p1.m_A = 100;cout << "p1.m_A = " << p1.m_A << endl;Person p2;p2.m_A = 200;cout << "p1.m_A = " << p1.m_A << endl; //共享同一份数据cout << "p2.m_A = " << p2.m_A << endl;//2、通过类名cout << "m_A = " << Person::m_A << endl;//cout << "m_B = " << Person::m_B << endl; //私有权限访问不到
}int main() {test01();system("pause");return 0;
}

运行结果:

示例2: 静态成员函数

class Person
{public://静态成员函数特点://1 程序共享一个函数//2 静态成员函数只能访问静态成员变量static void func(){cout << "func调用" << endl;m_A = 100;//m_B = 100; //错误,不可以访问非静态成员变量}static int m_A; //静态成员变量int m_B; //
private://静态成员函数也是有访问权限的static void func2(){cout << "func2调用" << endl;}
};
int Person::m_A = 10;void test01()
{//静态成员变量两种访问方式//1、通过对象Person p1;p1.func();//2、通过类名Person::func();//Person::func2(); //私有权限访问不到
}int main() {test01();system("pause");return 0;
}

运行结果:

4.3 C++对象模型和this指针

4.3.1 成员变量和成员函数分开存储

在C++中,类内的成员变量和成员函数分开存储

只有非静态成员变量才属于类的对象上

class Person {public:Person() {mA = 0;}//非静态成员变量占对象空间int mA;//静态成员变量不占对象空间static int mB; //函数也不占对象空间,所有函数共享一个函数实例void func() {cout << "mA:" << this->mA << endl;}//静态成员函数也不占对象空间static void sfunc() {}
};int main() {cout << sizeof(Person) << endl;system("pause");return 0;
}

运行结果:

4.3.2 this指针概念

通过4.3.1我们知道在C++中成员变量和成员函数是分开存储的

每一个非静态成员函数只会诞生一份函数实例,也就是说多个同类型的对象会共用一块代码

那么问题是:这一块代码是如何区分那个对象调用自己的呢?

c++通过提供特殊的对象指针,this指针,解决上述问题。this指针指向被调用的成员函数所属的对象

this指针是隐含每一个非静态成员函数内的一种指针

this指针不需要定义,直接使用即可

this指针的用途:

  • 当形参和成员变量同名时,可用this指针来区分
  • 在类的非静态成员函数中返回对象本身,可使用return *this
class Person
{public:Person(int age){//1、当形参和成员变量同名时,可用this指针来区分this->age = age;}Person& PersonAddPerson(Person p){this->age += p.age;//返回对象本身return *this;}int age;
};void test01()
{Person p1(10);cout << "p1.age = " << p1.age << endl;Person p2(10);p2.PersonAddPerson(p1).PersonAddPerson(p1).PersonAddPerson(p1);cout << "p2.age = " << p2.age << endl;
}int main() {test01();system("pause");return 0;
}

运行结果:

4.3.3 空指针访问成员函数

C++中空指针也是可以调用成员函数的,但是也要注意有没有用到this指针

如果用到this指针,需要加以判断保证代码的健壮性

示例:

//空指针访问成员函数
class Person {public:void ShowClassName() {cout << "我是Person类!" << endl;}void ShowPerson() {if (this == NULL) {return;}cout << mAge << endl;}public:int mAge;
};void test01()
{Person * p = NULL;p->ShowClassName(); //空指针,可以调用成员函数p->ShowPerson();  //但是如果成员函数中用到了this指针,就不可以了
}int main() {test01();system("pause");return 0;
}

运行结果:

4.3.4 const修饰成员函数

常函数:

成员函数后加const后我们称为这个函数为常函数
常函数内不可以修改成员属性
成员属性声明时加关键字mutable后,在常函数中依然可以修改

常对象:

声明对象前加const称该对象为常对象
常对象只能调用常函数

示例:

class Person {public:Person() {m_A = 0;m_B = 0;}//this指针的本质是一个指针常量,指针的指向不可修改//如果想让指针指向的值也不可以修改,需要声明常函数void ShowPerson() const {//const Type* const pointer;//this = NULL; //不能修改指针的指向 Person* const this;//this->mA = 100; //但是this指针指向的对象的数据是可以修改的//const修饰成员函数,表示指针指向的内存空间的数据不能修改,除了mutable修饰的变量this->m_B = 100;}void MyFunc() const {//mA = 10000;}public:int m_A;mutable int m_B; //可修改 可变的
};//const修饰对象  常对象
void test01() {const Person person; //常量对象  cout << person.m_A << endl;//person.mA = 100; //常对象不能修改成员变量的值,但是可以访问person.m_B = 100; //但是常对象可以修改mutable修饰成员变量//常对象访问成员函数person.MyFunc(); //常对象不能调用const的函数}int main() {test01();system("pause");return 0;
}

运行结果:

4.4 友元

生活中你的家有客厅(Public),有你的卧室(Private)

客厅所有来的客人都可以进去,但是你的卧室是私有的,也就是说只有你能进去

但是呢,你也可以允许你的好闺蜜好基友进去。

在程序里,有些私有属性 也想让类外特殊的一些函数或者类进行访问,就需要用到友元的技术

友元的目的就是让一个函数或者类 访问另一个类中私有成员

友元的关键字为 friend

友元的三种实现

  • 全局函数做友元
  • 类做友元
  • 成员函数做友元

4.4.1 全局函数做友元

class Building
{//告诉编译器 goodGay全局函数 是 Building类的好朋友,可以访问类中的私有内容friend void goodGay(Building * building);public:Building(){this->m_SittingRoom = "客厅";this->m_BedRoom = "卧室";}public:string m_SittingRoom; //客厅private:string m_BedRoom; //卧室
};void goodGay(Building * building)
{cout << "好基友正在访问: " << building->m_SittingRoom << endl;cout << "好基友正在访问: " << building->m_BedRoom << endl;
}void test01()
{Building b;goodGay(&b);
}int main(){test01();system("pause");return 0;
}

