深度学习中交叉熵

计算机视觉 (Computer Vision)

Deep Computer Vision is capable of doing object detection and image classification task. In image classification tasks, the particular system receives some input image and the system is aware of some predetermined set of categories or labels. There are some fixed set of category labels and the job of the computer is to look at the picture and assign it a fixed category label. Convolutional Neural Network (CNN) has gained wide popularity in the field of pattern recognition and machine learning. In our present work, we have constructed a Convolutional Neural Network (CNN) for the identification of the presence of tantalum and niobium fragments in a High Entropy Alloy (HEA). The results showed 100 % accuracy while testing the given dataset.

深度计算机视觉能够执行对象检测和图像分类任务。 在图像分类任务中,特定系统接收一些输入图像,并且系统知道一些预定的类别或标签集。 有一些固定的类别标签集,计算机的工作是看图片并为其分配一个固定的类别标签。 卷积神经网络(CNN)在模式识别和机器学习领域获得了广泛的普及。 在我们目前的工作中,我们构建了卷积神经网络(CNN),用于识别高熵合金(HEA)中钽和铌碎片的存在。 测试给定数据集时,结果显示100%的准确性。

Introduction

介绍

Vision is the most important sense that humans possess. In day to day life, people depend on vision for example identifying objects, picking objects, navigation, recognizing complex human emotions and behaviors. Deep computer vision is able to solve extraordinary complex tasks that were not able to be solved in the past. Facial detection and recognition and detection are an example of deep computer vision. Figure 1 shows the vision coming into a deep neural network in the form of images or pixels or videos and the output at the bottom is the depiction of a human face [1–4].

视觉是人类拥有的最重要的感觉。 在日常生活中,人们依靠视觉来识别物体,拾取物体,导航,识别复杂的人类情感和行为。 深入的计算机视觉能够解决过去无法解决的非凡复杂任务。 面部检测,识别和检测是深度计算机视觉的一个示例。 图1显示了以图像,像素或视频形式进入深层神经网络的视觉,底部的输出是对人脸的描绘[1-4]。

Fig.1. Illustration of the working of Deep Computer Vision
图。1。 深度计算机视觉工作插图

The next thing should be worth answering to the question, how computer process an image or a video, and how do they process pixels coming from those? The images are just numbers and also the pixels have some numerical values. So our image can be represented by a two-dimensional matrix consisting of numbers. Let’s understand this with an example of image identification i.e. whether the image is of a boy or a girl or an animal. Figure 2 shows that the output variable takes a class label and can produce a probability of belonging to a particular class.

接下来的事情应该值得回答这个问题:计算机如何处理图像或视频,以及它们如何处理来自这些图像或视频的像素? 图像只是数字,像素也有一些数值。 因此,我们的图像可以由包含数字的二维矩阵表示。 让我们以图像识别的示例(即图像是男孩还是女孩还是动物)来理解这一点。 图2显示了输出变量带有类别标签,并且可以产生属于特定类别的概率。

Fig.2. Image Classification
图2。 影像分类

In order to properly classify the image, our pipeline must correctly tell about what is unique about the particular picture. Convolutional Neural Network (CNN) finds application in the manufacturing and material science domain. Lee et al. [5] proposed a CNN model for fault diagnosis and classification in the manufacturing process of semiconductors. Weimer et al. [6] designed deep convolutional neural network architectures for automated feature extraction in industrial applications. Scime et al. [7] used the CNN model for the detection of in situ processing defects in laser powder bed fusion additive manufacturing. The results showed that the CNN architecture improved the classification accuracy and overall flexibility of the designed system.

为了正确分类图像,我们的管道必须正确告知特定图片的独特之处。 卷积神经网络(CNN)在制造和材料科学领域得到了应用。 Lee等。 [5]提出了一种用于半导体制造过程中故障诊断和分类的CNN模型。 Weimer等。 [6]设计了用于工业应用中自动特征提取的深度卷积神经网络体系结构。 Scime等。 [7]使用CNN模型来检测激光粉末床熔融增材制造中的原位加工缺陷。 结果表明,CNN体系结构提高了设计系统的分类准确性和整体灵活性。

