C语言嵌入式系统编程修炼之一:背景篇

不同于一般形式的软件编程,嵌入式系统编程建立在特定的硬件平台上,势必要求其编程语言具备较强的硬件直接操作能力。无疑,汇编语言具备这样的特质。但是,归因于汇编语言开发过程的复杂性,它并不是嵌入式系统开发的一般选择。而与之相比,C语言--一种"高级的低级"语言,则成为嵌入式系统开发的最佳选择。笔者在嵌入式系统项目的开发过程中,一次又一次感受到C语言的精妙,沉醉于C语言给嵌入式开发带来的便利。
  图1给出了本文的讨论所基于的硬件平台,实际上,这也是大多数嵌入式系统的硬件平台。它包括两部分:
  (1) 以通用处理器为中心的协议处理模块,用于网络控制协议的处理;
  (2) 以数字信号处理器(DSP)为中心的信号处理模块,用于调制、解调和数/模信号转换
  本文的讨论主要围绕以通用处理器为中心的协议处理模块进行,因为它更多地牵涉到具体的C语言编程技巧。而DSP编程则重点关注具体的数字信号处理算法,主要涉及通信领域的知识,不是本文的讨论重点。
  着眼于讨论普遍的嵌入式系统C编程技巧,系统的协议处理模块没有选择特别的CPU,而是选择了众所周知的CPU芯片--80186,每一位学习过《微机原理》的读者都应该对此芯片有一个基本的认识,且对其指令集比较熟悉。80186的字长是16位,可以寻址到的内存空间为1MB,只有实地址模式。C语言编译生成的指针为32位(双字),高16位为段地址,低16位为段内编译,一段最多64KB。

图1 系统硬件架构

  协议处理模块中的FLASH和RAM几乎是每个嵌入式系统的必备设备,前者用于存储程序,后者则是程序运行时指令及数据的存放位置。系统所选择的FLASH和RAM的位宽都为16位,与CPU一致。
  实时钟芯片可以为系统定时,给出当前的年、月、日及具体时间(小时、分、秒及毫秒),可以设定其经过一段时间即向CPU提出中断或设定报警时间到来时向CPU提出中断(类似闹钟功能)。
  NVRAM(非易失去性RAM)具有掉电不丢失数据的特性,可以用于保存系统的设置信息,譬如网络协议参数等。在系统掉电或重新启动后,仍然可以读取先前的设置信息。其位宽为8位,比CPU字长小。文章特意选择一个与CPU字长不一致的存储芯片,为后文中一节的讨论创造条件。
  UART则完成CPU并行数据传输与RS-232串行数据传输的转换,它可以在接收到[1~MAX_BUFFER]字节后向CPU提出中断,MAX_BUFFER为UART芯片存储接收到字节的最大缓冲区。
  键盘控制器和显示控制器则完成系统人机界面的控制。
  以上提供的是一个较完备的嵌入式系统硬件架构,实际的系统可能包含更少的外设。之所以选择一个完备的系统,是为了后文更全面的讨论嵌入式系统C语言编程技巧的方方面面,所有设备都会成为后文的分析目标。
  嵌入式系统需要良好的软件开发环境的支持,由于嵌入式系统的目标机资源受限,不可能在其上建立庞大、复杂的开发环境,因而其开发环境和目标运行环境相互分离。因此,嵌入式应用软件的开发方式一般是,在宿主机(Host)上建立开发环境,进行应用程序编码和交叉编译,然后宿主机同目标机(Target)建立连接,将应用程序下载到目标机上进行交叉调试,经过调试和优化,最后将应用程序固化到目标机中实际运行。
  CAD-UL是适用于x86处理器的嵌入式应用软件开发环境,它运行在Windows操作系统之上,可生成x86处理器的目标代码并通过PC机的COM口(RS-232串口)或以太网口下载到目标机上运行,如图2。其驻留于目标机FLASH存储器中的monitor程序可以监控宿主机Windows调试平台上的用户调试指令,获取CPU寄存器的值及目标机存储空间、I/O空间的内容。

图2 交叉开发环境

后续章节将从软件架构、内存操作、屏幕操作、键盘操作、性能优化等多方面阐述C语言嵌入式系统的编程技巧。软件架构是一个宏观概念,与具体硬件的联系不大;内存操作主要涉及系统中的FLASH、RAM和NVRAM芯片;屏幕操作则涉及显示控制器和实时钟;键盘操作主要涉及键盘控制器;性能优化则给出一些具体的减小程序时间、空间消耗的技巧。
在我们的修炼旅途中将经过25个关口,这些关口主分为两类,一类是技巧型,有很强的适用性;一类则是常识型,在理论上有些意义

C语言嵌入式系统编程修炼之二:软件架构篇

发表时间:2005-08-26 13:00:04 发布人:administrator 阅读次数:3940

模块划分
  模块划分的"划"是规划的意思,意指怎样合理的将一个很大的软件划分为一系列功能独立的部分合作完成系统的需求。C语言作为一种结构化的程序设计语言,在模块的划分上主要依据功能(依功能进行划分在面向对象设计中成为一个错误,牛顿定律遇到了>相对论),C语言模块化程序设计需理解如下概念:
  (1) 模块即是一个.c文件和一个.h文件的结合,头文件(.h)中是对于该模块接口的声明;
  (2) 某模块提供给其它模块调用的外部函数及数据需在.h中文件中冠以extern关键字声明;
  (3) 模块内的函数和全局变量需在.c文件开头冠以static关键字声明;
  (4) 永远不要在.h文件中定义变量!定义变量和声明变量的区别在于定义会产生内存分配的操作,是汇编阶段的概念;而声明则只是告诉包含该声明的模块在连接阶段从其它模块寻找外部函数和变量。如:

/*module1.h*/
int a = 5; /* 在模块1的.h文件中定义int a */
/*module1 .c*/
#include "module1.h" /* 在模块1中包含模块1的.h文件 */
/*module2 .c*/
#include "module1.h" /* 在模块2中包含模块1的.h文件 */
/*module3 .c*/
#include "module1.h" /* 在模块3中包含模块1的.h文件 */

  以上程序的结果是在模块1、2、3中都定义了整型变量a,a在不同的模块中对应不同的地址单元,这个世界上从来不需要这样的程序。正确的做法是:

/*module1.h*/
extern int a; /* 在模块1的.h文件中声明int a */
/*module1 .c*/
#include "module1.h" /* 在模块1中包含模块1的.h文件 */
int a = 5; /* 在模块1的.c文件中定义int a */

/*module2 .c*/
#include "module1.h" /* 在模块2中包含模块1的.h文件 */

/*module3 .c*/
#include "module1.h" /* 在模块3中包含模块1的.h文件 */

这样如果模块123操作a的话,对应的是同一片内存单元。(先进行变量a的声明用关键字extern来声明变量)再在module1中定义int a;之后的所有的module234………n中变量a对应同一个内存地址,所以免得每一个模式都因为同一个变量分配不同的内存地址空间。