运行结果:

4.4.2 类做友元

class Building;
class goodGay
{public:goodGay();void visit();private:Building *building;
};class Building
{//告诉编译器 goodGay类是Building类的好朋友,可以访问到Building类中私有内容friend class goodGay;public:Building();public:string m_SittingRoom; //客厅
private:string m_BedRoom;//卧室
};Building::Building()
{this->m_SittingRoom = "客厅";this->m_BedRoom = "卧室";
}goodGay::goodGay()
{building = new Building;
}void goodGay::visit()
{cout << "好基友正在访问" << building->m_SittingRoom << endl;cout << "好基友正在访问" << building->m_BedRoom << endl;
}void test01()
{goodGay gg;gg.visit();}int main(){test01();system("pause");return 0;
}

运行结果:

4.4.3 成员函数做友元

class Building;
class goodGay
{public:goodGay();void visit(); //只让visit函数作为Building的好朋友,可以发访问Building中私有内容void visit2(); private:Building *building;
};class Building
{//告诉编译器  goodGay类中的visit成员函数 是Building好朋友,可以访问私有内容friend void goodGay::visit();public:Building();public:string m_SittingRoom; //客厅
private:string m_BedRoom;//卧室
};Building::Building()
{this->m_SittingRoom = "客厅";this->m_BedRoom = "卧室";
}goodGay::goodGay()
{building = new Building;
}void goodGay::visit()
{cout << "好基友正在访问" << building->m_SittingRoom << endl;cout << "好基友正在访问" << building->m_BedRoom << endl;
}void goodGay::visit2()
{cout << "好基友正在访问" << building->m_SittingRoom << endl;//cout << "好基友正在访问" << building->m_BedRoom << endl;
}void test01()
{goodGay  gg;gg.visit();}int main(){test01();system("pause");return 0;
}

运行结果:

4.5 运算符重载

运算符重载概念:对已有的运算符重新进行定义,赋予其另一种功能,以适应不同的数据类型

4.5.1 加号运算符重载

作用:实现两个自定义数据类型相加的运算

class Person {public:Person() {};Person(int a, int b){this->m_A = a;this->m_B = b;}//成员函数实现 + 号运算符重载Person operator+(const Person& p) {Person temp;temp.m_A = this->m_A + p.m_A;temp.m_B = this->m_B + p.m_B;return temp;}public:int m_A;int m_B;
};//全局函数实现 + 号运算符重载
//Person operator+(const Person& p1, const Person& p2) {//  Person temp(0, 0);
//  temp.m_A = p1.m_A + p2.m_A;
//  temp.m_B = p1.m_B + p2.m_B;
//  return temp;
//}//运算符重载 可以发生函数重载
Person operator+(const Person& p2, int val)
{Person temp;temp.m_A = p2.m_A + val;temp.m_B = p2.m_B + val;return temp;
}void test() {Person p1(10, 10);Person p2(20, 20);//成员函数方式Person p3 = p2 + p1;  //相当于 p2.operaor+(p1)cout << "mA:" << p3.m_A << " mB:" << p3.m_B << endl;Person p4 = p3 + 10; //相当于 operator+(p3,10)cout << "mA:" << p4.m_A << " mB:" << p4.m_B << endl;}int main() {test();system("pause");return 0;
}

运行结果:

总结1:对于内置的数据类型的表达式的的运算符是不可能改变的
总结2:不要滥用运算符重载

4.5.2 左移运算符重载

作用:可以输出自定义数据类型

class Person {friend ostream& operator<<(ostream& out, Person& p);public:Person(int a, int b){this->m_A = a;this->m_B = b;}//成员函数 实现不了  p << cout 不是我们想要的效果//void operator<<(Person& p){//}private:int m_A;int m_B;
};//全局函数实现左移重载
//ostream对象只能有一个
ostream& operator<<(ostream& out, Person& p) {out << "a:" << p.m_A << " b:" << p.m_B;return out;
}void test() {Person p1(10, 20);cout << p1 << "hello world" << endl; //链式编程
}int main() {test();system("pause");return 0;
}

运行结果:

总结:重载左移运算符配合友元可以实现输出自定义数据类型

4.5.3 递增运算符重载

作用: 通过重载递增运算符,实现自己的整型数据

class MyInteger {friend ostream& operator<<(ostream& out, MyInteger myint);public:MyInteger() {m_Num = 0;}//前置++MyInteger& operator++() {//先++m_Num++;//再返回return *this;}//后置++MyInteger operator++(int) {//先返回MyInteger temp = *this; //记录当前本身的值,然后让本身的值加1,但是返回的是以前的值,达到先返回后++;m_Num++;return temp;}private:int m_Num;
};ostream& operator<<(ostream& out, MyInteger myint) {out << myint.m_Num;return out;
}//前置++ 先++ 再返回
void test01() {MyInteger myInt;cout << ++myInt << endl;cout << myInt << endl;
}//后置++ 先返回 再++
void test02() {MyInteger myInt;cout << myInt++ << endl;cout << myInt << endl;
}int main() {test01();//test02();system("pause");return 0;
}

运行结果:

总结: 前置递增返回引用,后置递增返回值

4.5.4 赋值运算符重载

c++编译器至少给一个类添加4个函数

  1. 默认构造函数(无参,函数体为空)
  2. 默认析构函数(无参,函数体为空)
  3. 默认拷贝构造函数,对属性进行值拷贝
  4. 赋值运算符 operator=, 对属性进行值拷贝
  5. 如果类中有属性指向堆区,做赋值操作时也会出现深浅拷贝问题