In the present work, we have designed the CNN architecture for detecting the trace of tantalum and niobium in the microstructure of high entropy alloy (HEA). In 1995, Yeh et al. [8] firstly discovered the high entropy alloys, and in 2004 Cantor et al. [9] coined high entropy alloy as a multi-component system. HEAs are generally advanced alloys and novel alloys which are consist of 5–35 at.% where all the elements behave as principal elements. In comparison to their conventional alloys, they possess superior properties like high wear, corrosion resistance, high thermal stability, and high strength. Zhang et al. [10–11] listed down the various parameters for the parameters for fabrication of HEAs which are shown in the below equations:

在当前的工作中,我们设计了CNN体系结构,用于检测高熵合金(HEA)微观结构中的痕量钽和铌。 1995年,Yeh等人。 [8]首先发现了高熵合金,2004年Cantor等人。 [9]创造了高熵合金作为多组分系统。 HEA通常是高级合金和新型合金,由5–35 at。%的成分组成,其中所有元素均作为主要元素。 与常规合金相比,它们具有优异的性能,如高耐磨性,耐腐蚀性,高热稳定性和高强度。 张等。 [10-11]列出了制造HEA的各种参数,这些参数如下式所示:

HEAs find application in various industries like aerospace, submarines, automobiles, and nuclear power plant industries [12–14]. HEAs are also used as a filler material for the micro-joining process [15]. Geanta et al. [16] carried out the testing and characterization of HEAs from AlCrFeCoNi System for Military Applications. It was observed that at the melt state, the microstructure of HEAs has frozen appearance as shown in Figure 3.

HEA在航空航天,潜艇,汽车和核电厂等各种行业中都有应用[12-14]。 HEA还用作微连接过程的填充材料[15]。 Geanta等。 [16]进行了军事应用AlCrFeCoNi系统的HEA的测试和表征。 观察到,在熔融状态下,HEA的微观结构具有冻结外观,如图3所示。

Fig.3. The appearance of frozen microstructure
图3。 冷冻组织的外观

Material and Methods

材料与方法

Geanta et al. [17] fabricated biocompatible FeTaNbTiZrMo HEAs. In our study, we have used microstructure data from their research. The obtained microstructure is shown in Figures 4 and 5. Data collection is the process of gathering and measuring information from countless different sources. In order to use the data we collect to develop practical artificial intelligence (AI) and machine learning solutions, it must be collected and stored in a way that makes sense for the business problem at hand. Since we had a shortage of images, so we first did Image Augmentation.

Geanta等。 [17]制作了生物相容的FeTaNbTiZrMo HEA。 在我们的研究中,我们使用了他们研究的微观结构数据。 获得的微观结构如图4和5所示。数据收集是从无数不同来源收集和测量信息的过程。 为了使用我们收集的数据来开发实用的人工智能(AI)和机器学习解决方案,必须以对眼前的业务问题有意义的方式来收集和存储数据。 由于图像不足,因此我们首先进行图像增强。

Fig.4.Undissolved Ta and Nb fragments in the FeTaNbTiZrMo alloy [17].
图4. FeTaNbTiZrMo合金中未溶解的Ta和Nb碎片[17]。
Fig.5.Undissolved tantalum fragment in the FeTaNbTiZrMo alloy.
图5 FeTaNbTiZrMo合金中未溶解的钽碎片

Image data augmentation is used to expand the training dataset in order to improve the performance and ability of the model to generalize. Image data augmentation is supported in the Keras deep learning library via the Image Data Generator class. So, input data consists of two images. As we know that we can’t train our deep neural network with only two images because that would result in the over-fitting of the model. Over-fitting a model basically means that our model will give the best score on training data but not on testing or validation data or the data that it has not seen before. So such an over-fitted model will be of no use to train our model effectively, we will make more images with the help of these input images. We will achieve this by Image Augmentation.

图像数据增强用于扩展训练数据集,以提高模型的性能和泛化能力。 Keras深度学习库通过图像数据生成器类支持图像数据增强。 因此,输入数据包含两个图像。 众所周知,我们无法仅使用两个图像来训练我们的深度神经网络,因为这将导致模型的过度拟合。 过度拟合模型基本上意味着我们的模型将在训练数据上给出最佳分数,而在测试或验证数据或之前从未见过的数据上则给出最佳分数。 因此,这种过度拟合的模型对于有效地训练我们的模型将毫无用处,我们将在这些输入图像的帮助下制作更多图像。 我们将通过图像增强来实现。

Fig.5.Undissolved tantalum fragment in the FeTaNbTiZrMo alloy.

