2017 年 1 月 28 日,正月初一,微信公布了用户在除夕当天收发微信红包的数量——142 亿个,而其收发峰值也已达到 76 万每秒。百亿级别的红包,如何保障并发性能与资金安全?这给微信带来了超级挑战。面对挑战,微信红包在分析了业界“秒杀”系统解决方案的基础上,采用了 SET 化、请求排队串行化、双维度分库表等设计,形成了独特的高并发、资金安全系统解决方案。实践证明,该方案表现稳定,且实现了除夕夜系统零故障运行。

本文将为读者介绍百亿级别红包背后的系统高并发设计方案,包括微信红包的两大业务特点、微信红包系统的技术难点、解决高并发问题通常使用的方案,以及微信红包系统的高并发解决方案。

一、微信红包的两大业务特点

微信红包(尤其是发在微信群里的红包,即群红包)业务形态上很类似网上的普通商品“秒杀”活动。

用户在微信群里发一个红包,等同于是普通商品“秒杀”活动的商品上架;微信群里的所有用户抢红包的动作,等同于“秒杀”活动中的查询库存;用户抢到红包后拆红包的动作,则对应“秒杀”活动中用户的“秒杀”动作。

不过除了上面的相同点之外,微信红包在业务形态上与普通商品“秒杀”活动相比,还具备自身的特点:

首先,微信红包业务比普通商品“秒杀”有更海量的并发要求。

微信红包用户在微信群里发一个红包,等同于在网上发布一次商品“秒杀”活动。假设同一时间有 10 万个群里的用户同时在发红包,那就相当于同一时间有 10 万个“秒杀”活动发布出去。10 万个微信群里的用户同时抢红包,将产生海量的并发请求。

其次,微信红包业务要求更严格的安全级别。

微信红包业务本质上是资金交易。微信红包是微信支付的一个商户,提供资金流转服务。

用户发红包时,相当于在微信红包这个商户上使用微信支付购买一笔“钱”,并且收货地址是微信群。当用户支付成功后,红包“发货”到微信群里,群里的用户拆开红包后,微信红包提供了将“钱”转入折红包用户微信零钱的服务。

资金交易业务比普通商品“秒杀”活动有更高的安全级别要求。普通的商品“秒杀”商品由商户提供,库存是商户预设的,“秒杀”时可以允许存在“超卖”(即实际被抢的商品数量比计划的库存多)、“少卖”(即实际被抢的商户数量比计划的库存少)的情况。但是对于微信红包,用户发 100 元的红包绝对不可以被拆出 101 元;用户发 100 元只被领取 99 元时,剩下的 1 元在 24 小时过期后要精确地退还给发红包用户,不能多也不能少。

以上是微信红包业务模型上的两大特点。

二、 微信红包系统的技术难点

在介绍微信红包系统的技术难点之前,先介绍下简单的、典型的商品“秒杀”系统的架构设计,如下图所示。

该系统由接入层、逻辑服务层、存储层与缓存构成。Proxy 处理请求接入,Server 承载主要的业务逻辑,Cache 用于缓存库存数量、DB 则用于数据持久化。

一个“秒杀”活动,对应 DB 中的一条库存记录。当用户进行商品“秒杀”时,系统的主要逻辑在于 DB 中库存的操作上。一般来说,对 DB 的操作流程有以下三步:

a. 锁库存

b. 插入“秒杀”记录

c. 更新库存

其中,锁库存是为了避免并发请求时出现“超卖”情况。同时要求这三步操作需要在一个事务中完成(所谓的事务,是指作为单个逻辑工作单元执行的一系列操作,要么完全地执行,要么完全地不执行)。

“秒杀”系统的设计难点就在这个事务操作上。商品库存在 DB 中记为一行,大量用户同时“秒杀”同一商品时,第一个到达 DB 的请求锁住了这行库存记录。在第一个事务完成提交之前这个锁一直被第一个请求占用,后面的所有请求需要排队等待。同时参与“秒杀”的用户越多,并发进 DB 的请求越多,请求排队越严重。因此,并发请求抢锁,是典型的商品“秒杀”系统的设计难点。

微信红包业务相比普通商品“秒杀”活动,具有海量并发、高安全级别要求的特点。在微信红包系统的设计上,除了并发请求抢锁之外,还有以下两个突出难点

首先,事务级操作量级大。上文介绍微信红包业务特点时提到,普遍情况下同时会有数以万计的微信群在发红包。这个业务特点映射到微信红包系统设计上,就是有数以万计的“并发请求抢锁”同时在进行。这使得 DB 的压力比普通单个商品“库存”被锁要大很多倍。