示例:

class Person
{public:Person(int age){//将年龄数据开辟到堆区m_Age = new int(age);}//重载赋值运算符 Person& operator=(Person &p){if (m_Age != NULL){delete m_Age;m_Age = NULL;}//编译器提供的代码是浅拷贝//m_Age = p.m_Age;//提供深拷贝 解决浅拷贝的问题m_Age = new int(*p.m_Age);//返回自身return *this;}~Person(){if (m_Age != NULL){delete m_Age;m_Age = NULL;}}//年龄的指针int *m_Age;};void test01()
{Person p1(18);Person p2(20);Person p3(30);p3 = p2 = p1; //赋值操作cout << "p1的年龄为:" << *p1.m_Age << endl;cout << "p2的年龄为:" << *p2.m_Age << endl;cout << "p3的年龄为:" << *p3.m_Age << endl;
}int main() {test01();//int a = 10;//int b = 20;//int c = 30;//c = b = a;//cout << "a = " << a << endl;//cout << "b = " << b << endl;//cout << "c = " << c << endl;system("pause");return 0;
}

运行结果:

4.5.5 关系运算符重载

作用: 重载关系运算符,可以让两个自定义类型对象进行对比操作

class Person
{public:Person(string name, int age){this->m_Name = name;this->m_Age = age;};bool operator==(Person & p){if (this->m_Name == p.m_Name && this->m_Age == p.m_Age){return true;}else{return false;}}bool operator!=(Person & p){if (this->m_Name == p.m_Name && this->m_Age == p.m_Age){return false;}else{return true;}}string m_Name;int m_Age;
};void test01()
{//int a = 0;//int b = 0;Person a("孙悟空", 18);Person b("孙悟空", 18);if (a == b){cout << "a和b相等" << endl;}else{cout << "a和b不相等" << endl;}if (a != b){cout << "a和b不相等" << endl;}else{cout << "a和b相等" << endl;}
}int main() {test01();system("pause");return 0;
}

运行结果:

4.5.6 函数调用运算符重载

  • 函数调用运算符 () 也可以重载
  • 由于重载后使用的方式非常像函数的调用,因此称为仿函数
  • 仿函数没有固定写法,非常灵活

示例:

class MyPrint
{public:void operator()(string text){cout << text << endl;}};
void test01()
{//重载的()操作符 也称为仿函数MyPrint myFunc;myFunc("hello world");
}class MyAdd
{public:int operator()(int v1, int v2){return v1 + v2;}
};void test02()
{MyAdd add;int ret = add(10, 10);cout << "ret = " << ret << endl;//匿名对象调用  cout << "MyAdd()(100,100) = " << MyAdd()(100, 100) << endl;
}int main() {test01();test02();system("pause");return 0;
}

运行结果:

4.6 继承

继承是面向对象三大特性之一

我们发现,定义这些类时,下级别的成员除了拥有上一级的共性,还有自己的特性。

这个时候我们就可以考虑利用继承的技术,减少重复代码

4.6.1 继承的基本语法

例如我们看到很多网站中,都有公共的头部,公共的底部,甚至公共的左侧列表,只有中心内容不同

接下来我们分别利用普通写法和继承的写法来实现网页中的内容,看一下继承存在的意义以及好处

普通实现:

//Java页面
class Java
{public:void header(){cout << "首页、公开课、登录、注册...(公共头部)" << endl;}void footer(){cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;}void left(){cout << "Java,Python,C++...(公共分类列表)" << endl;}void content(){cout << "JAVA学科视频" << endl;}
};
//Python页面
class Python
{public:void header(){cout << "首页、公开课、登录、注册...(公共头部)" << endl;}void footer(){cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;}void left(){cout << "Java,Python,C++...(公共分类列表)" << endl;}void content(){cout << "Python学科视频" << endl;}
};
//C++页面
class CPP
{public:void header(){cout << "首页、公开课、登录、注册...(公共头部)" << endl;}void footer(){cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;}void left(){cout << "Java,Python,C++...(公共分类列表)" << endl;}void content(){cout << "C++学科视频" << endl;}
};void test01()
{//Java页面cout << "Java下载视频页面如下: " << endl;Java ja;ja.header();ja.footer();ja.left();ja.content();cout << "--------------------" << endl;//Python页面cout << "Python下载视频页面如下: " << endl;Python py;py.header();py.footer();py.left();py.content();cout << "--------------------" << endl;//C++页面cout << "C++下载视频页面如下: " << endl;CPP cp;cp.header();cp.footer();cp.left();cp.content();}int main() {test01();system("pause");return 0;
}

运行结果:

继承实现:

//公共页面
class BasePage
{public:void header(){cout << "首页、公开课、登录、注册...(公共头部)" << endl;}void footer(){cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;}void left(){cout << "Java,Python,C++...(公共分类列表)" << endl;}};//Java页面
class Java : public BasePage
{public:void content(){cout << "JAVA学科视频" << endl;}
};
//Python页面
class Python : public BasePage
{public:void content(){cout << "Python学科视频" << endl;}
};
//C++页面
class CPP : public BasePage
{public:void content(){cout << "C++学科视频" << endl;}
};void test01()
{//Java页面cout << "Java下载视频页面如下: " << endl;Java ja;ja.header();ja.footer();ja.left();ja.content();cout << "--------------------" << endl;//Python页面cout << "Python下载视频页面如下: " << endl;Python py;py.header();py.footer();py.left();py.content();cout << "--------------------" << endl;//C++页面cout << "C++下载视频页面如下: " << endl;CPP cp;cp.header();cp.footer();cp.left();cp.content();}int main() {test01();system("pause");return 0;
}

运行结果:

总结:

继承的好处:可以减少重复的代码

class A : public B;