图5 FeTaNbTiZrMo合金中未溶解的钽碎片

We can use the Image Data Generator class to achieve this. First, we will make the object of this class. After that we will provide some parameters that are basically the fluctuations or feature that we want to provide the image like luminous intensity, width shift range, height shift range, etc. and we can iterate over the directory where the images are kept in, by providing the path in the function. In this way, we can generate numerous data. In this project, we have generated approximately 3000 images for each image.

我们可以使用Image Data Generator类来实现这一点。 首先,我们将成为此类的对象。 之后,我们将提供一些基本参数,这些参数基本上是我们想要提供图像的波动或特征,例如发光强度,宽度偏移范围,高度偏移范围等。我们可以通过以下方式遍历保存图像的目录:在函数中提供路径。 这样,我们可以生成大量数据。 在此项目中,我们为每个图像生成了大约3000张图像。

We created two datasets for the training and testing purpose. Python programming was used for the development of the code required for constructing the Convolutional Neural Network architecture. A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm that can take in an input image, assign importance (learnable weights and biases) to various aspects/objects in the image, and be able to differentiate one from the other. The pre-processing required in a ConvNet is much lower as compared to other classification algorithms. While in primitive methods filters are hand-engineered, with enough training, ConvNets have the ability to learn these filters/characteristics.

我们为训练和测试目的创建了两个数据集。 Python编程用于开发构建卷积神经网络体系结构所需的代码。 卷积神经网络(ConvNet / CNN)是一种深度学习算法,可以吸收输入图像,为图像中的各个方面/对象分配重要性(可学习的权重和偏差),并能够区分彼此。 与其他分类算法相比,ConvNet中所需的预处理要低得多。 在原始方法中,过滤器是手工设计的,经过足够的培训,ConvNets可以学习这些过滤器/特征。

Results and Discussions

结果和讨论

The augmented image of the microstructure is shown in Figure 6.

显微组织的放大图如图6所示。

Fig.6.Augmented images of the microstructure
图6显微组织的放大图像

Model is compiled with loss-Binary cross-entropy and metrics-accuracy and optimizer is adam. To prevent the model from Over-fitting, early stopping and model checkpoints are used so as to prevent a model from overtraining. Early Stopping is basically a process in which the model is stopped training when it doesn’t undergo any improvement. This parameter is provided in early stopping while making its object. This parameter is known as Patience. Metrics and mode are also provided as a parameter to test the model on the basis of that. Suppose metrics are value accuracy and mode is maximum, so when the model will not show any improvement (increment in value accuracy), it will wait till the patience parameter and after that, it will stop. The results were quite satisfactory when we trained our model against unlabelled images. As we can see in Figure 7, during prediction, almost every actual value is matched with predicted value so our model has been trained effectively.

使用损失-二进制交叉熵和度量准确性来编译模型,并且优化器是亚当。 为了防止模型过度拟合,使用了早期停止和模型检查点,以防止模型过度训练。 基本上,“早期停止”是一个过程,其中模型在未进行任何改进时就停止训练。 在使其成为对象的早期停止中提供此参数。 此参数称为耐心。 度量和模式也作为参数提供,以在此基础上测试模型。 假设度量标准是值准确性,并且模式是最大,那么当模型没有显示出任何改善(值准确性增加)时,它将等待直到耐心参数,然后才停止。 当我们针对未标记图像训练模型时,结果非常令人满意。 如图7所示,在预测期间,几乎每个实际值都与预测值匹配,因此我们的模型已得到有效训练。

Fig.7. The predicted value matches the Actual Value
图7。 预测值与实际值匹配

The graphs in Figure 8 show the changes in metrics while training. As we can see, the model loss is getting lower as the epoch increases and accuracy is increasing as the epoch increases.

图8中的图形显示了训练期间指标的变化。 如我们所见,随着历时的增加,模型损失越来越小,随着历时的增加,模型的准确性也越来越高。

Fig.8.Graph showing model loss and model accuracy
图8显示模型损失和模型准确性的图

Conclusion

结论

It can be concluded that the current research is basically about image processing and classification, in which we first collected data due to a shortage of data, we did data augmentation to train our deep learning model, after that, we implemented our model architecture and compilation is done. After training, the results are shown. It is observed that the predicted value matches the actual value resulting in good accuracy for the image classification of the fragments present in HEAs.

可以得出结论,当前的研究基本上是关于图像处理和分类的,其中我们首先由于数据不足而收集数据,我们进行了数据扩充以训练我们的深度学习模型,之后,我们实现了模型架构和编译已经完成了。 训练后,将显示结果。 可以看出,预测值与实际值匹配,从而导致HEA中存在的碎片的图像分类具有良好的准确性。

[1] Forsyth, David A., and Jean Ponce. Computer vision: a modern approach. Prentice Hall Professional Technical Reference, 2002.