  一个嵌入式系统通常包括两类模块:
  (1)硬件驱动模块,一种特定硬件对应一个模块;
  (2)软件功能模块,其模块的划分应满足低偶合、高内聚的要求
  多任务还是单任务
  所谓"单任务系统"是指该系统不能支持多任务并发操作,宏观串行地执行一个任务。而多任务系统则可以宏观并行(微观上可能串行)地"同时"执行多个任务。
  多任务的并发执行通常依赖于一个多任务操作系统(OS,多任务OS的核心是系统调度器,它使用任务控制块(TCB)来管理任务调度功能。TCB包括任务的当前状态、优先级、要等待的事件或资源、任务程序码的起始地址、初始堆栈指针等信息。调度器在任务被激活时,要用到这些信息。此外,TCB还被用来存放任务的"上下文"(context)。任务的上下文就是当一个执行中的任务被停止时,所要保存的所有信息。通常,上下文就是计算机当前的状态,也即各个寄存器的内容。当发生任务切换时,当前运行的任务的上下文被存入TCB,并将要被执行的任务的上下文从它的TCB中取出,放入各个寄存器中。
  嵌入式多任务OS的典型例子有Vxworks、ucLinux等。嵌入式OS并非遥不可及的神坛之物,我们可以用不到1000行代码实现一个针对80186处理器的功能最简单的OS内核,作者正准备进行此项工作,希望能将心得贡献给大家。
  究竟选择多任务还是单任务方式,依赖于软件的体系是否庞大。例如,绝大多数手机程序都是多任务的,但也有一些小灵通的协议栈是单任务的,没有操作系统,它们的主程序轮流调用各个软件模块的处理程序,模拟多任务环境。
单任务程序典型架构
  (1)从CPU复位时的指定地址开始执行;
  (2)跳转至汇编代码startup处执行;
  (3)跳转至用户主程序main执行,在main中完成:
  a.初试化各硬件设备;
  b.初始化各软件模块;
  c.进入死循环(无限循环),调用各模块的处理函数
  用户主程序和各模块的处理函数都以C语言完成。用户主程序最后都进入了一个死循环,其首选方案是:

while(1)
{
}

  有的程序员这样写:

for(;;)
{
}

  这个语法没有确切表达代码的含义,我们从for(;;)看不出什么,只有弄明白for(;;)在C语言中意味着无条件循环才明白其意。
  下面是几个"著名"的死循环:
  1)操作系统是死循环;
  (2WIN32程序是死循环;
  (3)嵌入式系统软件是死循环;
  (4)多线程程序的线程处理函数是死循环。
  你可能会辩驳,大声说:"凡事都不是绝对的,2、3、4都可以不是死循环"。Yes,you are right,但是你得不到鲜花和掌声。实际上,这是一个没有太大意义的牛角尖,因为这个世界从来不需要一个处理完几个消息就喊着要OS杀死它的WIN32 程序,不需要一个刚开始RUN就自行了断的嵌入式系统,不需要莫名其妙启动一个做一点事就干掉自己的线程。有时候,过于严谨制造的不是便利而是麻烦。君不见,五层的TCP/IP协议栈超越严谨的ISO/OSI七层协议栈大行其道成为事实上的标准?
  经常有网友讨论:

printf("%d,%d",++i,i++); /* 输出是什么?*/
c = a+++b; /* c=? */

  等类似问题。面对这些问题,我们只能发出由衷的感慨:世界上还有很多有意义的事情等着我们去消化摄入的食物。
  实际上,嵌入式系统要运行到世界末日。
  中断服务程序
  中断是嵌入式系统中重要的组成部分,但是在标准C中不包含中断。许多编译开发商在标准C上增加了对中断的支持,提供新的关键字用于标示中断服务程序 (ISR),类似于__interrupt、#program interrupt等。当一个函数被定义为ISR的时候,编译器会自动为该函数增加中断服务程序所需要的中断现场入栈和出栈代码
  中断服务程序需要满足如下要求:
  (1)不能返回值;
  (2)不能向ISR传递参数;
  (3) ISR应该尽可能的短小精悍;
  (4) printf(char * lpFormatString,…)函数会带来重入和性能问题,不能在ISR中采用。
  在某项目的开发中,我们设计了一个队列,在中断服务程序中,只是将中断类型添加入该队列中,在主程序的死循环中不断扫描中断队列是否有中断,有则取出队列中的第一个中断类型,进行相应处理。

/* 存放中断的队列 */
typedef struct tagIntQueue
{
 int intType; /* 中断类型 */
 struct tagIntQueue *next;
}IntQueue;

IntQueue lpIntQueueHead;

__interrupt ISRexample ()
{
 int intType;
 intType = GetSystemType();
 QueueAddTail(lpIntQueueHead, intType);/* 在队列尾加入新的中断 */
}

  在主程序循环中判断是否有中断:

While(1)
{
 If( !IsIntQueueEmpty() )
 {
  intType = GetFirstInt();
  switch(intType) /* 是不是很象WIN32程序的消息解析函数? */
  {
   /* 对,我们的中断类型解析很类似于消息驱动 */
   case xxx: /* 我们称其为"中断驱动"吧? */
    …
    break;
   case xxx:
    …
    break;
   …
  }
 }
}

  按上述方法设计的中断服务程序很小,实际的工作都交由主程序执行了。
硬件驱动模块
  一个硬件驱动模块通常应包括如下函数:
  (1)中断服务程序ISR
  (2)硬件初始化
  a.修改寄存器,设置硬件参数(如UART应设置其波特率,AD/DA设备应设置其采样速率等);
  b.将中断服务程序入口地址写入中断向量表:

/* 设置中断向量表 */
m_myPtr = make_far_pointer(0l); /* 返回void far型指针void far * */
m_myPtr += ITYPE_UART; /* ITYPE_UART: uart中断服务程序 */
/* 相对于中断向量表首地址的偏移 */
*m_myPtr = &UART _Isr; /* UART _Isr:UART的中断服务程序 */

  (3)设置CPU针对该硬件的控制线
 a.如果控制线可作PIO(可编程I/O)和控制信号用,则设置CPU内部对应寄存器使其作为控制信号;
  b.设置CPU内部的针对该设备的中断屏蔽位,设置中断方式(电平触发还是边缘触发)。
  (4)提供一系列针对该设备的操作接口函数。例如,对于LCD,其驱动模块应提供绘制像素、画线、绘制矩阵、显示字符点阵等函数;而对于实时钟,其驱动模块则需提供获取时间、设置时间等函数。
  C的面向对象化
  在面向对象的语言里面,出现了类的概念。类是对特定数据的特定操作的集合体。类包含了两个范畴:数据和操作。而C语言中的struct仅仅是数据的集合,我们可以利用函数指针将struct模拟为一个包含数据和操作的"类"。下面的C程序模拟了一个最简单的"类":