A 类称为子类 或 派生类

B 类称为父类 或 基类

派生类中的成员,包含两大部分:

一类是从基类继承过来的,一类是自己增加的成员。

从基类继承过过来的表现其共性,而新增的成员体现了其个性。

4.6.2 继承方式

继承的语法:class 子类 : 继承方式 父类

继承方式一共有三种:

  • 公共继承
  • 保护继承
  • 私有继承

示例:

class Base1
{public: int m_A;
protected:int m_B;
private:int m_C;
};//公共继承
class Son1 :public Base1
{public:void func(){m_A; //可访问 public权限m_B; //可访问 protected权限//m_C; //不可访问}
};void myClass()
{Son1 s1;s1.m_A; //其他类只能访问到公共权限
}//保护继承
class Base2
{public:int m_A;
protected:int m_B;
private:int m_C;
};
class Son2:protected Base2
{public:void func(){m_A; //可访问 protected权限m_B; //可访问 protected权限//m_C; //不可访问}
};
void myClass2()
{Son2 s;//s.m_A; //不可访问
}//私有继承
class Base3
{public:int m_A;
protected:int m_B;
private:int m_C;
};
class Son3:private Base3
{public:void func(){m_A; //可访问 private权限m_B; //可访问 private权限//m_C; //不可访问}
};
class GrandSon3 :public Son3
{public:void func(){//Son3是私有继承,所以继承Son3的属性在GrandSon3中都无法访问到//m_A;//m_B;//m_C;}
};

4.6.3 继承中的对象模型

问题: 从父类继承过来的成员,哪些属于子类对象中?

示例:

class Base
{public:int m_A;
protected:int m_B;
private:int m_C; //私有成员只是被隐藏了,但是还是会继承下去
};//公共继承
class Son :public Base
{public:int m_D;
};void test01()
{cout << "sizeof Son = " << sizeof(Son) << endl;
}int main() {test01();system("pause");return 0;
}

运行结果:

利用工具查看:

  1. 打开工具窗口后,定位到当前CPP文件的盘符
  2. 然后输入: cl /d1 reportSingleClassLayout查看的类名 所属文件名

结论: 父类中私有成员也是被子类继承下去了,只是由编译器给隐藏后访问不到

4.6.4 继承中构造和析构顺序

子类继承父类后,当创建子类对象,也会调用父类的构造函数

问题:父类和子类的构造和析构顺序是谁先谁后?

示例:

class Base
{public:Base(){cout << "Base构造函数!" << endl;}~Base(){cout << "Base析构函数!" << endl;}
};class Son : public Base
{public:Son(){cout << "Son构造函数!" << endl;}~Son(){cout << "Son析构函数!" << endl;}};void test01()
{//继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反Son s;
}int main() {test01();system("pause");return 0;
}

运行结果:

总结:继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反

4.6.5 继承同名成员处理方式

问题:当子类与父类出现同名的成员,如何通过子类对象,访问到子类或父类中同名的数据呢?

  • 访问子类同名成员 直接访问即可
  • 访问父类同名成员 需要加作用域

示例:

class Base {public:Base(){m_A = 100;}void func(){cout << "Base - func()调用" << endl;}void func(int a){cout << "Base - func(int a)调用" << endl;}public:int m_A;
};class Son : public Base {public:Son(){m_A = 200;}//当子类与父类拥有同名的成员函数,子类会隐藏父类中所有版本的同名成员函数//如果想访问父类中被隐藏的同名成员函数,需要加父类的作用域void func(){cout << "Son - func()调用" << endl;}
public:int m_A;
};void test01()
{Son s;cout << "Son下的m_A = " << s.m_A << endl;cout << "Base下的m_A = " << s.Base::m_A << endl;s.func();s.Base::func();s.Base::func(10);}
int main() {test01();system("pause");return EXIT_SUCCESS;
}

运行结果:

总结:

  1. 子类对象可以直接访问到子类中同名成员
  2. 子类对象加作用域可以访问到父类同名成员
  3. 当子类与父类拥有同名的成员函数,子类会隐藏父类中同名成员函数,加作用域可以访问到父类中同名函数

4.6.6 继承同名静态成员处理方式

问题:继承中同名的静态成员在子类对象上如何进行访问?

静态成员和非静态成员出现同名,处理方式一致

  • 访问子类同名成员 直接访问即可
  • 访问父类同名成员 需要加作用域

示例:

class Base {public:static void func(){cout << "Base - static void func()" << endl;}static void func(int a){cout << "Base - static void func(int a)" << endl;}static int m_A;
};int Base::m_A = 100;class Son : public Base {public:static void func(){cout << "Son - static void func()" << endl;}static int m_A;
};int Son::m_A = 200;//同名成员属性
void test01()
{//通过对象访问cout << "通过对象访问: " << endl;Son s;cout << "Son  下 m_A = " << s.m_A << endl;cout << "Base 下 m_A = " << s.Base::m_A << endl;//通过类名访问cout << "通过类名访问: " << endl;cout << "Son  下 m_A = " << Son::m_A << endl;cout << "Base 下 m_A = " << Son::Base::m_A << endl;
}//同名成员函数
void test02()
{//通过对象访问cout << "通过对象访问: " << endl;Son s;s.func();s.Base::func();cout << "通过类名访问: " << endl;Son::func();Son::Base::func();//出现同名,子类会隐藏掉父类中所有同名成员函数,需要加作作用域访问Son::Base::func(100);
}
int main() {//test01();test02();system("pause");return 0;
}

运行结果:

总结:同名静态成员处理方式和非静态处理方式一样,只不过有两种访问的方式(通过对象 和 通过类名)

4.6.7 多继承语法

C++允许一个类继承多个类

语法: class 子类 :继承方式 父类1 , 继承方式 父类2...