[1] Forsyth,David A.和Jean Ponce。 计算机视觉:一种现代方法。 Prentice Hall专业技术参考,2002年。

[2] Mundy, J.L. and Zisserman, A. eds., 1992. Geometric invariance in computer vision (Vol. 92). Cambridge, MA: MIT press.

[2] Mundy,JL和Zisserman,A。编辑,1992。计算机视觉中的几何不变性(第92卷)。 马萨诸塞州剑桥市:麻省理工学院出版社。

[3] Bradski, G. and Kaehler, A., 2008. Learning OpenCV: Computer vision with the OpenCV library. “ O’Reilly Media, Inc.”.

[3] Bradski,G。和Kaehler,A.,2008年。学习OpenCV:使用OpenCV库进行计算机视觉。 “ O'Reilly Media,Inc.”。

[4] Schalkoff, R.J., 1989. Digital image processing and computer vision (Vol. 286). New York: Wiley.

[4] Schalkoff,RJ,1989。数字图像处理和计算机视觉(第286卷)。 纽约:威利。

[5] Lee, K.B., Cheon, S. and Kim, C.O., 2017. A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes. IEEE Transactions on Semiconductor Manufacturing, 30(2), pp.135–142.

[5] Lee,KB,Cheon,S.和Kim,CO,2017年。用于半导体制造过程中故障分类和诊断的卷积神经网络。 IEEE Transactions on Semiconductor Manufacturing,30(2),第135–142页。

[6] Weimer, D., Scholz-Reiter, B. and Shpitalni, M., 2016. Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Annals, 65(1), pp.417–420.

[6] Weimer,D.,Scholz-Reiter,B.和Shpitalni,M.,2016年。用于工业检测中自动特征提取的深度卷积神经网络架构设计。 CIRP年鉴,65(1),第417–420页。

[7] Scime, L. and Beuth, J., 2018. A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Additive Manufacturing, 24, pp.273–286.

[7] Scime,L.和Beuth,J.,2018年。一种多尺度卷积神经网络,用于在激光粉末床熔合添加剂制造过程中进行自主异常检测和分类。 增材制造,第24页,第273-286页。

[8] Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials. 2004;6(5):299–303

[8] Ye JW,Chen SK,Lin SJ等。 具有多个主要元素的纳米结构高熵合金:新颖的合金设计理念和成果。 先进的工程材料。 2004; 6(5):299–303

[9] Cantor B. High-entropy alloys. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, et al. editors. Encyclopedia of Materials: Science and Technology. ISBN 978–0–08043152–9

[9] Cantor B.高熵合金。 在:Buschow KHJ,Cahn RW,Flemings MC,Ilschner B,Kramer EJ,Mahajan S等人中。 编辑。 材料百科全书:科学和技术。 ISBN 978–0–08043152–9

[10] Yeh JW, Chen YL, Lin SJ, et al. High-entropy alloys — A new era of exploitation. Materials Science Forum. 2007;560:1–9

[10] Ye JW,Chen YL,Lin SJ等。 高熵合金—开采的新纪元。 材料科学论坛。 2007; 560:1–9

[11] Zhang Y, Zhou YJ, Lin JP, et al. Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials. 2008;10(6):534–538

[11]张勇,周永坚,林建平,等。 多组分合金的固溶相形成规则。 先进的工程材料。 2008; 10(6):534–538

[12] Zhou YJ, Zhang Y, Wang YL, et al. Solid solution alloys of AlCoCrFeNiTix with excellent room temperature mechanical properties. Applied Physics Letters. 2007;90(18):1904

[12]周英杰,张颖,王永利,等。 AlCoCrFeNiTix的固溶合金具有出色的室温机械性能。 应用物理快报。 2007; 90(18):1904

[13] Senkov ON, Wilks GB, Scott JM, Miracle DB. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19:698–706

[13] Senkov ON,Wilks GB,Scott JM和Miracle DB。 Nb25Mo25Ta25W25和V20Nb20Mo20Ta20W20难熔高熵合金的力学性能。 金属间化合物。 2011; 19:698–706

[14] Lin CM, Tsai HL. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics. 2011;19(3):288–294

