一、用select实现的并发服务器,能达到的并发数,受两方面限制

1、一个进程能打开的最大文件描述符限制。这可以通过调整内核参数。可以通过ulimit -n来调整或者使用setrlimit函数设置, 但一个系统所能打开的最大数也是有限的,跟内存大小有关,可以通过cat /proc/sys/fs/file-max 查看

2、select中的fd_set集合容量的限制(FD_SETSIZE,一般为1024) ,这需要重新编译内核。

可以写个测试程序,只建立连接,看看最多能够建立多少个连接,客户端程序如下:

C++ Code 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <signal.h>

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>

#define ERR_EXIT(m) \
        do \
        { \
                perror(m); \
                exit(EXIT_FAILURE); \
        } while(0)

int main(void)
{
    int count = 0;
    while(1)
    {
        int sock;
        if ((sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
        {
            sleep(4);
            ERR_EXIT("socket");
        }

struct sockaddr_in servaddr;
        memset(&servaddr, 0, sizeof(servaddr));
        servaddr.sin_family = AF_INET;
        servaddr.sin_port = htons(5188);
        servaddr.sin_addr.s_addr = inet_addr("127.0.0.1");

if (connect(sock, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0)
            ERR_EXIT("connect");

struct sockaddr_in localaddr;
        socklen_t addrlen = sizeof(localaddr);
        if (getsockname(sock, (struct sockaddr *)&localaddr, &addrlen) < 0)
            ERR_EXIT("getsockname");

printf("ip=%s port=%d\n", inet_ntoa(localaddr.sin_addr), ntohs(localaddr.sin_port));
        printf("count = %d\n", ++count);

}

return 0;
}

启动select 的服务器端程序,再启动客户端测试程序:

simba@ubuntu:~/Documents/code/linux_programming/UNP/socket$ ./echoser_select

......................................................................

count = 1015
recv connect ip=127.0.0.1 port=51299
count = 1016
recv connect ip=127.0.0.1 port=51300
count = 1017
recv connect ip=127.0.0.1 port=51301
count = 1018
recv connect ip=127.0.0.1 port=51302
count = 1019
recv connect ip=127.0.0.1 port=51303
count = 1020
recv connect ip=127.0.0.1 port=51304
accept error: Too many open files

simba@ubuntu:~/Documents/code/linux_programming/UNP/socket$ ./conntest

....................................................................................................

count = 1015
ip=127.0.0.1 port=51299
count = 1016
ip=127.0.0.1 port=51300
count = 1017
ip=127.0.0.1 port=51301
count = 1018
ip=127.0.0.1 port=51302
count = 1019
ip=127.0.0.1 port=51303
count = 1020
ip=127.0.0.1 port=51304
count = 1021
socket: Too many open files

输出太多条目,上面只截取最后几条,从中可以看出对于客户端,最多只能开启1021个连接套接字,因为总共是1024个,还得除去0,1,2。而服务器端只能accept 返回1020个已连接套接字,因为除了012之外还有一个监听套接字,客户端某一个套接字(不一定是最后一个)虽然已经建立了连接,在已完成连接队列中,但accept 返回时达到最大描述符限制,返回错误,打印提示信息。

也许有人会注意到上面有一行 sleep(4); 当客户端调用socket准备创建第1022个套接字时,如上所示也会提示错误,此时socket函数返回-1出错,如果没有睡眠4s后再退出进程会有什么问题呢?如果直接退出进程,会将客户端所打开的所有套接字关闭掉,即向服务器端发送了很多FIN段,而此时也许服务器端还一直在accept ,即还在从已连接队列中返回已连接套接字,此时服务器端除了关心监听套接字的可读事件,也开始关心前面已建立连接的套接字的可读事件,read 返回0,所以会有很多 client close 字段 参杂在条目的输出中,还有个问题就是,因为read 返回0,服务器端会将自身的已连接套接字关闭掉,那么也许刚才说的客户端某一个连接会被accept 返回,即测试不出服务器端真正的并发容量。

将 sleep(4); 注释掉,观察服务器端的输出如下:

simba@ubuntu:~/Documents/code/linux_programming/UNP/socket$ ./echoser_select

...........................................................