多继承可能会引发父类中有同名成员出现,需要加作用域区分

C++实际开发中不建议用多继承

示例:

class Base1 {public:Base1(){m_A = 100;}
public:int m_A;
};class Base2 {public:Base2(){m_A = 200;  //开始是m_B 不会出问题,但是改为mA就会出现不明确}
public:int m_A;
};//语法:class 子类:继承方式 父类1 ,继承方式 父类2
class Son : public Base2, public Base1
{public:Son(){m_C = 300;m_D = 400;}
public:int m_C;int m_D;
};//多继承容易产生成员同名的情况
//通过使用类名作用域可以区分调用哪一个基类的成员
void test01()
{Son s;cout << "sizeof Son = " << sizeof(s) << endl;cout << s.Base1::m_A << endl;cout << s.Base2::m_A << endl;
}int main() {test01();system("pause");return 0;
}

运行结果:

总结: 多继承中如果父类中出现了同名情况,子类使用时候要加作用域

4.6.8 菱形继承

菱形继承概念:

​ 两个派生类继承同一个基类

​ 又有某个类同时继承者两个派生类

​ 这种继承被称为菱形继承,或者钻石继承

菱形继承问题:

羊继承了动物的数据,驼同样继承了动物的数据,当草泥马使用数据时,就会产生二义性。
草泥马继承自动物的数据继承了两份,其实我们应该清楚,这份数据我们只需要一份就可以。

示例:

class Animal
{public:int m_Age;
};//继承前加virtual关键字后,变为虚继承
//此时公共的父类Animal称为虚基类
class Sheep : virtual public Animal {};
class Tuo   : virtual public Animal {};
class SheepTuo : public Sheep, public Tuo {};void test01()
{SheepTuo st;st.Sheep::m_Age = 100;st.Tuo::m_Age = 200;cout << "st.Sheep::m_Age = " << st.Sheep::m_Age << endl;cout << "st.Tuo::m_Age = " <<  st.Tuo::m_Age << endl;cout << "st.m_Age = " << st.m_Age << endl;
}int main() {test01();system("pause");return 0;
}

运行结果:

总结:

  • 菱形继承带来的主要问题是子类继承两份相同的数据,导致资源浪费以及毫无意义
  • 利用虚继承可以解决菱形继承问题

4.7 多态

4.7.1 多态的基本概念

多态是C++面向对象三大特性之一

多态分为两类

  • 静态多态: 函数重载 和 运算符重载属于静态多态,复用函数名
  • 动态多态: 派生类和虚函数实现运行时多态

静态多态和动态多态区别:

  • 静态多态的函数地址早绑定 - 编译阶段确定函数地址
  • 动态多态的函数地址晚绑定 - 运行阶段确定函数地址

下面通过案例进行讲解多态

class Animal
{public://Speak函数就是虚函数//函数前面加上virtual关键字,变成虚函数,那么编译器在编译的时候就不能确定函数调用了。virtual void speak(){cout << "动物在说话" << endl;}
};class Cat :public Animal
{public:void speak(){cout << "小猫在说话" << endl;}
};class Dog :public Animal
{public:void speak(){cout << "小狗在说话" << endl;}};
//我们希望传入什么对象,那么就调用什么对象的函数
//如果函数地址在编译阶段就能确定,那么静态联编
//如果函数地址在运行阶段才能确定,就是动态联编void DoSpeak(Animal & animal)
{animal.speak();
}
//
//多态满足条件:
//1、有继承关系
//2、子类重写父类中的虚函数
//多态使用:
//父类指针或引用指向子类对象void test01()
{Cat cat;DoSpeak(cat);Dog dog;DoSpeak(dog);
}int main() {test01();system("pause");return 0;
}

运行结果:

总结:

多态满足条件:

  1. 有继承关系
  2. 子类重写父类中的虚函数
  3. 多态使用条件

父类指针或引用指向子类对象

重写: 函数返回值类型 函数名 参数列表 完全一致称为重写

4.7.2 多态案例一-计算器类

案例描述:

分别利用普通写法和多态技术,设计实现两个操作数进行运算的计算器类

多态的优点:

  • 代码组织结构清晰
  • 可读性强
  • 利于前期和后期的扩展以及维护

示例:

//普通实现
class Calculator {public:int getResult(string oper){if (oper == "+") {return m_Num1 + m_Num2;}else if (oper == "-") {return m_Num1 - m_Num2;}else if (oper == "*") {return m_Num1 * m_Num2;}//如果要提供新的运算,需要修改源码}
public:int m_Num1;int m_Num2;
};void test01()
{//普通实现测试Calculator c;c.m_Num1 = 10;c.m_Num2 = 10;cout << c.m_Num1 << " + " << c.m_Num2 << " = " << c.getResult("+") << endl;cout << c.m_Num1 << " - " << c.m_Num2 << " = " << c.getResult("-") << endl;cout << c.m_Num1 << " * " << c.m_Num2 << " = " << c.getResult("*") << endl;
}//多态实现
//抽象计算器类
//多态优点:代码组织结构清晰,可读性强,利于前期和后期的扩展以及维护
class AbstractCalculator
{public :virtual int getResult(){return 0;}int m_Num1;int m_Num2;
};//加法计算器
class AddCalculator :public AbstractCalculator
{public:int getResult(){return m_Num1 + m_Num2;}
};//减法计算器
class SubCalculator :public AbstractCalculator
{public:int getResult(){return m_Num1 - m_Num2;}
};//乘法计算器
class MulCalculator :public AbstractCalculator
{public:int getResult(){return m_Num1 * m_Num2;}
};void test02()
{//创建加法计算器AbstractCalculator *abc = new AddCalculator;abc->m_Num1 = 10;abc->m_Num2 = 10;cout << abc->m_Num1 << " + " << abc->m_Num2 << " = " << abc->getResult() << endl;delete abc;  //用完了记得销毁//创建减法计算器abc = new SubCalculator;abc->m_Num1 = 10;abc->m_Num2 = 10;cout << abc->m_Num1 << " - " << abc->m_Num2 << " = " << abc->getResult() << endl;delete abc;  //创建乘法计算器abc = new MulCalculator;abc->m_Num1 = 10;abc->m_Num2 = 10;cout << abc->m_Num1 << " * " << abc->m_Num2 << " = " << abc->getResult() << endl;delete abc;
}int main() {//test01();test02();system("pause");return 0;
}