#ifndef C_Class
#define C_Class struct
#endif
C_Class A
{
 C_Class A *A_this; /* this指针 */
 void (*Foo)(C_Class A *A_this); /* 行为:函数指针 */
 int a; /* 数据 */
 int b;
};

  我们可以利用C语言模拟出面向对象的三个特性:封装、继承和多态,但是更多的时候,我们只是需要将数据与行为封装以解决软件结构混乱的问题。C模拟面向对象思想的目的不在于模拟行为本身,而在于解决某些情况下使用C语言编程时程序整体框架结构分散、数据和函数脱节的问题。我们在后续章节会看到这样的例子。
  总结
  本篇介绍了嵌入式系统编程软件架构方面的知识,主要包括模块划分、多任务还是单任务选取、单任务程序典型架构、中断服务程序、硬件驱动模块设计等,从宏观上给出了一个嵌入式系统软件所包含的主要元素。
  请记住:软件结构是软件的灵魂!结构混乱的程序面目可憎,调试、测试、维护、升级都极度困难。

C语言嵌入式系统编程修炼之三:内存操作

发表时间:2005-08-26 13:01:21 发布人:administrator 阅读次数:3889

数据指针
  在嵌入式系统的编程中,常常要求在特定的内存单元读写内容,汇编有对应的MOV指令,而除C/C++以外的其它编程语言基本没有直接访问绝对地址的能力。在嵌入式系统的实际调试中,多借助C语言指针所具有的对绝对地址单元内容的读写能力。以指针直接操作内存多发生在如下几种情况:
  (1) 某I/O芯片被定位在CPU的存储空间而非I/O空间,而且寄存器对应于某特定地址;
  (2) 两个CPU之间以双端口RAM通信,CPU需要在双端口RAM的特定单元(称为mail box)书写内容以在对方CPU产生中断;
  (3) 读取在ROM或FLASH的特定单元所烧录的汉字和英文字模。
  譬如:

unsigned char *p = (unsigned char *)0xF000FF00;
*p=11;

  以上程序的意义为在绝对地址0xF0000+0xFF00(80186使用16位段地址和16位偏移地址)写入11。
  在使用绝对地址指针时,要注意指针自增自减操作的结果取决于指针指向的数据类别。上例中p++后的结果是p= 0xF000FF01,若p指向int,即:

int *p = (int *)0xF000FF00;

  p++(或++p)的结果等同于:p = p+sizeof(int),而p-(或-p)的结果是p = p-sizeof(int)。
  同理,若执行:

long int *p = (long int *)0xF000FF00;

  则p++(或++p)的结果等同于:p = p+sizeof(long int) ,而p-(或-p)的结果是p = p-sizeof(long int)。
  记住:CPU以字节为单位编址,而C语言指针以指向的数据类型长度作自增和自减。理解这一点对于以指针直接操作内存是相当重要的。
  函数指针
  首先要理解以下三个问题:
  (1)C语言中函数名直接对应于函数生成的指令代码在内存中的地址,因此函数名可以直接赋给指向函数的指针;
  (2)调用函数实际上等同于"调转指令+参数传递处理+回归位置入栈",本质上最核心的操作是将函数生成的目标代码的首地址赋给CPU的PC寄存器;
  (3)因为函数调用的本质是跳转到某一个地址单元的code去执行,所以可以"调用"一个根本就不存在的函数实体,晕?请往下看:
  请拿出你可以获得的任何一本大学《微型计算机原理》教材,书中讲到,186 CPU启动后跳转至绝对地址0xFFFF0(对应C语言指针是0xF000FFF0,0xF000为段地址,0xFFF0为段内偏移)执行,请看下面的代码:

typedef void (*lpFunction) ( ); /* 定义一个无参数、无返回类型的 */
/* 函数指针类型 */
lpFunction lpReset = (lpFunction)0xF000FFF0; /* 定义一个函数指针,指向*/
/* CPU启动后所执行第一条指令的位置 */
lpReset(); /* 调用函数 */

  在以上的程序中,我们根本没有看到任何一个函数实体,但是我们却执行了这样的函数调用:lpReset(),它实际上起到了"软重启"的作用,跳转到CPU启动后第一条要执行的指令的位置。
  记住:函数无它,唯指令集合耳;你可以调用一个没有函数体的函数,本质上只是换一个地址开始执行指令!
  数组vs.动态申请
  在嵌入式系统中动态内存申请存在比一般系统编程时更严格的要求,这是因为嵌入式系统的内存空间往往是十分有限的,不经意的内存泄露会很快导致系统的崩溃。
  所以一定要保证你的malloc和free成对出现,如果你写出这样的一段程序:

char * function(void)
{
 char *p;
 p = (char *)malloc(…);
 if(p==NULL)
  …;
  … /* 一系列针对p的操作 */
 return p;
}

  在某处调用function(),用完function中动态申请的内存后将其free,如下:

char *q = function();

free(q);

  上述代码明显是不合理的,因为违反了malloc和free成对出现的原则,即"谁申请,就由谁释放"原则。不满足这个原则,会导致代码的耦合度增大,因为用户在调用function函数时需要知道其内部细节!
  正确的做法是在调用处申请内存,并传入function函数,如下:

char *p=malloc(…);
if(p==NULL)
…;
function(p);

free(p);
p=NULL;

  而函数function则接收参数p,如下:

void function(char *p)
{
 … /* 一系列针对p的操作 */
}

  基本上,动态申请内存方式可以用较大的数组替换。对于编程新手,笔者推荐你尽量采用数组!嵌入式系统可以以博大的胸襟接收瑕疵,而无法"海纳"错误。毕竟,以最笨的方式苦练神功的郭靖胜过机智聪明却范政治错误走反革命道路的杨康。
  给出原则:
  (1)尽可能的选用数组,数组不能越界访问(真理越过一步就是谬误,数组越过界限就光荣地成全了一个混乱的嵌入式系统);
  (2)如果使用动态申请,则申请后一定要判断是否申请成功了,并且malloc和free应成对出现!
关键字const
  const意味着"只读"。区别如下代码的功能非常重要,也是老生长叹,如果你还不知道它们的区别,而且已经在程序界摸爬滚打多年,那只能说这是一个悲哀:

const int a;
int const a;
const int *a;
int * const a;
int const * a const;