其次,事务性要求严格。微信红包系统本质上是一个资金交易系统,相比普通商品“秒杀”系统有更高的事务级别要求。

三、解决高并发问题通常使用的方案

普通商品“秒杀”活动系统,解决高并发问题的方案,大体有以下几种:

方案一,使用内存操作替代实时的 DB 事务操作。

如图 2 所示,将“实时扣库存”的行为上移到内存 Cache 中操作,内存 Cache 操作成功直接给 Server 返回成功,然后异步落 DB 持久化。

这个方案的优点是用内存操作替代磁盘操作,提高了并发性能。

但是缺点也很明显,在内存操作成功但 DB 持久化失败,或者内存 Cache 故障的情况下,DB 持久化会丢数据,不适合微信红包这种资金交易系统。

方案二,使用乐观锁替代悲观锁。

所谓悲观锁,是关系数据库管理系统里的一种并发控制的方法。它可以阻止一个事务以影响其他用户的方式来修改数据。如果一个事务执行的操作对某行数据应用了锁,那只有当这个事务把锁释放,其他事务才能够执行与该锁冲突的操作。对应于上文分析中的“并发请求抢锁”行为。

所谓乐观锁,它假设多用户并发的事务在处理时不会彼此互相影响,各事务能够在不产生锁的情况下处理各自影响的那部分数据。在提交数据更新之前,每个事务会先检查在该事务读取数据后,有没有其他事务又修改了该数据。如果其他事务有更新的话,正在提交的事务会进行回滚。

商品“秒杀”系统中,乐观锁的具体应用方法,是在 DB 的“库存”记录中维护一个版本号。在更新“库存”的操作进行前,先去 DB 获取当前版本号。在更新库存的事务提交时,检查该版本号是否已被其他事务修改。如果版本没被修改,则提交事务,且版本号加 1;如果版本号已经被其他事务修改,则回滚事务,并给上层报错。

这个方案解决了“并发请求抢锁”的问题,可以提高 DB 的并发处理能力。

但是如果应用于微信红包系统,则会存在下面三个问题

  1. 如果拆红包采用乐观锁,那么在并发抢到相同版本号的拆红包请求中,只有一个能拆红包成功,其他的请求将事务回滚并返回失败,给用户报错,用户体验完全不可接受。
  2. 如果采用乐观锁,将会导致第一时间同时拆红包的用户有一部分直接返回失败,反而那些“手慢”的用户,有可能因为并发减小后拆红包成功,这会带来用户体验上的负面影响。
  3. 如果采用乐观锁的方式,会带来大数量的无效更新请求、事务回滚,给 DB 造成不必要的额外压力。

基于以上原因,微信红包系统不能采用乐观锁的方式解决并发抢锁问题。

四、微信红包系统的高并发解决方案

综合上面的分析,微信红包系统针对相应的技术难点,采用了下面几个方案,解决高并发问题。

1. 系统垂直 SET 化,分而治之。

微信红包用户发一个红包时,微信红包系统生成一个 ID 作为这个红包的唯一标识。接下来这个红包的所有发红包、抢红包、拆红包、查询红包详情等操作,都根据这个 ID 关联。

红包系统根据这个红包 ID,按一定的规则(如按 ID 尾号取模等),垂直上下切分。切分后,一个垂直链条上的逻辑 Server 服务器、DB 统称为一个 SET。

各个 SET 之间相互独立,互相解耦。并且同一个红包 ID 的所有请求,包括发红包、抢红包、拆红包、查详情详情等,垂直 stick 到同一个 SET 内处理,高度内聚。通过这样的方式,系统将所有红包请求这个巨大的洪流分散为多股小流,互不影响,分而治之,如下图所示。

这个方案解决了同时存在海量事务级操作的问题,将海量化为小量。

2. 逻辑 Server 层将请求排队,解决 DB 并发问题。

红包系统是资金交易系统,DB 操作的事务性无法避免,所以会存在“并发抢锁”问题。但是如果到达 DB 的事务操作(也即拆红包行为)不是并发的,而是串行的,就不会存在“并发抢锁”的问题了。

按这个思路,为了使拆红包的事务操作串行地进入 DB,只需要将请求在 Server 层以 FIFO(先进先出)的方式排队,就可以达到这个效果。从而问题就集中到 Server 的 FIFO 队列设计上。