总结:C++开发提倡利用多态设计程序架构,因为多态优点很多

4.7.3 纯虚函数和抽象类

在多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容

因此可以将虚函数改为纯虚函数

纯虚函数语法: virtual 返回值类型 函数名 (参数列表)= 0 ;

当类中有了纯虚函数,这个类也称为抽象类

抽象类特点:

  • 无法实例化对象
  • 子类必须重写抽象类中的纯虚函数,否则也属于抽象类

示例:

class Base
{public://纯虚函数//类中只要有一个纯虚函数就称为抽象类//抽象类无法实例化对象//子类必须重写父类中的纯虚函数,否则也属于抽象类virtual void func() = 0;
};class Son :public Base
{public:virtual void func() {cout << "func调用" << endl;};
};void test01()
{Base * base = NULL;//base = new Base; // 错误,抽象类无法实例化对象base = new Son;base->func();delete base;//记得销毁
}int main() {test01();system("pause");return 0;
}

运行结果:

4.7.4 多态案例二-制作饮品

案例描述:

制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料

利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶

示例:

//抽象制作饮品
class AbstractDrinking {public://烧水virtual void Boil() = 0;//冲泡virtual void Brew() = 0;//倒入杯中virtual void PourInCup() = 0;//加入辅料virtual void PutSomething() = 0;//规定流程void MakeDrink() {Boil();Brew();PourInCup();PutSomething();}
};//制作咖啡
class Coffee : public AbstractDrinking {public://烧水virtual void Boil() {cout << "煮农夫山泉!" << endl;}//冲泡virtual void Brew() {cout << "冲泡咖啡!" << endl;}//倒入杯中virtual void PourInCup() {cout << "将咖啡倒入杯中!" << endl;}//加入辅料virtual void PutSomething() {cout << "加入牛奶!" << endl;}
};//制作茶水
class Tea : public AbstractDrinking {public://烧水virtual void Boil() {cout << "煮自来水!" << endl;}//冲泡virtual void Brew() {cout << "冲泡茶叶!" << endl;}//倒入杯中virtual void PourInCup() {cout << "将茶水倒入杯中!" << endl;}//加入辅料virtual void PutSomething() {cout << "加入枸杞!" << endl;}
};//业务函数
void DoWork(AbstractDrinking* drink) {drink->MakeDrink();delete drink;
}void test01() {DoWork(new Coffee);cout << "--------------" << endl;DoWork(new Tea);
}int main() {test01();system("pause");return 0;
}

运行结果:

4.7.5 虚析构和纯虚析构

多态使用时,如果子类中有属性开辟到堆区,那么父类指针在释放时无法调用到子类的析构代码

解决方式: 将父类中的析构函数改为虚析构或者纯虚析构

虚析构和纯虚析构共性:

  • 可以解决父类指针释放子类对象
  • 都需要有具体的函数实现

虚析构和纯虚析构区别:

  • 如果是纯虚析构,该类属于抽象类,无法实例化对象

虚析构语法:

virtual ~类名(){}

纯虚析构语法:

virtual ~类名() = 0;

类名::~类名(){}

示例:

class Animal {public:Animal(){cout << "Animal 构造函数调用!" << endl;}virtual void Speak() = 0;//析构函数加上virtual关键字,变成虚析构函数//virtual ~Animal()//{//  cout << "Animal虚析构函数调用!" << endl;//}virtual ~Animal() = 0;
};Animal::~Animal()
{cout << "Animal 纯虚析构函数调用!" << endl;
}//和包含普通纯虚函数的类一样,包含了纯虚析构函数的类也是一个抽象类。不能够被实例化。class Cat : public Animal {public:Cat(string name){cout << "Cat构造函数调用!" << endl;m_Name = new string(name);}virtual void Speak(){cout << *m_Name <<  "小猫在说话!" << endl;}~Cat(){cout << "Cat析构函数调用!" << endl;if (this->m_Name != NULL) {delete m_Name;m_Name = NULL;}}public:string *m_Name;
};void test01()
{Animal *animal = new Cat("Tom");animal->Speak();//通过父类指针去释放,会导致子类对象可能清理不干净,造成内存泄漏//怎么解决?给基类增加一个虚析构函数//虚析构函数就是用来解决通过父类指针释放子类对象delete animal;
}int main() {test01();system("pause");return 0;
}

总结:

​ 1. 虚析构或纯虚析构就是用来解决通过父类指针释放子类对象

​ 2. 如果子类中没有堆区数据,可以不写为虚析构或纯虚析构

​ 3. 拥有纯虚析构函数的类也属于抽象类

4.7.6 多态案例三-电脑组装

案例描述:

电脑主要组成部件为 CPU(用于计算),显卡(用于显示),内存条(用于存储)

将每个零件封装出抽象基类,并且提供不同的厂商生产不同的零件,例如Intel厂商和Lenovo厂商

创建电脑类提供让电脑工作的函数,并且调用每个零件工作的接口

测试时组装三台不同的电脑进行工作

示例:

#include <iostream>
using namespace std;class CPU
{public:virtual void calculator() = 0;
};class VedioCard
{public:virtual void display() = 0;
};class Memory
{public:virtual void storage() = 0;
};class Computer
{public:Computer(CPU* cpu,VedioCard* vc,Memory* memory){m_Cpu = cpu;m_Vc = vc;m_Memory = memory;}void work(){m_Cpu->calculator();m_Vc->display();m_Memory->storage();}~Computer(){if(m_Cpu != NULL){delete m_Cpu;m_Cpu = NULL;}else if(m_Vc != NULL){delete m_Vc;m_Vc = NULL;}else if(m_Memory != NULL){delete m_Memory;m_Memory = NULL;}}private:CPU* m_Cpu;VedioCard* m_Vc;Memory* m_Memory;
};class IntelCpu : public CPU
{public:void calculator(){cout << "Intel的CPU开始工作" << endl;}
};class IntelVedioCard : public VedioCard
{public:void display(){cout << "Intel显卡开始工作" << endl;}
};class IntelMemory : public Memory
{public:void storage(){cout << "Intel内存条开始工作" << endl;}
};class AmdCpu : public CPU
{public:void calculator(){cout << "Amd的CPU开始工作" << endl;}
};class AmdVedioCard : public VedioCard
{public:void display(){cout << "Amd显卡开始工作" << endl;}
};class AmdMemory : public Memory
{public:void storage(){cout << "Amd内存条开始工作" << endl;}
};void intelTest()
{CPU* intelCpu = new IntelCpu;VedioCard* intelVedioCard = new IntelVedioCard;Memory* intelMemory = new IntelMemory;Computer* intelComputer = new Computer(intelCpu,intelVedioCard,intelMemory);intelComputer->work();delete intelComputer;intelComputer = NULL;
}void amdTest()
{CPU* amdCpu = new AmdCpu;VedioCard* amdVedioCard = new AmdVedioCard;Memory* amdMemory = new AmdMemory;Computer* amdComputer = new Computer(amdCpu,amdVedioCard,amdMemory);amdComputer->work();delete amdComputer;amdComputer = NULL;
}int main()
{intelTest();amdTest();system("pause");return 0;
}

运行结果:

5 文件操作

程序运行时产生的数据都属于临时数据,程序一旦运行结束都会被释放

通过文件可以将数据持久化

C++中对文件操作需要包含头文件 < fstream >

文件类型分为两种:

  • 文本文件 - 文件以文本的ASCII码形式存储在计算机中
  • 二进制文件 - 文件以文本的二进制形式存储在计算机中,用户一般不能直接读懂它们

操作文件的三大类:

  • ofstream:写操作
  • ifstream: 读操作
  • fstream : 读写操作

5.1文本文件

5.1.1写文件

写文件步骤如下:

  1. 包含头文件

#include

  1. 创建流对象

ofstream ofs;

  1. 打开文件

ofs.open(“文件路径”,打开方式);

  1. 写数据

ofs << “写入的数据”;

  1. 关闭文件

ofs.close();

文件打开方式:

打开方式 解释
ios::in 为读文件而打开文件
ios::out 为写文件而打开文件
ios::ate 初始位置:文件尾
ios::app 追加方式写文件
ios::trunc 如果文件存在先删除,再创建
ios::binary 二进制方式

注意: 文件打开方式可以配合使用,利用 | 操作符

例如: 用二进制方式写文件 ios::binary | ios:: out

示例:

#include <fstream>void test01()
{ofstream ofs;ofs.open("test.txt", ios::out);ofs << "姓名:张三" << endl;ofs << "性别:男" << endl;ofs << "年龄:18" << endl;ofs.close();
}int main() {test01();system("pause");return 0;

运行结果:

总结:

  • 文件操作必须包含头文件 fstream
  • 读文件可以利用 ofstream ,或者fstream类
  • 打开文件时候需要指定操作文件的路径,以及打开方式
  • 利用<<可以向文件中写数据
  • 操作完毕,要关闭文件

5.1.2读文件

读文件与写文件步骤相似,但是读取方式相对于比较多

读文件步骤如下:

1.包含头文件

#include

2.创建流对象

ifstream ifs;

3.打开文件并判断文件是否打开成功

ifs.open(“文件路径”,打开方式);

4.读数据

四种方式读取

5.关闭文件

ifs.close();

示例:

#include <fstream>
#include <string>
void test01()
{ifstream ifs;ifs.open("test.txt", ios::in);if (!ifs.is_open()){cout << "文件打开失败" << endl;return;}//第一种方式//char buf[1024] = { 0 };//while (ifs >> buf)//{//   cout << buf << endl;//}//第二种//char buf[1024] = { 0 };//while (ifs.getline(buf,sizeof(buf)))//{//   cout << buf << endl;//}//第三种//string buf;//while (getline(ifs, buf))//{//   cout << buf << endl;//}char c;while ((c = ifs.get()) != EOF){cout << c;}ifs.close();}int main() {test01();system("pause");return 0;
}

运行结果:

总结:

  • 读文件可以利用 ifstream ,或者fstream类
  • 利用is_open函数可以判断文件是否打开成功
  • close 关闭文件

5.2 二进制文件

以二进制的方式对文件进行读写操作

打开方式要指定为 ios::binary

5.2.1 写文件

二进制方式写文件主要利用流对象调用成员函数write

函数原型 : ostream& write(const char * buffer,int len);

参数解释: 字符指针buffer指向内存中一段存储空间。len是读写的字节数

示例:

#include <fstream>
#include <string>class Person
{public:char m_Name[64];int m_Age;
};//二进制文件  写文件
void test01()
{//1、包含头文件//2、创建输出流对象ofstream ofs("person.txt", ios::out | ios::binary);//3、打开文件//ofs.open("person.txt", ios::out | ios::binary);Person p = {"张三"  , 18};//4、写文件ofs.write((const char *)&p, sizeof(p));//5、关闭文件ofs.close();
}int main() {test01();system("pause");return 0;
}