count = 1018
recv connect ip=127.0.0.1 port=52323
client close 
count = 1019
recv connect ip=127.0.0.1 port=52324
client close 
count = 1020
recv connect ip=127.0.0.1 port=52325
client close 
count = 1021
recv connect ip=127.0.0.1 port=52234
client close 
client close

可以看到输出参杂着client close,且这次的count 达到了1021,原因就是服务器端前面已经有些套接字关闭了,所以accept 创建套接字不会出错,服务器进程也不会因为出错而退出,可以看到最后接收到的一个连接端口是52234,即不一定是客户端的最后一个连接。

二、poll 函数应用举例

#include <poll.h>

int poll(struct pollfd *fds, nfds_t nfds, int timeout);

参数1:结构体数组指针,struct pollfd {

int   fd;         /* file descriptor */
               short events;     /* requested events */
               short revents;    /* returned events */
           };

结构体中的fd 即套接字描述符,events 即感兴趣的事件,如下图所示,revents 即返回的事件。

参数2:结构体数组的成员个数,即文件描述符个数。

参数3:即超时时间,若为-1,表示永不超时。

poll 跟 select 还是很相似的,比较重要的区别在于poll 所能并发的个数跟FD_SETSIZE无关,只跟一个进程所能打开的文件描述符个数有关,可以在select 程序的基础上修改成poll 程序,在运行服务器端程序之前,使用ulimit -n 2048 将限制改成2048个,注意在运行客户端进程的终端也需更改,因为客户端也会有所限制,这只是临时性的更改,因为子进程会继承这个环境参数,而我们是在bash命令行启动程序的,故在进程运行期间,文件描述符的限制为2048个。

使用poll 函数的服务器端程序如下:

C++ Code 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
 
/*************************************************************************
    > File Name: echoser.c
    > Author: Simba
    > Mail: dameng34@163.com
    > Created Time: Fri 01 Mar 2013 06:15:27 PM CST
 ************************************************************************/

#include<stdio.h>
#include<sys/types.h>
#include<sys/socket.h>
#include<unistd.h>
#include<stdlib.h>
#include<errno.h>
#include<arpa/inet.h>
#include<netinet/in.h>
#include<string.h>
#include<signal.h>
#include<sys/wait.h>
#include<poll.h>
#include "read_write.h"

#define ERR_EXIT(m) \
    do { \
        perror(m); \
        exit(EXIT_FAILURE); \
    } while (0)

int main(void)
{
    int count = 0;
    signal(SIGPIPE, SIG_IGN);
    int listenfd; //被动套接字(文件描述符),即只可以accept, 监听套接字
    if ((listenfd = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
        //  listenfd = socket(AF_INET, SOCK_STREAM, 0)
        ERR_EXIT("socket error");

struct sockaddr_in servaddr;
    memset(&servaddr, 0, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    servaddr.sin_port = htons(5188);
    servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
    /* servaddr.sin_addr.s_addr = inet_addr("127.0.0.1"); */
    /* inet_aton("127.0.0.1", &servaddr.sin_addr); */

int on = 1;
    if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on)) < 0)
        ERR_EXIT("setsockopt error");

if (bind(listenfd, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0)
        ERR_EXIT("bind error");

if (listen(listenfd, SOMAXCONN) < 0) //listen应在socket和bind之后,而在accept之前
        ERR_EXIT("listen error");

struct sockaddr_in peeraddr; //传出参数
    socklen_t peerlen = sizeof(peeraddr); //传入传出参数,必须有初始值

int conn; // 已连接套接字(变为主动套接字,即可以主动connect)
    int i;

struct pollfd client[2048];
    int maxi = 0; //client[i]最大不空闲位置的下标

for (i = 0; i < 2048; i++)
        client[i].fd = -1;

int nready;
    client[0].fd = listenfd;
    client[0].events = POLLIN;

while (1)
    {
        /* poll检测[0, maxi + 1) */
        nready = poll(client, maxi + 1, -1);
        if (nready == -1)
        {
            if (errno == EINTR)
                continue;
            ERR_EXIT("poll error");
        }

