等效模型

MOS管相比于三极管,开关速度快,导通电压低,电压驱动简单,所以越来越受工程师的喜欢,然而,若不当设计,哪怕是小功率MOS管,也会导致芯片烧坏,原本想着更简单的,最后变得更加复杂。这几年来一直做高频电源设计,也涉及嵌入式开发,对大小功率MOS管,都有一定的理解,所以把心中理解的经验总结一番,形成理论模型。
MOS管等效电路及应用电路如下图所示:


把MOS管的微观模型叠加起来,就如下图所示:

我们知道,MOS管的输入与输出是相位相反,恰好180度,也就是等效于一个反相器,也可以理解为一个反相工作的运放,如下图:

有了以上模型,就好办了,尤其从运放这张图中,可以一眼看出**,这就是一个反相积分电路**,当输入电阻较大时,开关速度比较缓慢,Cgd这颗积分电容影响不明显,但是当开关速度比较高,而且VDD供电电压比较高,比如310V下,通过Cgd的电流比较大,强的积分很容易引起振荡,这个振荡叫米勒振荡。所以Cgd也叫米勒电容,而在MOS管开关导通或者关断的那段时间,也就是积分那段时间,叫米勒平台,如下图圆圈中的那部分为米勒平台,右边的是振荡严重的米勒振荡:


因为MOS管的反馈引入了电容,当这个电容足够大,并且前段信号变化快,后端供电电压高,三者结合起来,就会引起积分过充振荡,这个等价于温控的PID中的I模型,要想解决解决这个米勒振荡,在频率和电压不变的情况下,一般可以提高MOS管的驱动电阻,减缓开关的边沿速度,其次比较有效的方式是增加Cgs电容在条件允许的情况下,可以在Cds之间并上低内阻抗冲击的小电容,或者用RC电路来做吸收电路。

下图给出我常用的三颗大功率MOS管的电容值:LCR电桥直接测量

从图上可以看出,Inifineon6代MOS管和APT7代MOS管性能远远不如碳化硅性能,它的各个指标都很小,当米勒振荡通过其他手段无法降低时,可以考虑更换更小的米勒电容MOS管,尤其需要重视Cgd要尽可能的小于Cgs

米勒振荡

在电源设计中,米勒振荡是一个很核心的一环,尤其是超过100KHz以上的频率,而作者是做超高频感应加热电源的,工作频率在500K~1MHz范围,功率大于5KW,拓扑结构是LLC电路,H桥输出,此外为了实现功率线性可调节,采用40Hz PWM调制,可以理解为H桥以25mS为周期,不停的开始,关闭,而因为感应加热设备的负载是并联LC谐振环,这样每一次的开始等价于输出短路,所以开始的10来个周期的高频脉冲波形特别难看,米勒振荡很严重,如下图(Infineon C6 MOS管波形):

大家知道Si MOS的Vgs电压工作范围为正负20V,超过这个电压,栅极容易被击穿,所以在米勒振荡严重的场合,需要加限压的稳压二极管,一般采用15V稳压二极管,有些采用15V的TVS管,响应速度快,但是TVS管相比稳压二极管来说,精度比较差,一致性不是很强,一般情况下还是推荐用稳压二极管。

上图为MOS管GS之间并联了稳压二极管,实现15V驱动电压钳制。稳压二极管一般用于米勒振荡严重的场合,尤其是频率特别高的,对于波形良好的软开关,或者振荡不明显的硬开关,不需要稳压二极管钳制。