  (1)关键字const的作用是为给读你代码的人传达非常有用的信息。例如,在函数的形参前添加const关键字意味着这个参数在函数体内不会被修改,属于"输入参数"。在有多个形参的时候,函数的调用者可以凭借参数前是否有const关键字,清晰的辨别哪些是输入参数,哪些是可能的输出参数。
  (2)合理地使用关键字const可以使编译器很自然地保护那些不希望被改变的参数,防止其被无意的代码修改,这样可以减少bug的出现。
  const在C++语言中则包含了更丰富的含义,而在C语言中仅意味着:"只能读的普通变量",可以称其为"不能改变的变量"(这个说法似乎很拗口,但却最准确的表达了C语言中const的本质),在编译阶段需要的常数仍然只能以#define宏定义!故在C语言中如下程序是非法的:

const int SIZE = 10;
char a[SIZE]; /* 非法:编译阶段不能用到变量 */

  关键字volatile
  C语言编译器会对用户书写的代码进行优化,譬如如下代码:

int a,b,c;
a = inWord(0x100); /*读取I/O空间0x100端口的内容存入a变量*/
b = a;
a = inWord (0x100); /*再次读取I/O空间0x100端口的内容存入a变量*/
c = a;

  很可能被编译器优化为:

int a,b,c;
a = inWord(0x100); /*读取I/O空间0x100端口的内容存入a变量*/
b = a;
c = a;

  但是这样的优化结果可能导致错误,如果I/O空间0x100端口的内容在执行第一次读操作后被其它程序写入新值,则其实第2次读操作读出的内容与第一次不同,b和c的值应该不同。在变量a的定义前加上volatile关键字可以防止编译器的类似优化,正确的做法是:

volatile int a;

  volatile变量可能用于如下几种情况:
  (1) 并行设备的硬件寄存器(如:状态寄存器,例中的代码属于此类);
  (2) 一个中断服务子程序中会访问到的非自动变量(也就是全局变量);
  (3) 多线程应用中被几个任务共享的变量。
  CPU字长与存储器位宽不一致处理
  在背景篇中提到,本文特意选择了一个与CPU字长不一致的存储芯片,就是为了进行本节的讨论,解决CPU字长与存储器位宽不一致的情况。80186的字长为16,而NVRAM的位宽为8,在这种情况下,我们需要为NVRAM提供读写字节、字的接口,如下:

typedef unsigned char BYTE;
typedef unsigned int WORD;
/* 函数功能:读NVRAM中字节
* 参数:wOffset,读取位置相对NVRAM基地址的偏移
* 返回:读取到的字节值
*/
extern BYTE ReadByteNVRAM(WORD wOffset)
{
 LPBYTE lpAddr = (BYTE*)(NVRAM + wOffset * 2); /* 为什么偏移要×2? */

 return *lpAddr;
}

/* 函数功能:读NVRAM中字
* 参数:wOffset,读取位置相对NVRAM基地址的偏移
* 返回:读取到的字
*/
extern WORD ReadWordNVRAM(WORD wOffset)
{
 WORD wTmp = 0;
 LPBYTE lpAddr;
 /* 读取高位字节 */
 lpAddr = (BYTE*)(NVRAM + wOffset * 2); /* 为什么偏移要×2? */
 wTmp += (*lpAddr)*256;
 /* 读取低位字节 */
 lpAddr = (BYTE*)(NVRAM + (wOffset +1) * 2); /* 为什么偏移要×2? */
 wTmp += *lpAddr;
 return wTmp;
}

/* 函数功能:向NVRAM中写一个字节
*参数:wOffset,写入位置相对NVRAM基地址的偏移
* byData,欲写入的字节
*/
extern void WriteByteNVRAM(WORD wOffset, BYTE byData)
{
 …
}

/* 函数功能:向NVRAM中写一个字 */
*参数:wOffset,写入位置相对NVRAM基地址的偏移
* wData,欲写入的字
*/
extern void WriteWordNVRAM(WORD wOffset, WORD wData)
{
 …
}

  子贡问曰:Why偏移要乘以2?
  子曰:请看图1,16位80186与8位NVRAM之间互连只能以地址线A1对其A0,CPU本身的A0与NVRAM不连接。因此,NVRAM的地址只能是偶数地址,故每次以0x10为单位前进!

图1 CPU与NVRAM地址线连接

  子贡再问:So why 80186的地址线A0不与NVRAM的A0连接?
  子曰:请看《IT论语》之《微机原理篇》,那里面讲述了关于计算机组成的圣人之道。
  总结
  本篇主要讲述了嵌入式系统C编程中内存操作的相关技巧。掌握并深入理解关于数据指针、函数指针、动态申请内存、const及volatile关键字等的相关知识,是一个优秀的C语言程序设计师的基本要求。当我们已经牢固掌握了上述技巧后,我们就已经学会了C语言的99%,因为C语言最精华的内涵皆在内存操作中体现。
  我们之所以在嵌入式系统中使用C语言进行程序设计,99%是因为其强大的内存操作能力!
  如果你爱编程,请你爱C语言;  如果你爱C语言,请你爱指针;
  如果你爱指针,请你爱指针的指针!

C语言嵌入式系统编程修炼之四:屏幕操

发表时间:2005-08-26 13:02:32 发布人:administrator 阅读次数:3475汉字处理
  现在要解决的问题是,嵌入式系统中经常要使用的并非是完整的汉字库,往往只是需要提供数量有限的汉字供必要的显示功能。例如,一个微波炉的LCD上没有必要提供显示"电子邮件"的功能;一个提供汉字显示功能的空调的LCD上不需要显示一条"短消息",诸如此类。但是一部手机、小灵通则通常需要包括较完整的汉字库。
  如果包括的汉字库较完整,那么,由内码计算出汉字字模在库中的偏移是十分简单的:汉字库是按照区位的顺序排列的,前一个字节为该汉字的区号,后一个字节为该字的位号。每一个区记录94个汉字,位号则为该字在该区中的位置。因此,汉字在汉字库中的具体位置计算公式为:94*(区号-1)+位号-1。减1是因为数组是以0为开始而区号位号是以1为开始的。只需乘上一个汉字字模占用的字节数即可,即:(94*(区号-1)+位号-1)*一个汉字字模占用字节数,以16*16点阵字库为例,计算公式则为:(94*(区号-1)+(位号-1))*32。汉字库中从该位置起的32字节信息记录了该字的字模信息。
  对于包含较完整汉字库的系统而言,我们可以以上述规则计算字模的位置。但是如果仅仅是提供少量汉字呢?譬如几十至几百个?最好的做法是:
  定义宏:

# define EX_FONT_CHAR(value)
# define EX_FONT_UNICODE_VAL(value) (value),
# define EX_FONT_ANSI_VAL(value) (value),

  定义结构体:

typedef struct _wide_unicode_font16x16
{
 WORD value; /* 内码 */
 BYTE data[32]; /* 字模点阵 */
}Unicode;
#define CHINESE_CHAR_NUM … /* 汉字数量 */

  字模的存储用数组:

Unicode chinese[CHINESE_CHAR_NUM] =
{
{
EX_FONT_CHAR("业")
EX_FONT_UNICODE_VAL(0x4e1a)
{0x04, 0x40, 0x04, 0x40, 0x04, 0x40, 0x04, 0x44, 0x44, 0x46, 0x24, 0x4c, 0x24, 0x48, 0x14, 0x50, 0x1c, 0x50, 0x14, 0x60, 0x04, 0x40, 0x04, 0x40, 0x04, 0x44, 0xff, 0xfe, 0x00, 0x00, 0x00, 0x00}
},
{
EX_FONT_CHAR("中")
EX_FONT_UNICODE_VAL(0x4e2d)
{0x01, 0x00, 0x01, 0x00, 0x21, 0x08, 0x3f, 0xfc, 0x21, 0x08, 0x21, 0x08, 0x21, 0x08, 0x21, 0x08, 0x21, 0x08,
0x3f, 0xf8, 0x21, 0x08, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00}
},
{
EX_FONT_CHAR("云")
EX_FONT_UNICODE_VAL(0x4e91)
{0x00, 0x00, 0x00, 0x30, 0x3f, 0xf8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0c, 0xff, 0xfe, 0x03, 0x00, 0x07, 0x00,

0x06, 0x40, 0x0c, 0x20, 0x18, 0x10, 0x31, 0xf8, 0x7f, 0x0c, 0x20, 0x08, 0x00, 0x00}
},
{
EX_FONT_CHAR("件")
EX_FONT_UNICODE_VAL(0x4ef6)
{0x10, 0x40, 0x1a, 0x40, 0x13, 0x40, 0x32, 0x40, 0x23, 0xfc, 0x64, 0x40, 0xa4, 0x40, 0x28, 0x40, 0x2f, 0xfe,

0x20, 0x40, 0x20, 0x40, 0x20, 0x40, 0x20, 0x40, 0x20, 0x40, 0x20, 0x40, 0x20, 0x40}
}
}

  要显示特定汉字的时候,只需要从数组中查找内码与要求汉字内码相同的即可获得字模。如果前面的汉字在数组中以内码大小顺序排列,那么可以以二分查找法更高效的查找到汉字的字模。
  这是一种很有效的组织小汉字库的方法,它可以保证程序有很好的结构。
  系统时间显示
  从NVRAM中可以读取系统的时间,系统一般借助NVRAM产生的秒中断每秒读取一次当前时间并在LCD上显示。关于时间的显示,有一个效率问题。因为时间有其特殊性,那就是60秒才有一次分钟的变化,60分钟才有一次小时变化,如果我们每次都将读取的时间在屏幕上完全重新刷新一次,则浪费了大量的系统时间。
  一个较好的办法是我们在时间显示函数中以静态变量分别存储小时、分钟、秒,只有在其内容发生变化的时候才更新其显示。

extern void DisplayTime(…)
{
 static BYTE byHour,byMinute,bySecond;
 BYTE byNewHour, byNewMinute, byNewSecond;
 byNewHour = GetSysHour();
 byNewMinute = GetSysMinute();
 byNewSecond = GetSysSecond();
 
 if(byNewHour!= byHour)
 {
  … /* 显示小时 */
  byHour = byNewHour;
 }
 if(byNewMinute!= byMinute)
 {
  … /* 显示分钟 */
  byMinute = byNewMinute;
 }
 if(byNewSecond!= bySecond)
 {
  … /* 显示秒钟 */
  bySecond = byNewSecond;
 }
}

  这个例子也可以顺便作为C语言中static关键字强大威力的证明。当然,在C++语言里,static具有了更加强大的威力,它使得某些数据和函数脱离"对象"而成为"类"的一部分,正是它的这一特点,成就了软件的无数优秀设计。
动画显示
  动画是无所谓有,无所谓无的,静止的画面走的路多了,也就成了动画。随着时间的变更,在屏幕上显示不同的静止画面,即是动画之本质。所以,在一个嵌入式系统的LCD上欲显示动画,必须借助定时器。没有硬件或软件定时器的世界是无法想像的:
  (1) 没有定时器,一个操作系统将无法进行时间片的轮转,于是无法进行多任务的调度,于是便不再成其为一个多任务操作系统;
  (2) 没有定时器,一个多媒体播放软件将无法运作,因为它不知道何时应该切换到下一帧画面;
  (3) 没有定时器,一个网络协议将无法运转,因为其无法获知何时包传输超时并重传之,无法在特定的时间完成特定的任务。
  因此,没有定时器将意味着没有操作系统、没有网络、没有多媒体,这将是怎样的黑暗?所以,合理并灵活地使用各种定时器,是对一个软件人的最基本需求!
  在80186为主芯片的嵌入式系统中,我们需要借助硬件定时器的中断来作为软件定时器,在中断发生后变更画面的显示内容。在时间显示"xx:xx"中让冒号交替有无,每次秒中断发生后,需调用ShowDot:

void ShowDot()
{
 static BOOL bShowDot = TRUE; /* 再一次领略static关键字的威力 */
 if(bShowDot)
 {
  showChar(’:’,xPos,yPos);
 }
 else
 {
  showChar(’ ’,xPos,yPos);
 }
 bShowDot = ! bShowDot;
}

  菜单操作
  无数人为之绞尽脑汁的问题终于出现了,在这一节里,我们将看到,在C语言中哪怕用到一丁点的面向对象思想,软件结构将会有何等的改观!
  笔者曾经是个笨蛋,被菜单搞晕了,给出这样的一个系统:

图1 菜单范例

  要求以键盘上的"← →"键切换菜单焦点,当用户在焦点处于某菜单时,若敲击键盘上的OK、CANCEL键则调用该焦点菜单对应之处理函数。我曾经傻傻地这样做着:

/* 按下OK键 */
void onOkKey()
{
 /* 判断在什么焦点菜单上按下Ok键,调用相应处理函数 */
 Switch(currentFocus)
 {
  case MENU1:
   menu1OnOk();
   break;
  case MENU2:
   menu2OnOk();
   break;
  …
 }
}
/* 按下Cancel键 */
void onCancelKey()
{
 /* 判断在什么焦点菜单上按下Cancel键,调用相应处理函数 */
 Switch(currentFocus)
 {
  case MENU1:
   menu1OnCancel();
   break;
  case MENU2:
   menu2OnCancel();
   break;
  …
 }
}

  终于有一天,我这样做了:

/* 将菜单的属性和操作"封装"在一起 */
typedef struct tagSysMenu
{
 char *text; /* 菜单的文本 */
 BYTE xPos; /* 菜单在LCD上的x坐标 */
 BYTE yPos; /* 菜单在LCD上的y坐标 */
 void (*onOkFun)(); /* 在该菜单上按下ok键的处理函数指针 */
 void (*onCancelFun)(); /* 在该菜单上按下cancel键的处理函数指针 */
}SysMenu, *LPSysMenu;