if (nready == 0)
            continue;

if (client[0].revents & POLLIN)
        {

conn = accept(listenfd, (struct sockaddr *)&peeraddr, &peerlen); //accept不再阻塞
            if (conn == -1)
                ERR_EXIT("accept error");

for (i = 1; i < 2048; i++)
            {
                if (client[i].fd < 0)
                {
                    client[i].fd = conn;
                    if (i > maxi)
                        maxi = i;
                    break;
                }
            }

if (i == 2048)
            {
                fprintf(stderr, "too many clients\n");
                exit(EXIT_FAILURE);
            }

printf("count = %d\n", ++count);
            printf("recv connect ip=%s port=%d\n", inet_ntoa(peeraddr.sin_addr),
                   ntohs(peeraddr.sin_port));

client[i].events = POLLIN;

if (--nready <= 0)
                continue;
        }

for (i = 1; i <= maxi; i++)
        {
            conn = client[i].fd;
            if (conn == -1)
                continue;
            if (client[i].revents & POLLIN)
            {

char recvbuf[1024] = {0};
                int ret = readline(conn, recvbuf, 1024);
                if (ret == -1)
                    ERR_EXIT("readline error");
                else if (ret  == 0)   //客户端关闭
                {
                    printf("client  close \n");
                    client[i].fd = -1;
                    close(conn);
                }

fputs(recvbuf, stdout);
                writen(conn, recvbuf, strlen(recvbuf));

if (--nready <= 0)
                    break;
            }
        }

}

return 0;
}

/* poll 只受一个进程所能打开的最大文件描述符限制,这个可以使用ulimit -n调整 */

参照前面对select 函数的解释不难理解上面的程序,就不再赘述了。来看一下输出:

simba@ubuntu:~/Documents/code/linux_programming/UNP/socket$ ulimit -n 2048

simba@ubuntu:~/Documents/code/linux_programming/UNP/socket$ ./echoser_select

.............................................................................................

recv connect ip=127.0.0.1 port=57430
count = 2039
recv connect ip=127.0.0.1 port=57431
count = 2040
recv connect ip=127.0.0.1 port=57432
count = 2041
recv connect ip=127.0.0.1 port=57433
count = 2042
recv connect ip=127.0.0.1 port=57434
count = 2043
recv connect ip=127.0.0.1 port=57435
count = 2044
recv connect ip=127.0.0.1 port=57436
accept error: Too many open files

simba@ubuntu:~/Documents/code/linux_programming/UNP/socket$ ulimit -n 2048

simba@ubuntu:~/Documents/code/linux_programming/UNP/socket$ ./conntest

................................................................................

count = 2039
ip=127.0.0.1 port=57431
count = 2040
ip=127.0.0.1 port=57432
count = 2041
ip=127.0.0.1 port=57433
count = 2042
ip=127.0.0.1 port=57434
count = 2043
ip=127.0.0.1 port=57435
count = 2044
ip=127.0.0.1 port=57436
count = 2045
socket: Too many open files

可以看到现在最大的连接数已经是2045个了,虽然服务器端有某个连接没有accept 返回。即poll 比 select 能够承受更多的并发连接,只受一个进程所能打开的最大文件描述符个数限制。可以通过ulimit -n  修改,但一个系统所能打开的文件描述符个数也是有限的,这跟系统的内存大小有关系,所以说也不是可以无限地并发,可以查看一下本机的容量:

simba@ubuntu:~/Documents/code/linux_programming/UNP/socket$ cat /proc/sys/fs/file-max

101078

本机是虚拟机,内存大约1G,能够打开的文件描述符个数大约在10w个左右。

参考:

《Linux C 编程一站式学习》

《TCP/IP详解 卷一》

《UNP》

select函数的并发限制和 poll 函数应用举例相关推荐

  1. UNIX网络编程——select函数的并发限制和 poll 函数应用举例

    http://blog.csdn.net/chenxun_2010/article/details/50489577 一.用select实现的并发服务器,能达到的并发数,受两方面限制 1.一个进程能打 ...