米勒振荡若只是引起GS绝缘层击穿,那么加稳压二极管很容易解决,问题的关键在于,米勒振荡往往引起二次开关,也就是说,导通了又关闭又导通,多次开关,多次开关带来的直接效应,就是开关损耗急剧提升。
在高频开关中,MOS管的损耗分为导通损耗和开关损耗两种,导通损耗也就是通常所说的DS两极导通后的欧姆热损耗,然而在特别高的高频下,导通损耗是次要的,开关损耗上升为主要矛盾,所谓开关损耗就是从关闭到导通,或者从导通到关闭,因为这个0->1, 1->0的过程中,有高压,又有电流,所以这个损耗很大,最早开关电源都是采用硬开关的,而开关损耗在硬开关中表现突出,此外开关损耗因为有高的电压和强的电流,瞬间功率很高,比如电压310V,开关时中间电流假设为10A,则瞬间功率就有3100W,冲击性很强,容易导致MOS管局部损伤,所以为了解决硬开关,引入了零电压(ZVS)、零电流(ZCS)的软开关技术,然而虽然软开关技术很好的解决了开关损耗问题,但是开关损耗还是存在,只是大大降低了,但是米勒振荡的多次开关,又提升了开关损耗。

米勒振荡若只是以上两点问题,那还不是问题的根本,最最让设计者头疼的是,在大功率拓扑结构中广泛使用的H桥,米勒振荡会存在一种可能,那就是上下管子恰好在某同一时刻导通,若导通的时间略长一些,则引起上下管子通过的瞬间电流巨大,因为MOS管的内阻都很小,只有百毫欧级别,当310V除以百毫欧姆电阻,产生的瞬间电流都在上百A,哪怕因为布线存在电感,实际这个电流小一些,但这个瞬间产生的功率还是巨大的,假设瞬间100A,则瞬间功率31000W,这么强的瞬间冲击,很容易让功率管损伤甚至烧坏而炸机。很多时候,短时间在公司测试OK,甚至十来天都OK,功率管温度也不高,但是一到客户哪儿就出问题,往往跟这个有关。

总结以上,米勒振荡引起三个问题:
1、击穿GS电压,引入稳压二极管钳制。
2、二次开关,引入软开关。
3、上下管子导通,头大,斗争的重点,下一节讲。

下图为仿真的MOS管驱动波形,大家可以看到里面有一个米勒振荡,信号源为10V,100KHz


米勒振荡的本质是因为在高压和高速开关下,注意是高压和高速开关下,MOS管在高压高速开关下,就是一个典型的高增益负反馈系统,负反馈特别严重(上一节讲到MOS管就是反相器),高增益负反馈很容易引起振荡,尤其是反馈还是电容,又引入了相位移动,反馈相位接近270度。负反馈180度是稳定点,360度是振荡点,270度处于稳定与振荡点之间,所以强的负反馈会表现为衰减式振荡。(通俗的理解:输入因为有电感和电阻的限流,高压下反馈突变信号通过电容,因为不平衡引起振荡,这个类似热水器的温控PID。)
相同条件下,低压下因为负反馈没有这么剧烈,所以米勒振荡会很小,一般高频电源先用低压100V测试,波形很好,看不到米勒振荡,但是到了300V,波形就变差了。

米勒振荡的应对

米勒振荡是因为强的负反馈引起的开关振荡,导致二次导通,对于后级大功率半桥、全桥等H桥拓扑结构应用中,容易导致上下管子瞬间导通从而炸毁管子,这个是开关电源设计中最核心的一环,所以如何避免米勒振荡可以认为是开关电源设计的核心关键。

A、减缓驱动强度


1、提高MOS管G极的输入串联电阻,一般该电阻阻值在1~100欧姆之间,具体值看MOS管的特性和工作频率,阻值越大,开关速度越缓。
2、在MOS管GS之间并联瓷片电容,一般容量在1nF~10nF附近。看实际需求。
调节电阻电容值,提高电阻和电容,降低充放电时间,减缓开关的边沿速度,这个方式特别适合于硬开关电路,消除硬开关引起的振荡。

B、加强关闭能力

1、差异化充放电速度,采用二极管加速放电速度

2、当第一种方案不足时,关闭时直接把GS短路

3、当第二种方案不足时,引入负压确保关断。

C、增加DS电容

在ZVS软开关电路中,比如UC3875移相电路中,MOS管DS之间,往往并联无感CBB小电容,一般容量在10nF以内,不能太大,有利于米勒振荡,注意该电容的发热量,频率更高的时候,需要用云母电容