[14] Lin CM,Tsai HL。 高熵Al0.5CoCrFeNi合金的组织,硬度和腐蚀性能的演变。 金属间化合物。 2011; 19(3):288-294

[15] Ashutosh Sharma (April 6th 2020). High-Entropy Alloys for Micro- and Nanojoining Applications [Online First], IntechOpen, DOI: 10.5772/intechopen.91166. Available from: https://www.intechopen.com/online-first/high-entropy-alloys-for-micro-and-nanojoining-applications

[15] Ashutosh Sharma(2020年4月6日)。 用于微连接和纳米连接的高熵合金[在线优先],IntechOpen,DOI:10.5772 / intechopen.91166。 可从以下网址获得: https : //www.intechopen.com/online-first/high-entropy-alloys-for-micro-and-nanojoining-applications

[16] Victor Geanta and Ionelia Voiculescu (October 23rd 2019). Characterization and Testing of High-Entropy Alloys from AlCrFeCoNi System for Military Applications [Online First], IntechOpen, DOI: 10.5772/intechopen.88622.

[16] Victor Geanta和Ionelia Voiculescu(2019年10月23日)。 AlCrFeCoNi系统用于军事应用的高熵合金的表征和测试[在线优先],IntechOpen,DOI:10.5772 / intechopen.88622。

[17] . Victor Geanta, Ionelia Voiculescu, Petrica Vizureanu and Andrei Victor Sandu (September 21st 2019). High Entropy Alloys for Medical Applications [Online First], IntechOpen, DOI: 10.5772/intechopen.89318.

[17]。 Victor Geanta,Ionelia Voiculescu,Petrica Vizureanu和Andrei Victor Sandu(2019年9月21日)。 用于医疗应用的高熵合金[在线优先],IntechOpen,DOI:10.5772 / intechopen.89318。

翻译自: https://medium.com/towards-artificial-intelligence/deep-computer-vision-for-the-detection-of-tantalum-and-niobium-fragments-in-high-entropy-alloys-5d0c2d8c988a

深度学习中交叉熵


http://www.taodudu.cc/news/show-863677.html

相关文章:

  • 梯度提升树python_梯度增强树回归— Spark和Python
  • 5行代码可实现5倍Scikit-Learn参数调整的更快速度
  • tensorflow 多人_使用TensorFlow2.x进行实时多人2D姿势估计
  • keras构建卷积神经网络_在Keras中构建,加载和保存卷积神经网络
  • 深度学习背后的数学_深度学习背后的简单数学
  • 深度学习:在图像上找到手势_使用深度学习的人类情绪和手势检测器:第1部分
  • 单光子探测技术应用_我如何最终在光学/光子学应用程序中使用机器学习作为博士学位
  • 基于深度学习的病理_组织病理学的深度学习(第二部分)
  • ai无法启动产品_启动AI启动的三个关键教训
  • 达尔文进化奖_使用Kydavra GeneticAlgorithmSelector将达尔文进化应用于特征选择
  • 变异函数 python_使用Python进行变异测试
  • 信号处理深度学习机器学习_机器学习与信号处理
  • PinnerSage模型
  • 零信任模型_关于信任模型
  • 乐器演奏_深度强化学习代理演奏的蛇
  • 深度学习模型建立过程_所有深度学习都是统计模型的建立
  • 使用TensorFlow进行鬼写
  • 使用OpenCV和Python从图像中提取形状
  • NLP的特征工程
  • 无监督学习 k-means_无监督学习-第1部分
  • keras时间序列数据预测_使用Keras的时间序列数据中的异常检测
  • 端口停止使用_我停止使用
  • opencv 分割边界_电影观众:场景边界分割
  • 监督学习无监督学习_无监督学习简介
  • kusto使用_Python查找具有数据重复问题的Kusto表
  • 使用GridSearchCV和RandomizedSearchCV进行超参数调整
  • rust面向对象_面向初学者的Rust操作员综合教程
  • 深度学习术语_您应该意识到这些(通用)深度学习术语和术语
  • 问题解决方案_问题
  • airflow使用_使用AirFlow,SAS Viya和Docker像Pro一样自动化ML模型

深度学习中交叉熵_深度计算机视觉,用于检测高熵合金中的钽和铌碎片相关推荐

  1. 深度学习背后的数学_深度学习背后的简单数学

    深度学习背后的数学 Deep learning is one of the most important pillars in machine learning models. It is based ...