  当我定义菜单时,只需要这样:

static SysMenu menu[MENU_NUM] =
{
 {
  "menu1", 0, 48, menu1OnOk, menu1OnCancel
 }
 ,
 {
  " menu2", 7, 48, menu2OnOk, menu2OnCancel
 }
 ,
 {
  " menu3", 7, 48, menu3OnOk, menu3OnCancel
 }
 ,
 {
  " menu4", 7, 48, menu4OnOk, menu4OnCancel
 }
 …
};

  OK键和CANCEL键的处理变成:

/* 按下OK键 */
void onOkKey()
{
 menu[currentFocusMenu].onOkFun();
}
/* 按下Cancel键 */
void onCancelKey()
{
 menu[currentFocusMenu].onCancelFun();
}

  程序被大大简化了,也开始具有很好的可扩展性!我们仅仅利用了面向对象中的封装思想,就让程序结构清晰,其结果是几乎可以在无需修改程序的情况下在系统中添加更多的菜单,而系统的按键处理函数保持不变。
  面向对象,真神了!
模拟MessageBox函数
  MessageBox函数,这个Windows编程中的超级猛料,不知道是多少入门者第一次用到的函数。还记得我们第一次在Windows中利用MessageBox输出 "Hello,World!"对话框时新奇的感觉吗?无法统计,这个世界上究竟有多少程序员学习Windows编程是从MessageBox ("Hello,World!",…)开始的。在我本科的学校,广泛流传着一个词汇,叫做"’Hello,World’级程序员",意指入门级程序员,但似乎"’Hello,World’级"这个说法更搞笑而形象。

 
图2 经典的Hello,World!

  图2给出了两种永恒经典的Hello,World对话框,一种只具有"确定",一种则包含"确定"、"取消"。是的,MessageBox的确有,而且也应该有两类!这完全是由特定的应用需求决定的。
  嵌入式系统中没有给我们提供MessageBox,但是鉴于其功能强大,我们需要模拟之,一个模拟的MessageBox函数为:

/******************************************
/* 函数名称: MessageBox
/* 功能说明: 弹出式对话框,显示提醒用户的信息
/* 参数说明: lpStr --- 提醒用户的字符串输出信息
/* TYPE --- 输出格式(ID_OK = 0, ID_OKCANCEL = 1)
/* 返回值: 返回对话框接收的键值,只有两种 KEY_OK, KEY_CANCEL
/******************************************
typedef enum TYPE { ID_OK,ID_OKCANCEL }MSG_TYPE;
extern BYTE MessageBox(LPBYTE lpStr, BYTE TYPE)
{
 BYTE keyValue = -1;

 ClearScreen(); /* 清除屏幕 */
 DisplayString(xPos,yPos,lpStr,TRUE); /* 显示字符串 */
 /* 根据对话框类型决定是否显示确定、取消 */
 switch (TYPE)
 {
  case ID_OK:
   DisplayString(13,yPos+High+1, " 确定 ", 0);
   break;
  case ID_OKCANCEL:
   DisplayString(8, yPos+High+1, " 确定 ", 0);
   DisplayString(17,yPos+High+1, " 取消 ", 0);
   break;
  default:
   break;
 }
 DrawRect(0, 0, 239, yPos+High+16+4); /* 绘制外框 */
 /* MessageBox是模式对话框,阻塞运行,等待按键 */
 while( (keyValue != KEY_OK) || (keyValue != KEY_CANCEL) )
 {
  keyValue = getSysKey();
 }
 /* 返回按键类型 */
 if(keyValue== KEY_OK)
 {
  return ID_OK;
 }
 else
 {
  return ID_CANCEL;
 }
}

  上述函数与我们平素在VC++等中使用的MessageBox是何等的神似啊?实现这个函数,你会看到它在嵌入式系统中的妙用是无穷的。
  总结
  本篇是本系列文章中技巧性最深的一篇,它提供了嵌入式系统屏幕显示方面一些很巧妙的处理方法,灵活使用它们,我们将不再被LCD上凌乱不堪的显示内容所困扰。
  屏幕乃嵌入式系统生存之重要辅助,面目可憎之显示将另用户逃之夭夭。屏幕编程若处理不好,将是软件中最不系统、最混乱的部分,笔者曾深受其害。

C语言嵌入式系统编程修炼之五:键盘操作

发表时间:2005-08-26 13:04:31 发布人:administrator 阅读次数:3507

处理功能键
  功能键的问题在于,用户界面并非固定的,用户功能键的选择将使屏幕画面处于不同的显示状态下。例如,主画面如图1:

图1 主画面

  当用户在设置XX上按下Enter键之后,画面就切换到了设置XX的界面,如图2:

图2 切换到设置XX画面

  程序如何判断用户处于哪一画面,并在该画面的程序状态下调用对应的功能键处理函数,而且保证良好的结构,是一个值得思考的问题。
  让我们来看看WIN32编程中用到的"窗口"概念,当消息(message)被发送给不同窗口的时候,该窗口的消息处理函数(是一个callback函数)最终被调用,而在该窗口的消息处理函数中,又根据消息的类型调用了该窗口中的对应处理函数。通过这种方式,WIN32有效的组织了不同的窗口,并处理不同窗口情况下的消息。
  我们从中学习到的就是:
  (1)将不同的画面类比为WIN32中不同的窗口,将窗口中的各种元素(菜单、按钮等)包含在窗口之中;
  (2)给各个画面提供一个功能键"消息"处理函数,该函数接收按键信息为参数;
  (3)在各画面的功能键"消息"处理函数中,判断按键类型和当前焦点元素,并调用对应元素的按键处理函数。

/* 将窗口元素、消息处理函数封装在窗口中 */
struct windows
{
 BYTE currentFocus;
 ELEMENT element[ELEMENT_NUM];
 void (*messageFun) (BYTE keyValue);
 …
};
/* 消息处理函数 */
void messageFunction(BYTE keyValue)
{
 BYTE i = 0;
 /* 获得焦点元素 */
 while ( (element [i].ID!= currentFocus)&& (i < ELEMENT_NUM) )
 {
  i++;
 }
 /* "消息映射" */
 if(i < ELEMENT_NUM)
 {
  switch(keyValue)
  {
   case OK:
    element[i].OnOk();
    break;
   …
  }
 }
}

  在窗口的消息处理函数中调用相应元素按键函数的过程类似于"消息映射",这是我们从WIN32编程中学习到的。编程到了一个境界,很多东西都是相通的了。其它地方的思想可以拿过来为我所用,是为编程中的"拿来主义"。
  在这个例子中,如果我们还想玩得更大一点,我们可以借鉴MFC中处理MESSAGE_MAP的方法,我们也可以学习MFC定义几个精妙的宏来实现"消息映射"。
处理数字键
  用户输入数字时是一位一位输入的,每一位的输入都对应着屏幕上的一个显示位置(x坐标,y坐标)。此外,程序还需要记录该位置输入的值,所以有效组织用户数字输入的最佳方式是定义一个结构体,将坐标和数值捆绑在一起:

/* 用户数字输入结构体 */
typedef struct tagInputNum
{
 BYTE byNum; /* 接收用户输入赋值 */
 BYTE xPos; /* 数字输入在屏幕上的显示位置x坐标 */
 BYTE yPos; /* 数字输入在屏幕上的显示位置y坐标 */
}InputNum, *LPInputNum;

  那么接收用户输入就可以定义一个结构体数组,用数组中的各位组成一个完整的数字:

InputNum inputElement[NUM_LENGTH]; /* 接收用户数字输入的数组 */
/* 数字按键处理函数 */
extern void onNumKey(BYTE num)
{
if(num==0|| num==1) /* 只接收二进制输入 */
{
 /* 在屏幕上显示用户输入 */
 DrawText(inputElement[currentElementInputPlace].xPos, inputElement[currentElementInputPlace].yPos, "%1d", num);
 /* 将输入赋值给数组元素 */
 inputElement[currentElementInputPlace].byNum = num;
 /* 焦点及光标右移 */
 moveToRight();
}
}

  将数字每一位输入的坐标和输入值捆绑后,在数字键处理函数中就可以较有结构的组织程序,使程序显得很紧凑。
  整理用户输入
  继续第2节的例子,在第2节的onNumKey函数中,只是获取了数字的每一位,因而我们需要将其转化为有效数据,譬如要转化为有效的XXX数据,其方法是:

/* 从2进制数据位转化为有效数据:XXX */
void convertToXXX()
{
 BYTE i;
 XXX = 0;
 for (i = 0; i < NUM_LENGTH; i++)
 {
  XXX += inputElement[i].byNum*power(2, NUM_LENGTH - i - 1);
 }
}

  反之,我们也可能需要在屏幕上显示那些有效的数据位,因为我们也需要能够反向转化:

/* 从有效数据转化为2进制数据位:XXX */
void convertFromXXX()
{
 BYTE i;
 XXX = 0;
 for (i = 0; i < NUM_LENGTH; i++)
 {
  inputElement[i].byNum = XXX / power(2, NUM_LENGTH - i - 1) % 2;
 }
}

  当然在上面的例子中,因为数据是2进制的,用power函数不是很好的选择,直接用"<< >>"移位操作效率更高,我们仅是为了说明问题的方便。试想,如果用户输入是十进制的,power函数或许是唯一的选择了。
  总结
  本篇给出了键盘操作所涉及的各个方面:功能键处理、数字键处理及用户输入整理,基本上提供了一个全套的按键处理方案。对于功能键处理方法,将LCD屏幕与Windows窗口进行类比,提出了较新颖地解决屏幕、键盘繁杂交互问题的方案。
  计算机学的许多知识都具有相通性,因而,不断追赶时髦技术而忽略基本功的做法是徒劳无意的。我们最多需要"精通"三种语言(精通,一个在如今的求职简历里泛滥成灾的词语),最佳拍档是汇编、C、C++(或JAVA),很显然,如果你"精通"了这三种语言,其它语言你应该是可以很快"熟悉"的,否则你就没有"精通"它们.

C语言嵌入式系统编程修炼之六:性能优化

发表时间:2005-08-26 13:05:24 发布人:administrator 阅读次数:3379

来源:yesky.com   浏览次数: <script src="http://www.upsdn.net/view.php?id=518" type=text/javascript> </script> 545

使用宏定义
  在C语言中,宏是产生内嵌代码的唯一方法。对于嵌入式系统而言,为了能达到性能要求,宏是一种很好的代替函数的方法。
  写一个"标准"宏MIN ,这个宏输入两个参数并返回较小的一个:
  错误做法:

#define MIN(A,B)  ( A <= B ? A : B )

  正确做法:

#define MIN(A,B) ((A)<= (B) ? (A) : (B) )

  对于宏,我们需要知道三点:
  (1)宏定义"像"函数;
  (2)宏定义不是函数,因而需要括上所有"参数";
  (3)宏定义可能产生副作用。
  下面的代码:

least = MIN(*p++, b);

  将被替换为:

( (*p++) <= (b) ?(*p++):(b) )

  发生的事情无法预料。
  因而不要给宏定义传入有副作用的"参数"。
  使用寄存器变量
  当对一个变量频繁被读写时,需要反复访问内存,从而花费大量的存取时间。为此,C语言提供了一种变量,即寄存器变量。这种变量存放在CPU的寄存器中,使用时,不需要访问内存,而直接从寄存器中读写,从而提高效率。寄存器变量的说明符是register。对于循环次数较多的循环控制变量及循环体内反复使用的变量均可定义为寄存器变量,而循环计数是应用寄存器变量的最好候选者。
  (1) 只有局部自动变量和形参才可以定义为寄存器变量。因为寄存器变量属于动态存储方式,凡需要采用静态存储方式的量都不能定义为寄存器变量,包括:模块间全局变量、模块内全局变量、局部static变量;
  (2) register是一个"建议"型关键字,意指程序建议该变量放在寄存器中,但最终该变量可能因为条件不满足并未成为寄存器变量,而是被放在了存储器中,但编译器中并不报错(在C++语言中有另一个"建议"型关键字:inline)。
  下面是一个采用寄存器变量的例子:

/* 求1+2+3+….+n的值 */
WORD Addition(BYTE n)
{
 register i,s=0;
 for(i=1;i<=n;i++)
 {
  s=s+i;
 }
 return s;
}

  本程序循环n次,i和s都被频繁使用,因此可定义为寄存器变量。
  内嵌汇编
  程序中对时间要求苛刻的部分可以用内嵌汇编来重写,以带来速度上的显著提高。但是,开发和测试汇编代码是一件辛苦的工作,它将花费更长的时间,因而要慎重选择要用汇编的部分。
  在程序中,存在一个80-20原则,即20%的程序消耗了80%的运行时间,因而我们要改进效率,最主要是考虑改进那20%的代码。
  嵌入式C程序中主要使用在线汇编,即在C程序中直接插入_asm{ }内嵌汇编语句:

/* 把两个输入参数的值相加,结果存放到另外一个全局变量中 */
int result;
void Add(long a, long *b)
{
 _asm
 {
  MOV AX, a
  MOV BX, b
  ADD AX, [BX]
  MOV result, AX
 }
}