微信红包系统设计了分布式的、轻巧的、灵活的 FIFO 队列方案。其具体实现如下:

首先,将同一个红包 ID 的所有请求 stick 到同一台 Server。

上面 SET 化方案已经介绍,同个红包 ID 的所有请求,按红包 ID stick 到同个 SET 中。不过在同个 SET 中,会存在多台 Server 服务器同时连接同一台 DB(基于容灾、性能考虑,需要多台 Server 互备、均衡压力)。

为了使同一个红包 ID 的所有请求,stick 到同一台 Server 服务器上,在 SET 化的设计之外,微信红包系统添加了一层基于红包 ID hash 值的分流,如下图所示。

其次,设计单机请求排队方案。

将 stick 到同一台 Server 上的所有请求在被接收进程接收后,按红包 ID 进行排队。然后串行地进入 worker 进程(执行业务逻辑)进行处理,从而达到排队的效果,如下图所示。

最后,增加 memcached 控制并发。

为了防止 Server 中的请求队列过载导致队列被降级,从而所有请求拥进 DB,系统增加了与 Server 服务器同机部署的 memcached,用于控制拆同一个红包的请求并发数。

具体来说,利用 memcached 的 CAS 原子累增操作,控制同时进入 DB 执行拆红包事务的请求数,超过预先设定数值则直接拒绝服务。用于 DB 负载升高时的降级体验。

通过以上三个措施,系统有效地控制了 DB 的“并发抢锁”情况。

3. 双维度库表设计,保障系统性能稳定

红包系统的分库表规则,初期是根据红包 ID 的 hash 值分为多库多表。随着红包数据量逐渐增大,单表数据量也逐渐增加。而 DB 的性能与单表数据量有一定相关性。当单表数据量达到一定程度时,DB 性能会有大幅度下降,影响系统性能稳定性。采用冷热分离,将历史冷数据与当前热数据分开存储,可以解决这个问题。

处理微信红包数据的冷热分离时,系统在以红包 ID 维度分库表的基础上,增加了以循环天分表的维度,形成了双维度分库表的特色。

具体来说,就是分库表规则像 db_xx.t_y_dd 设计,其中,xx/y 是红包 ID 的 hash 值后三位,dd 的取值范围在 01~31,代表一个月天数最多 31 天。

通过这种双维度分库表方式,解决了 DB 单表数据量膨胀导致性能下降的问题,保障了系统性能的稳定性。同时,在热冷分离的问题上,又使得数据搬迁变得简单而优雅。

综上所述,微信红包系统在解决高并发问题上的设计,主要采用了 SET 化分治、请求排队、双维度分库表等方案,使得单组 DB 的并发性能提升了 8 倍左右,取得了很好的效果。

五、总结

微信红包系统是一个高并发的资金交易系统,最大的技术挑战是保障并发性能与资金安全。这种全新的技术挑战,传统的“秒杀”系统设计方案已不能完全解决。在分析了业界“秒杀”系统解决方案的基础上,微信红包采用了 SET 化、请求排队串行化、双维度分库表等设计,形成了独特的高并发、资金安全系统解决方案,并在平时节假日、2015 和 2016 春节实践中充分证明了可行性,取得了显著的效果。在刚刚过去的 2017 鸡年除夕夜,微信红包收发峰值达到 76 万每秒,收发微信红包 142 亿个,微信红包系统的表现稳定,实现了除夕夜系统零故障。

本文系转载,留作记录使用。如有侵权请联系我删除,谢谢。

微信红包系统设计方案相关推荐

  1. 微信红包系统架构的设计和优化分享

    微信红包系统架构的设计和优化分享 编者按:经过2014年一年的酝酿,2015微信红包总量创下历史新高,峰值1400万次/秒,8.1亿次每分钟,微信红包收发达10.1亿次,系统整体运行平稳, 在这里我分 ...

  2. 高并发资金交易系统设计方案—百亿双十一、微信红包背后的技术架构

    21CTO社区导读 : 今天带来的是一个长篇文章.主要讲解高可用的互联网交易系统架构,包括双十一.支付宝&微博红包技术架构,以及微信红包的技术架构,希望能给各位提供价值. 概述 话说每逢双十一 ...

  3. asp微信现金红包系统发送系统一物一码刮开领红包系统

    最近接了一个生产万能胶的客户红包开发的要求,他想实现在他所有产品包装上贴一个小标签,上面有二维码可以扫码关注他的公众号,下面是一个刮刮银,刮开后是上串数字码,别人关注他的公众号后就可以在公众号下面的菜 ...