D、提高漏极电感方式

相对应方案C的提高DS电容方式,该方案则采用提高漏极的电感方式
1、在漏极串联镍锌磁珠,提高漏极电感,减缓漏极的电流变化,降低米勒振荡,这个方案也是改善EMC的方法之一,效果比较明显,但该方案不适合高频率强电流的场合,否则该磁珠就发热太高而失效。
2、PCB布线时,人为的引入布线电感,增长MOS管漏极、源极的PCB布线长度,比如方案C的图中,适当提高半桥上下MOS管之间的引线,对改善米勒振荡有很大的影响,但这个需要自身的技术水平较高,否则容易失败,此外布线长度提高,需要相应的考虑MOS管的耐压,严重的,需要加MOS管吸收电路。

E、常用的MOS管吸收电路,利于保护MOS管因关闭时产生过高的电压导致DS击穿,对米勒振荡也有帮助,电路形式多样,以下列举四种,应用场合不同,采用不同的方式。

基本参数

mos管的基本参数,大家熟悉的必然是Ids电流,Ron导通电阻,Vgs的阈值电压,Cgs、Cgd、Cds这几项,然而在高速应用中,开关速度这个指标比较重要。

上图四项指标,第一项是导通延时时间,第二项是上升时间,第三项是关闭延时时间,第四项是下降时间。定义如下图:

在高速H桥应用中,MOS管内部的反向并联寄生二极管的响应速度指标Trr,也就是二极管的反向恢复时间这个指标很重要,否则容易炸机,下图为高速二极管。

高速下,二极管也不是理想的,二极管导通后,PN节中充满了电子和空穴,当瞬间反向加电的时候,需要时间恢复截止,这个类似一扇门打开了,需要时间关上,但在高速下,这个关上的时间太长,就会导致H桥上下管子导通而烧坏。
所以在高速应用中,直接因为MOS管工艺寄生的二极管的反向恢复时间太长,所以需要用特殊的工艺制作实现高速的内置二极管但哪怕特殊工艺制作的,其性能也达不到独立的高速二极管性能,只是比原MOS管寄生的指标强一些而已,但已经满足大部分软开关的需求了,500KHz下没问题。比如Infineon的C6系列,后缀带CFD的管子,内部的二极管就是高速的。
若有些场合需要更高速的二极管,而内置的二极管性能达不到,则需要特殊的处理方式,MOS管先串联二极管,再外部并二极管,这样子实现,可以应用于频率超过500KHz的场合。


转自-------雨滴科技论坛

MOS管高频电源应用概述:等效模型/米勒振荡/应对策略/选型要点相关推荐

  1. 【转】MOS管应用概述(二):米勒振荡

    上一节讲了MOS管的等效模型,引出了米勒振荡,可以这么讲,在电源设计中,米勒振荡是一个很核心的一环,尤其是超过100KHz以上的频率,而作者是做超高频感应加热电源的,工作频率在500K~1MHz范围, ...

  2. mos管结电容等效模型_详解MOS管的米勒效应,图文详解

    详解MOS管的米勒效应,图文详解 MOS管的米勒效应 如下是一个NMOS的开关电路,阶跃信号VG1设置DC电平2V,方波(振幅2V,频率50Hz),T2的开启电压2V,所以MOS管T2会以周期T=20 ...

  3. mos管结电容等效模型_MOS管硬开关震荡分析“新能源汽车与电力电子技术”系列之十九...

    作者: 周强 邮箱:zhouq@gospower.com 深圳市高斯宝电气技术有限公司新能源事业部 引言: 我常在朋友圈回放本系列之二<三个男人.两个安徽人.一个浙江人,承载"汽车强国 ...