  2. 深度学习机器臂控制_深度学习新进展:可自建任务解决模型的机器人问世

    机器学习已被验证为让计算机完成特定任务的有效策略,通过不断的试错和数据解析训练"教会"计算机学习任务的策略,通过自学习培育出精通这项任务的人工智能机器或者程序计算模型.来自哥大工程 ...

  3. 深度学习数字仪表盘识别_深度学习之手写数字识别项目(Sequential方法amp;Class方法进阶版)...

    此项目使用LeNet模型针对手写数字进行分类.项目中我们分别采用了顺序式API和子类方法两种方式构建了LeNet模型训练mnist数据集,并编写了给图识物应用程序用于手写数字识别. 一.LeNet模型 ...

  4. 深度学习领域专业词汇_深度学习时代的人文领域专业知识

    深度学习领域专业词汇 It's a bit of an understatement to say that Deep Learning has recently become a hot topic ...

  5. 深度学习 3d人脸 重建_深度学习实时3D人脸跟踪

    深度学习 3d人脸 重建 Snapchat was made popular by putting funny dog ears on people's head, swapping faces an ...

  6. 深度学习 英文 训练阶段_深度学习英语单词才是王道丨6步就搞定!

    会误了孩子的终生! 大伙会问:Why? 原因:单词是一个丰满的个体,有词义,有用法,还有它与其他词的关系- 千万不能只看单词的一面,便草率地认为它会成为你的终生挚友! 要让单词一生追随你, 需要深度学 ...

  7. 深度学习 训练吃显卡_深度学习小钢炮攒机心得:规避一些你看不到的坑

    ------------------- 已经2017年了,从90年代初的品牌机流行,90年代末的组装机流行,2000-2010桌面级逐渐被移动PC/Mac取代,一直到现在移动终端大行其道,攒机似乎已经 ...

  8. 深度学习 训练吃显卡_深度学习训练如何更快些?GPU性能的I/O优化你试过吗?...

    原本,有多少人已经准备好最新显卡,足够的硬盘空间,甚至请好年假,只为十天后去那个仰慕已久的赛博朋克世界里体验一番-- 结果他们又发了一张「黄色背景图」,告诉大家要跳票--再一次-- 好吧,你有了大量闲 ...

  9. 深度学习用于视频检测_视频如何用于检测您的个性?

    深度学习用于视频检测 视频是新的第一印象! (Videos are the New First Impressions!) Think about the approximate number of ...

最新文章

  1. qemu模拟A9/A15运行Linux4.2.3
  2. 2020-08-20 CountVectorizer 包含示例 API
  3. java里注释为什么报错_这些年我们在java中遇到过的坑,你遇到过几个
  4. 【设计干货】Facebook设计APP时的14个必考题
  5. C语言atoi()函数(字符串转整数int类型)(atol()转换为long)
  6. Leaflet中自定义marker的icon图标
  7. .net core webapi 列表返回指定的字段_ADO.NET 使用初探之SQL操作 | C# 数据操作系列...
  8. asp.net 中 SESSION和COOKIE的使用
  9. 需求分析——识别系统需求中的三类事件
  10. 默认适应窗口_PS教程基础之cs6默认快捷键汇总及补充
  11. 人工智能系统Google开源的TensorFlow官方文档中文版
  12. 关于cannot deserialize from Object value (no delegate- or property-based Creator)报错的解决
  13. C++ 回调函数简单示例
  14. word图片另存为变黑色_Word的图片另存为图片格式的方法
  15. MAC默认软件安装位置
  16. HA HADOOP集群和HIVE部署
  17. oracle怎样建表,oracle怎样建表?_数据库
  18. spyder python3.6_如何在Spyder(Python3.6)中安装SCIP
  19. 上 Instagram 看看周杰伦又更新了什么动态
  20. 正则校验特殊字符,英文特殊字符和中文特殊字符

热门文章

  1. DLT(Diagnostic Log and Trace)嵌入式系统程序运行记录
  2. Tomcat8.01及nginx-1.8.1安装
  3. MYSQL--事务处理
  4. ASP.NET获取文件名,后缀名
  5. potplayer 皮肤_如何美化背部皮肤?
  6. struts2,jsp,freemarker编程小技巧
  7. feignclient对象找不到_成都附近有什么相亲活动?为什么有些人就是找不到对象?梨子游玩...
  8. dovecot mysql_dovecot+mysql
  9. codeforces(牛客网dp专题,排序)
  10. linux串口发送键值,c51:串口通信,按键发送字符串