  4. 微信现金红包asp源码开发的微信一物一码红包系统,asp微信现金红包源码

    最近接了一个生产万能胶的客户红包开发的要求,他想实现在他所有产品包装上贴一个小标签,上面有二维码可以扫码关注他的公众号,下面是一个刮刮银,刮开后是上串数字码,别人关注他的公众号后就可 以在公众号下面的 ...

  5. 微信红包后台系统可用性设计实践

    微信红包业务量级的高速发展,对后台系统架构的可用性要求越来越高.在保障微信红包业务体验的前提下,红包后台系统进行了一系列高可用方面的优化设计.本次演讲介绍了微信红包后台系统的高可用实践经验,主要包括后 ...

  6. 前端实现红包雨功能_最全解密微信红包随机算法(含代码实现)

    code小生 一个专注大前端领域的技术平台公众号回复 Android加入安卓技术群 "  1.引言 这个系列文章已经整理了10篇,但都没有涉及到具体的红包算法实现,主要有以下两方面原因.一方 ...

  7. 最全解密微信红包随机算法(含代码实现)

    code小生 一个专注大前端领域的技术平台 公众号回复Android加入安卓技术群 " 本文内容编写时,参考了网上的资料,详见"参考资料"部分,感谢分享者..本文已同步发 ...

  8. 高并发秒杀系统架构设计 · 抢购、微信红包、一元夺宝

    秒杀业务与难点 秒杀业务在各业务中已然非常流行,这里我将互联网行业中的秒杀定义为:在非常短的时间内,将一件商品分成多份进行购买的行为.微信抢红包..双11大促等业务本质上都可视作秒杀业务.而最近大热的 ...

  9. 微信红包促销系统开发

    如今,互联网的普及,借助网络,营销更加方便.已经有商家开始与我们合作开发新推出的微信二维码红包促销活动了,不仅能达到活动气氛还能进行防伪,同时还可以给自己的公众号沉淀粉丝.微信红包促销系统开发-- 张 ...

  10. ‘‘红包来了—红包来了—‘‘Python制作一个微信红包提示系统。

    导语 进了一个微信群, 群里红包满天飞, 本来只是想安安静静抢个微信红包, . ...... 更令人意想不到的是, 群主在短短三个月时间里, 从中获取收益100多万元, 从无业游民摇身一变 挎名包戴名 ...

最新文章

  1. Linux Security Module逆向分析实战
  2. mysql将一个字符转换成多个字符_将分隔的字符串转换为mysql中的多个值
  3. linux日常管理-防火墙selinux
  4. Android开发之API29以上Environment.getExternalStoragePublicDirectory废弃的问题
  5. 计算机课设容易挂吗,数学差的学生避开这4大专业,挂科是常态,每年都有学生不能毕业...
  6. Python读取文本文档转化成列表
  7. java String类常用的方法
  8. 用Python告诉你,为什么宇宙的尽头是公务员!
  9. php网站模板怎么修改,自己做网站如何用好并自主修改网上的免费模板
  10. python安装install for all users_安装-进击的Python
  11. Dubbo架构设计详解(转载)
  12. 关闭chrome 的内置PDF 查看器
  13. 《天才在左疯子在右》读书摘记
  14. 【图神经网络】图神经网络(GNN)学习笔记:图滤波器与图卷积神经网络
  15. WIN10安装VMware的管理员权限问题
  16. python线性回归预测波士顿房价_预测波士顿的房价|简单的线性回归入门
  17. 挂站服务器什么意思?挂站服务器可以挂多少网站?
  18. 51单片机——汇编指令合集
  19. EVA QQ安装手册 - GCC/GNU/Linux Delphi/Window Java/Anywhere - C++博客
  20. screen基本用法

热门文章

  1. QT 车牌号正则验证
  2. J2EE框架技术(SpringMVC) 知识点笔记(8)
  3. 通识与专业结合的大学之路
  4. react 翻书效果_react实现页面切换动画效果
  5. C++程序设计原理与实践(第二版)思考题答案
  6. 微信朋友圈服务器缓存,如何找到微信朋友圈照片缓存
  7. matlab建模和仿真实验,MATLAB-Simulink系统建模与仿真-实验报告
  8. 明解C语言(第3版)入门篇 - 第六章练习题解
  9. 简单解决某盘限速?(黑科技)【油猴】+【某盘直链下载器】+【IDM下载】
  10. Mybatis源码SqlSession源码分析