  4. mos管结电容等效模型_MOS管等效模型

    OS管相比于三极管,开关速度快,导通电压低,电压驱动简单,所以越来越受工程师的喜欢,然而,若不当设计,哪怕是小功率MOS管,也会导致芯片烧坏,原本想着更简单的,最后变得更加复杂. NMOS 管开关等效 ...

  5. 参数等效模型可以用于_华北电力大学 陈宁、齐磊 等:适用于柔性直流电网操作过电压分析的混合式高压直流断路器端口等效模型...

    关注高电压技术,关注学科发展 本期精选 2020年第6期 适用于柔性直流电网操作过电压分析的混合式高压直流断路器端口等效模型陈宁,齐磊,崔翔,魏晓光,陈龙龙DOI:10.13336/j.1003-65 ...

  6. 模电里的二端口等效模型

    二端口线性等效模型的图解 选取 i1i_1i1​ 和 v2v_2v2​ 作为输出量,由于是线性模型,可以用另外两个变量表示出来 i1=f(v1,i2)v2=g(v1,i2)i_1=f(v_1,i_2) ...

  7. 电容实际等效模型(容抗、感抗、品质因数Q)

    文章目录 一.理想电容器 二.容抗 三.感抗 四.实际等效模型 五.品质因数 一.理想电容器 理想电容器的阻抗Z公式为: Z = 1 j w c = 1 j 2 π f c Z=\frac1{jwc

  8. ML之VC维:VC维(Vapnik-Chervonenkis Dimension)理论的概述(衡量模型复杂度和预测能力的指标)的简介、案例理解之详细攻略

    ML之VC维:VC维(Vapnik-Chervonenkis Dimension)理论的概述(衡量模型复杂度和预测能力的指标)的简介.案例理解之详细攻略 目录 VC维(Vapnik-Chervonen ...

  9. 分析晶体三极管频率特性的等效模型

    晶体三极管的H模型与Π模型 BJT内部交流(动态)电阻电容示意图 图中参数说明: 由于管子内集电区跟发射区的掺杂浓度高,rc,re非常小,可忽略不计,这样e'与e点可近似相等,c'与c也可近似相等. ...

最新文章

  1. 2021年春季学期-信号与系统-第九次作业参考答案-第二小题
  2. oracle可视化工具_零代码玩转数据可视化
  3. Win32 API、VC++、C# 文件操作函数的初步比较
  4. opengl es 2.0环境
  5. 【数据结构与算法】之深入解析“二叉树展开为链表”的求解思路与算法示例
  6. python数据类型及使用方法_python 基本数据类型及方法
  7. Firefly推出了小型高性能嵌入式主机
  8. C: warning: too many arguments for format [-Wformat-extra-args]
  9. 基于python的博客设计与开发_基于python的博客设计与开发毕业设计
  10. Acquiring a token for Kubernetes dashboard
  11. Github Markdown 指定图片在光亮或暗黑模式展示
  12. 火遍全网的 ChatGPT,给你的求职新方向
  13. 人只剩一个大脑还能活吗
  14. CT 三维重建的后处理方法
  15. Hadoop集群实验
  16. 贴片电容的X5R X7R是什么意思
  17. WebGL和OpenGL的联系和区别
  18. Guitar Pro8.0.1吉他制谱打谱软件
  19. Trimmomatic
  20. Win11:Windows无法访问指定设备,路径或文件,您可能没有合适的权限访问这个项目。

热门文章

  1. 650c公路车推荐_沉睡十年,再获新生——记家中领导trek 650c公路车落地
  2. deepin系统下载速度非常慢解决方法
  3. 修改userdata分区为实际大小
  4. 【UnityShader】游戏角色服饰染色
  5. WinXP优化之路探讨
  6. 目前在国际范围内有哪些著名的区块链“独角兽企业”?
  7. 南京工业大学计算机考研难吗,南京工业大学考研难吗?一般要什么水平才可以进入?...
  8. pcre之linux编译
  9. 那个,在你颓唐不安的时候一直陪在你身边的我。
  10. Windows10 pybind11 C++调用python-嵌入模块 (tcy)