文章目录

  • 1 前言
  • 2 情感文本分类
    • 2.1 参考论文
    • 2.2 输入层
    • 2.3 第一层卷积层:
    • 2.4 池化层:
    • 2.5 全连接+softmax层:
    • 2.6 训练方案
  • 3 实现
    • 3.1 sentence部分
    • 3.2 filters部分
    • 3.3 featuremaps部分
    • 3.4 1max部分
    • 3.5 concat1max部分
    • 3.6 关键代码
  • 4 实现效果
    • 4.1 测试英文情感分类效果
    • 4.2 测试中文情感分类效果
  • 5 调参实验结论
  • 6 建议
  • 7 最后

1 前言

这几天在帮助同学开发基于深度学习的情感分类项目,这里学长复现了两篇论文的实现方法,带大家实现一个基于深度学习的文本情感分类器。

基于深度学习的中文情感分类

2 情感文本分类

2.1 参考论文

Convolutional Neural Networks for Sentence Classification

模型结构

在短文本分析任务中,由于句子句长长度有限、结构紧凑、能够独立表达意思,使得CNN在处理这一类问题上成为可能,主要思想是将ngram模型与卷积操作结合起来

2.2 输入层

如图所示,输入层是句子中的词语对应的wordvector依次(从上到下)排列的矩阵,假设句子有 n 个词,vector的维数为 k ,那么这个矩阵就是 n × k 的(在CNN中可以看作一副高度为n、宽度为k的图像)。

这个矩阵的类型可以是静态的(static),也可以是动态的(non static)。静态就是word vector是固定不变的,而动态则是在模型训练过程中,word vector也当做是可优化的参数,通常把反向误差传播导致word vector中值发生变化的这一过程称为Fine tune。(这里如果word vector如果是随机初始化的,不仅训练得到了CNN分类模型,还得到了word2vec这个副产品了,如果已经有训练的word vector,那么其实是一个迁移学习的过程)

对于未登录词的vector,可以用0或者随机小的正数来填充。

2.3 第一层卷积层:

输入层通过卷积操作得到若干个Feature Map,卷积窗口的大小为 h ×k ,其中 h 表示纵向词语的个数,而 k 表示word vector的维数。通过这样一个大型的卷积窗口,将得到若干个列数为1的Feature Map。(熟悉NLP中N-GRAM模型的读者应该懂得这个意思)。

2.4 池化层:

接下来的池化层,文中用了一种称为Max-over-timePooling的方法。这种方法就是简单地从之前一维的Feature Map中提出最大的值,文中解释最大值代表着最重要的信号。可以看出,这种Pooling方式可以解决可变长度的句子输入问题(因为不管Feature Map中有多少个值,只需要提取其中的最大值)。最终池化层的输出为各个Feature Map的最大值们,即一个一维的向量。

2.5 全连接+softmax层:

池化层的一维向量的输出通过全连接的方式,连接一个Softmax层,Softmax层可根据任务的需要设置(通常反映着最终类别上的概率分布)。

2.6 训练方案

在倒数第二层的全连接部分上使用Dropout技术,Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了,它是防止模型过拟合的一种常用的trikc。同时对全连接层上的权值参数给予L2正则化的限制。这样做的好处是防止隐藏层单元自适应(或者对称),从而减轻过拟合的程度。

在样本处理上使用minibatch方式来降低一次模型拟合计算量,使用shuffle_batch的方式来降低各批次输入样本之间的相关性(在机器学习中,如果训练数据之间相关性很大,可能会让结果很差、泛化能力得不到训练、这时通常需要将训练数据打散,称之为shuffle_batch)。

3 实现


我们以上图为例,图上用红色标签标注了5部分,结合这5个标签,具体解释下整个过程的操作,来看看CNN如何解决文本分类问题的。

3.1 sentence部分

上图句子为“[I like this movie very much!” ,一共有两个单词加上一个感叹号,关于这个标点符号,不同学者有不同的操作,比如去除标点符号。在这里我们先不去除,那么整个句子有7个词,词向量维度为5,那么整个句子矩阵大小为7x5