运行结果:

总结:

  • 文件输出流对象 可以通过write函数,以二进制方式写数据

5.2.2 读文件

二进制方式读文件主要利用流对象调用成员函数read

函数原型: istream& read(char *buffer,int len);

参数解释: 字符指针buffer指向内存中一段存储空间。len是读写的字节数

示例:

#include <fstream>
#include <string>class Person
{public:char m_Name[64];int m_Age;
};void test01()
{ifstream ifs("person.txt", ios::in | ios::binary);if (!ifs.is_open()){cout << "文件打开失败" << endl;}Person p;ifs.read((char *)&p, sizeof(p));cout << "姓名: " << p.m_Name << " 年龄: " << p.m_Age << endl;
}int main() {test01();system("pause");return 0;
}

运行结果:

总结:

  • 文件输入流对象 可以通过read函数,以二进制方式读数据

核心编程阶段到此结束!!!

【C++】黑马程序员-C++核心编程学习笔记相关推荐

  1. 【C++】黑马程序员C++核心编程学习笔记(完结)

    目录 前言: 一.内存 1.1 内存四区 1.2 new操作符 二.引用 2.1 引用基本使用和注意事项 2.2 引用做函数参数 2.3 引用函数返回值 2.3 常量引用 三.函数提高 3.1 函数默 ...

  2. 【168天】黑马程序员27天视频学习笔记【Day07】

    [168天]黑马程序员27天视频学习笔记[Day07] 叨逼叨两句 决定了,我会记住这一天! 07-01:构造方法Constructor概述和格式 构造方法概述和作用 给对象的数据(属性)进行初始化. ...

  3. 哔哩哔哩黑马程序员C++课程个人学习笔记

    写在前面:此博文仅作为个人c++学习笔记,或有错误不建议参考!!! 视频链接:黑马程序员c++教程从0到1 目录 一.第一部分c++基础 1.1 c++初识 1.1.1 hello world 1.1 ...

  4. 黑马程序员8日python学习笔记

    黑马程序员的教程给小白的体验非常良好,讲的非常细致,甚至会介绍一下鼠标快捷键的设置,会提到一些新手很容易踩到的坑. 打开python win+R python 看到>>>(进入到解释 ...

  5. 黑马程序员--分布式搜索ElasticSearch学习笔记

    写在最前 黑马视频地址:https://www.bilibili.com/video/BV1LQ4y127n4/ 想获得最佳的阅读体验,请移步至我的个人博客 SpringCloud学习笔记 消息队列M ...

  6. 【176天】黑马程序员27天视频学习笔记【Day11-上】

    叨逼叨两句 正式结束了,之后就是收尾工作. 今天想休息一下,任务就不做满了. 未来定个标准,事不过三,一天的任务,最多分三天完成,超过要罚分. 11-(01-04):Eclipse使用方法 程序的编译 ...

  7. 【208天】黑马程序员27天视频学习笔记【Day21-中】

    叨逼叨两句 今天又了结一件事,好累,好爽. 这几天在哥们家玩,更新内容不会断,但会相对少些了. 21-09:将文本反转 流对象要尽量晚开早关 package com.test.demo001;impo ...

  8. 【186天】黑马程序员27天视频学习笔记【Day15-上】

    叨逼叨两句 今天和朋友聊了聊,感觉真的很好,人还是得多跟别人交流,才能发现自己一些观念和理论上的漏洞. 今天帮了大家一个忙,总算要接近尾声了,开心啊. 我要准备去做一件伟大的事! 很高兴姐姐迈开了这一 ...

  9. 黑马程序员之ASP.NET学习笔记:Http状态代码及其含义

    -----------------------------------2345王牌技术员联盟.2345王牌技术员联盟.期待与您交流!---------------------------------- ...

最新文章

  1. python如何让用户输入文件名并打开文件_(Python)如何让用户打开文本文件然后更改整数/数字...
  2. linux '$^t' 时间,Linux C时间函数 time_t struct tm
  3. ECMAScript 6的一些新特性
  4. 图论 —— 图的搜索
  5. js不用reverse反转数组代码_10个JavaScript代码片段,帮助你成为更好的开发者
  6. 单元测试、集成测试、功能测试——Unittest
  7. cad计算机配置要求,CAD对电脑硬件的配置要求
  8. pagefile.sys占用磁盘空间过大时如何处理
  9. oracle svip地址,木子李QQ8.9 显IP地址SVIP完整版
  10. Android 蓝牙 单独打开和关闭BLE - 详解
  11. 用计算机在记事本做图案,记事本如何自定义制作CAD图案填充
  12. 山西最新道路运输安全员模拟真题集及答案解析
  13. Windows 防火墙的入站和出站规则说明
  14. VSCode下载很慢解决方法
  15. Qt 表格导出数据为 excel html csv
  16. 近端算子及其FBS优化问题
  17. 解决戴尔T640安装显卡后风扇狂飙
  18. C++多态与虚函数的实现
  19. 网站备案、域名备案、域名绑定服务器
  20. 简单实用的jQuery实现表格筛选功能

热门文章

  1. 如何升级libc.so.6以及升级后引发的灾难
  2. 艾美捷卵清蛋白(OVA),高纯度低内毒素介绍
  3. CGAL中2D三角剖分
  4. Java解析Excel2003、Excel2007(POI)
  5. 浅析linux内核网络协议栈--linux bridge
  6. 正则引擎入门——基于虚拟机的正则匹配(二)
  7. ARM汇编指令编程之内存单元填入整数并累加
  8. 【功能安全】【ISO26262】概念阶段
  9. 细分赛道下,若羽臣小体量,大挑战
  10. 成功三大定律:荷花定律、竹子定律、金蝉定律