  2. 并发编程应用场景_linux网络编程之select函数的并发限制和poll函数应用举例

    一.用select实现的并发服务器,能达到的并发数,受两方面限制 1.一个进程能打开的最大文件描述符限制.这可以通过调整内核参数.可以通过ulimit -n来调整或者使用setrlimit函数设置, ...

  3. poll函数_I/O--多路复用的三种机制Select,Poll和Epoll对比

    I/O多路复用(multiplexing)的本质是通过一种机制(系统内核缓冲I/O数据),让单个进程可以监视多个文件描述符,一旦某个描述符就绪(一般是读就绪或写就绪),能够通知程序进行相应的读写操作 ...

  4. poll函数_如何理解IO多路复用的三种机制Select,Poll,Epoll?

    专注分享Linux后台服务器开发,包括C/C++,Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TC ...

  5. 第6章 I/O复用 select 和 poll 函数

    I/O 复用的能力: 如果一个或多个 I/O 条件满足(例如,输入已准备好被读,或者描述字可以承接更多的输出)时,我们就被通知到. I/O 复用由函数 select 和 poll 支持. I/O 复用 ...

  6. linux poll函数 实现,Linux select/poll/epoll 原理(一)实现基础

    本序列涉及的 Linux 源码都是基于 linux-4.14.143 . 1. 文件抽象 与 poll 操作 1.1 文件抽象 在 Linux 内核里,文件是一个抽象,设备是个文件,网络套接字也是个文 ...

  7. C语言 IO多路复用——poll函数

    友链 gcc 1.c -o 1 -lpthread ctrl+f搜索服务端代码和客户端代码获取代码 该方法也可以实现并发服务器 IO多路复用,IO多路转接 简介 IO多路复用中的IO并不是指单纯的标准 ...

  8. UNIX中的Poll函数

    poll函数和select函数非常相似,但是函数接口不一样. int poll(struct pollfd fdarray[], nfds_t nfds, int timeout); int sele ...

  9. Linux 高级I/O之poll函数及简单服务器客户端编程

    当需要同时监听多个文件描述符时,就需要I/O复用函数,I/O复用函数有select.poll.epoll,今天主要使用poll函数.  poll()接受一个指向结构'struct pollfd'列表的 ...

最新文章

  1. 关于MySQL索引知识与小妙招 — 学到了!
  2. pycharm conda 环境 切换 linux_【Python专题(一)】python环境搭建
  3. pat 乙级 1005 继续(3n+1)猜想(C++)
  4. 一个优美的架构需要考虑的几个问题
  5. matplotlib绘图_Python之matplotlib绘图示例
  6. JAVA常用API或编程工具003--实现pdf在线阅读功能之pdf.js
  7. curl 命令-接口测试
  8. DataGrid相邻行有相同内容时对指定列合并和C#可以实现DLL库的动态调用
  9. AWR-比较两个阶段性能
  10. Docker 快速安装教程
  11. 【EJB学习笔记】——EJB开发环境搭建(Eclipse集成JBoss)
  12. linux opendir路径_linux opendir readdir closedir函数
  13. 微机原理与接口技术实验
  14. 笔记本AutoCAD启动时闪退怎么办_cad启动时闪退怎么办
  15. NLTK-004:加工原料文本
  16. 一句话点评国内在产主流A级车
  17. Android打字机动画,Android 打字机效果
  18. Win10自定义路径位置安装WSL2 (Ubuntu 20.04) 并配置CUDA
  19. 【洛谷3043】跳楼机(最短路)
  20. lstm对时间数据的预测作用(多变量对多变量预测)

热门文章

  1. Chrome 内存和CPU消耗量双料冠军
  2. 深入理解C#的装箱和拆箱
  3. java B2B2C Springcloud仿淘宝电子商城系统-spring cloud 框架原理
  4. 分布式监控系统Zabbix-3.0.3-完整安装记录(4)-解决zabbix监控图中出现中文乱码问题...
  5. 整数的二进制表示中 1 的个数
  6. ACE网络编程思考(二)
  7. 当网络安全遇上大数据分析(6)
  8. 好程序员分享24个canvas基础知识小结 1
  9. 详解CSS的Flex布局
  10. Ehcache缓存配置和基本使用