3.2 filters部分

filters的区域大小可以使不同的,在这里取(2,3,4)3种大小,每种大小的filter有两个不同的值的filter,所以一共是有6个filter。

3.3 featuremaps部分

我们在句子矩阵和过滤器矩阵填入一些值,那么我们可以更好理解卷积计算过程,这和CNN原理那篇文章一样

比如我们取大小为2的filter,最开始与句子矩阵的前两行做乘积相加,得到0.6 x 0.2 + 0.5 x 0.1 + … + 0.1 x 0.1 = 0.51,然后将filter向下移动1个位置得到0.53.最终生成的feature map大小为(7-2+1x1)=6。
为了获得feature map,我们添加一个bias项和一个激活函数,比如Relu

3.4 1max部分

因为不同大小的filter获取到的feature map大小也不一样,为了解决这个问题,然后添加一层max-pooling,选取一个最大值,相同大小的组合在一起

3.5 concat1max部分

经过max-pooling操作之后,我们将固定长度的向量给sofamax,来预测文本的类别。

3.6 关键代码

下面是利用Keras实现的CNN文本分类部分代码:

# 创建tensor
print("正在创建模型...")
inputs=Input(shape=(sequence_length,),dtype='int32')
embedding=Embedding(input_dim=vocabulary_size,output_dim=embedding_dim,input_length=sequence_length)(inputs)
reshape=Reshape((sequence_length,embedding_dim,1))(embedding)# cnn
conv_0=Conv2D(num_filters,kernel_size=(filter_sizes[0],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)
conv_1=Conv2D(num_filters,kernel_size=(filter_sizes[1],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)
conv_2=Conv2D(num_filters,kernel_size=(filter_sizes[2],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)maxpool_0=MaxPool2D(pool_size=(sequence_length-filter_sizes[0]+1,1),strides=(1,1),padding='valid')(conv_0)
maxpool_1=MaxPool2D(pool_size=(sequence_length-filter_sizes[1]+1,1),strides=(1,1),padding='valid')(conv_1)
maxpool_2=MaxPool2D(pool_size=(sequence_length-filter_sizes[2]+1,1),strides=(1,1),padding='valid')(conv_2)concatenated_tensor = Concatenate(axis=1)([maxpool_0, maxpool_1, maxpool_2])
flatten = Flatten()(concatenated_tensor)
dropout = Dropout(drop)(flatten)
output = Dense(units=2, activation='softmax')(dropout)
model=Model(inputs=inputs,outputs=output)

main.py

import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"   # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = ""import re
import numpy as np
from flask import Flask, render_template, request
from keras.models import load_model
from data_helpers_english import build_input_english
from data_helpers_chinese import build_input_chineseapp = Flask(__name__)en_model = load_model('results/weights.007-0.7618.hdf5')
ch_model = load_model('results/chinese.weights.003-0.9083.hdf5')
# load 进来模型紧接着就执行一次 predict 函数
print('test train...')
print(en_model.predict(np.zeros((1, 56))))
print(ch_model.predict(np.zeros((1, 50))))
print('test done.')def en_predict(input_x):sentence = input_xinput_x = build_input_english(input_x)y_pred = en_model.predict(input_x)result = list(y_pred[0])result = {'sentence': sentence, 'positive': result[1], 'negative': result[0]}return resultdef ch_predict(input_x):sentence = input_xinput_x = build_input_chinese(input_x)y_pred = ch_model.predict(input_x)result = list(y_pred[0])result = {'sentence': sentence, 'positive': result[1], 'negative': result[0]}return result@app.route('/classification', methods=['POST', 'GET'])
def english():if request.method == 'POST':review = request.form['review']# 来判断是中文句子/还是英文句子review_flag = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", review)  # 去除数字review_flag = re.sub("[\s+\.\!\/_,$%^*(+\"\')]+|[+——()?【】“”!,。?、~@#¥%……&*()]+", "", review_flag)if review_flag:result = en_predict(review)# result = {'sentence': 'hello', 'positive': '03.87878', 'negative': '03.64465'}return render_template('index.html', result=result)else:result = ch_predict(review)# result = {'sentence': 'hello', 'positive': '03.87878', 'negative': '03.64465'}return render_template('index.html', result=result)return render_template('index.html')#
# if __name__ == '__main__':
#     app.run(host='0.0.0.0', debug=True)

4 实现效果

4.1 测试英文情感分类效果


准训练结果:验证集76%左右

4.2 测试中文情感分类效果

准训练结果:验证集91%左右

5 调参实验结论

  • 由于模型训练过程中的随机性因素,如随机初始化的权重参数,mini-batch,随机梯度下降优化算法等,造成模型在数据集上的结果有一定的浮动,如准确率(accuracy)能达到1.5%的浮动,而AUC则有3.4%的浮动;
  • 词向量是使用word2vec还是GloVe,对实验结果有一定的影响,具体哪个更好依赖于任务本身;
  • Filter的大小对模型性能有较大的影响,并且Filter的参数应该是可以更新的;
  • Feature Map的数量也有一定影响,但是需要兼顾模型的训练效率;
  • 1-max pooling的方式已经足够好了,相比于其他的pooling方式而言;
  • 正则化的作用微乎其微。

6 建议

  • 使用non-static版本的word2vec或者GloVe要比单纯的one-hot representation取得的效果好得多;
  • 为了找到最优的过滤器(Filter)大小,可以使用线性搜索的方法。通常过滤器的大小范围在1-10之间,当然对- 于长句,使用更大的过滤器也是有必要的;
  • Feature Map的数量在100-600之间;
  • 可以尽量多尝试激活函数,实验发现ReLU和tanh两种激活函数表现较佳;
  • 使用简单的1-max pooling就已经足够了,可以没必要设置太复杂的pooling方式;
  • 当发现增加Feature Map的数量使得模型的性能下降时,可以考虑增大正则的力度,如调高dropout的概率;
  • 为了检验模型的性能水平,多次反复的交叉验证是必要的,这可以确保模型的高性能并不是偶然。

7 最后

毕业设计:基于深度学习的中文情感分类 - 卷积神经网络 情感分类 情感分析 情感识别 评论情感分类相关推荐

  1. 基于深度学习的图像分类:使用卷积神经网络实现猫狗分类器

    摘要: 深度学习在计算机视觉领域中具有广泛的应用.本文将介绍如何使用卷积神经网络(CNN)实现一个猫狗分类器.我们将使用Python和TensorFlow框架搭建一个简单的卷积神经网络模型,并利用猫狗 ...

  2. 毕业设计 - 题目:基于深度学习的图像风格迁移 - [ 卷积神经网络 机器视觉 ]

    文章目录 0 简介 1 VGG网络 2 风格迁移 3 内容损失 4 风格损失 5 主代码实现 6 迁移模型实现 7 效果展示 8 最后 0 简介 今天学长向大家介绍一个机器视觉项目 基于深度学习卷积神 ...

  3. 【论文笔记】《基于深度学习的中文命名实体识别研究》阅读笔记

    作者及其单位:北京邮电大学,张俊遥,2019年6月,硕士论文 摘要 实验数据:来源于网络公开的新闻文本数据:用随机欠采样和过采样的方法解决分类不均衡问题:使用BIO格式的标签识别5类命名实体,标注11 ...

  4. 基于深度学习的中文车牌识别与管理系统(含UI界面,Python代码)

    摘要:本文详细介绍基于深度学习的中文车牌识别与管理系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面.在界面中既可以选择需要识别的车牌视频.图片文件.批量图片进行检测识别,也 ...

  5. 基于深度学习的中文语音识别系统框架(pluse)

    目录 声学模型 GRU-CTC DFCNN DFSMN 语言模型 n-gram CBHG 数据集 本文搭建一个完整的中文语音识别系统,包括声学模型和语言模型,能够将输入的音频信号识别为汉字. 声学模型 ...

  6. 毕业设计 基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别

    文章目录 0 前言 1 背景 2 算法原理 2.1 动物识别方法概况 2.2 常用的网络模型 2.2.1 B-CNN 2.2.2 SSD 3 SSD动物目标检测流程 4 实现效果 5 部分相关代码 5 ...

  7. 基于深度学习的中文语音识别系统框架搭建

    基于深度学习的中文语音识别系统框架 转自@https://blog.csdn.net/chinatelecom08/article/details/82557715 本文搭建一个完整的中文语音识别系统 ...

  8. CV:基于深度学习实现目标检测之GUI界面产品设计并实现图片识别、视频识别、摄像头识别(准确度非常高)

    CV:基于深度学习实现目标检测之GUI界面产品设计并实现图片识别.视频识别.摄像头识别(准确度非常高) 目录 GUI编程设计界面 产品演示 GUI编程设计界面 产品演示 视频演示:https://bl ...

  9. 深度学习笔记其六:现代卷积神经网络和PYTORCH

    深度学习笔记其六:现代卷积神经网络和PYTORCH 1. 深度卷积神经网络(AlexNet) 1.1 学习表征 1.1 缺少的成分:数据 1.2 缺少的成分:硬件 1.2 AlexNet 1.2.1 ...

  10. 深度学习多变量时间序列预测:卷积神经网络(CNN)算法构建时间序列多变量模型预测交通流量+代码实战

    深度学习多变量时间序列预测:卷积神经网络(CNN)算法构建时间序列多变量模型预测交通流量+代码实战 卷积神经网络,听起来像是计算机科学.生物学和数学的诡异组合,但它们已经成为计算机视觉领域中最具影响力 ...

最新文章

  1. 深度学习性能提升的诀窍
  2. FCKeditor使用方法技术详解
  3. 【已解决】ReferenceError: $ is not defined
  4. 魔兽老玩家无需购买《燃烧远征》资料片序列号
  5. 关于make_work_guard猜想
  6. opencv-python 学习笔记1:简单的图片处理
  7. C语言 链式栈和顺序栈的实现
  8. 2021第十二届蓝桥杯省赛B组原题答案及总结
  9. HBuilder X 连接苹果手机(IOS)详细教程。Windows: 连接iOS手机调试项目
  10. 【Netty报错:】XXXDecoder.decode() did not read anything but decoded a message.
  11. twitter下载网络教程_糟糕的主意:喜p Twitter广告网络
  12. 援引Yaphets的话:我又不淡定了
  13. 机器学习 数据挖掘 统计学 深度学习
  14. 铁路cj继电器,一种铁路继电器底座锁住方法专利_专利申请于undefined_专利查询 - 天眼查...
  15. ERROR Plumber found unhandled error: Error in plugin gulp-htmlmin
  16. 今天,我看到了中国电影的未来
  17. 技术大牛都在看的10本书,找到了
  18. Word(WPS文字)批量修改表格宽度
  19. sql数据库教程百度云_SQL菜鸟入门教程(基于SQLITE数据库)(D1)
  20. 区块链系统:公钥和地址

热门文章

  1. atx motherboard layout ATX主板规格尺寸图
  2. 短时傅里叶变换程序实现
  3. python爬虫做毕业论文_基于Python的网络爬虫(智联招聘)开发与实现毕业论文+作品源码+演示视频...
  4. zotero中的标准和规范应该用什么类型
  5. 线性代数与空间解析几何重要知识点笔记
  6. 备份VMWare ESXi虚拟机
  7. IDEA添加快捷输入
  8. 小管家进销存_36氪首发 | 进销存SaaS提供商 「来肯云商」 获数百万美金A轮融资,要做“ERP+微商城 ”的一体化产品...
  9. VB类计算机专业毕业设计题目
  10. php swfupload,ThinkPHP+swfupload多图上传实例 经典实用的php多图上传