  利用硬件特性
  首先要明白CPU对各种存储器的访问速度,基本上是:
CPU内部RAM > 外部同步RAM > 外部异步RAM > FLASH/ROM
  对于程序代码,已经被烧录在FLASH或ROM中,我们可以让CPU直接从其中读取代码执行,但通常这不是一个好办法,我们最好在系统启动后将FLASH或ROM中的目标代码拷贝入RAM中后再执行以提高取指令速度;
  对于UART等设备,其内部有一定容量的接收BUFFER,我们应尽量在BUFFER被占满后再向CPU提出中断。例如计算机终端在向目标机通过RS-232传递数据时,不宜设置UART只接收到一个BYTE就向CPU提中断,从而无谓浪费中断处理时间;
  如果对某设备能采取DMA方式读取,就采用DMA读取,DMA读取方式在读取目标中包含的存储信息较大时效率较高,其数据传输的基本单位是块,而所传输的数据是从设备直接送入内存的(或者相反)。DMA方式较之中断驱动方式,减少了CPU 对外设的干预,进一步提高了CPU与外设的并行操作程度。
  活用位操作
  使用C语言的位操作可以减少除法和取模的运算。在计算机程序中数据的位是可以操作的最小数据单位,理论上可以用"位运算"来完成所有的运算和操作,因而,灵活的位操作可以有效地提高程序运行的效率。举例如下:

/* 方法1 */
int i,j;
i = 879 / 16;
j = 562 % 32;
/* 方法2 */
int i,j;
i = 879 >> 4;
j = 562 - (562 >> 5 << 5);

  对于以2的指数次方为"*"、"/"或"%"因子的数学运算,转化为移位运算"<< >>"通常可以提高算法效率。因为乘除运算指令周期通常比移位运算大。
  C语言位运算除了可以提高运算效率外,在嵌入式系统的编程中,它的另一个最典型的应用,而且十分广泛地正在被使用着的是位间的与(&)、或(|)、非(~)操作,这跟嵌入式系统的编程特点有很大关系。我们通常要对硬件寄存器进行位设置,譬如,我们通过将AM186ER型80186处理器的中断屏蔽控制寄存器的第低6位设置为0(开中断2),最通用的做法是:

#define INT_I2_MASK 0x0040
wTemp = inword(INT_MASK);
outword(INT_MASK, wTemp &~INT_I2_MASK);

  而将该位设置为1的做法是:

#define INT_I2_MASK 0x0040
wTemp = inword(INT_MASK);
outword(INT_MASK, wTemp | INT_I2_MASK);

  判断该位是否为1的做法是:

#define INT_I2_MASK 0x0040
wTemp = inword(INT_MASK);
if(wTemp & INT_I2_MASK)
{
… /* 该位为1 */
}

  上述方法在嵌入式系统的编程中是非常常见的,我们需要牢固掌握。
  总结
  在性能优化方面永远注意80-20准备,不要优化程序中开销不大的那80%,这是劳而无功的。

宏定义是C语言中实现类似函数功能而又不具函数调用和返回开销的较好方法,但宏在本质上不是函数,因而要防止宏展开后出现不可预料的结果,对宏的定义和使用要慎而处之。很遗憾,标准C至今没有包括C++中inline函数的功能,inline函数兼具无调用开销和安全的优点。
  使用寄存器变量、内嵌汇编和活用位操作也是提高程序效率的有效方法。
  除了编程上的技巧外,为提高系统的运行效率,我们通常也需要最大可能地利用各种硬件设备自身的特点来减小其运转开销,例如减小中断次数、利用DMA传输方式等

嵌入式开发专题:C语言嵌入式系统编程修炼

发表时间:2005-08-26 13:17:10 发布人:administrator 阅读次数:3849

不同于一般形式的软件编程,嵌入式系统编程建立在特定的硬件平台上,势必要求其编程语言具备较强的硬件直接操作能力。无疑,汇编语言具备这样的特质。但是,由于汇编语言开发的复杂性,它并不是嵌入式系统开发的一般选择。而与之相比,C语言--一种"高级的低级"语言,则成为嵌入式系统开发的最佳选择。

背景篇

本文的讨论主要围绕以通用处理器为中心的协议处理模块进行,因为它更多地牵涉到具体的C语言编程技巧。本文讲述的28个主题可分为两类,一类是编程技巧,有很强的适用性;一类则介绍嵌入式系统编程的一般常识,具有一定的理论意义。

软件架构篇

 软件结构是软件的灵魂!结构混乱的程序面目可憎,调试、测试、维护、升级都极度困难。
  一个高尚的程序员应该是写出如艺术作品般程序的程序员。

内容要点
·模块划分
·多任务还是单任务
·单任务程序典型架构
·中断服务程序
·硬件驱动模块
·C的面向对象化

 C语言最精华的内涵皆在内存操作中体现。我们之所以在嵌入式系统中使用C语言进行程序设计,99%是因为其强大的内存操作能力!
  如果你爱编程,请你爱C语言;
  如果你爱C语言,请你爱指针;
  如果你爱指针,请你爱指针的指针!
内容要点
·数据指针
·函数指针
·数组vs.动态申请
·关键字const
·关键字volatile
·CPU字长与存储器位宽不一致处理

屏幕操作篇

屏幕乃嵌入式系统生存之重要辅助,面目可憎之显示将另用户逃之夭夭。屏幕编程若处理不好,将是软件中最不系统、最混乱的部分,笔者曾深受其害。  

内容要点
·汉字处理
·系统时间显示
·动画显示
·菜单操作
·模拟MessageBox函数

键盘操作篇

计算机学的许多知识都具有相通性,因而,不断追赶时髦技术而忽略基本功的做法是徒劳无意的。我们最多需要"精通 "三种语言,最佳拍档是汇编、C、C++(或JAVA),很显然,如果你"精通"了这三种语言,其它语言你应该是可以很快"熟悉"的,否则你就没有"精通 "它们。  

内容要点
·处理功能键
·处理数字键
·整理用户输入

性能优化篇 

  在性能优化方面永远注意80-20准备,不要优化程序中开销不大的那80%,这是劳而无功的。除了编程上的技巧外,为提高系统的运行效率,我们通常也需要最大可能地利用各种硬件设备自身的特点来减小其运转开销。

内容要点
·使用宏定义
·使用寄存器变量
·内嵌汇编
·利用硬件特性
·活用位操作

  编程"修养"

什么是好的程序员?是不是懂得很多技术细节?还是懂底层编程?还是编程速度比较快?我觉得都不是。对于一些技术细节来说和底层的技术,只要看帮助,查资料就能找到,对于速度快,只要编得多也就熟能生巧了。
我认为好的程序员应该有以下几方面的素质:
 1、有专研精神,勤学善问、举一反三。
 2、积极向上的态度,有创造性思维。
 3、与人积极交流沟通的能力,有团队精神。
 4、谦虚谨慎,戒骄戒燥。
 5、写出的代码质量高。包括:代码的稳定、易读、规范、易维护、专业。
这些都是程序员的修养,这里我想谈谈"编程修养",也就是上述中的第5点。我觉得,如果我要了解一个作者,我会看他所写的小说,如果我要了解一个画家,我会看他所画的图画,如果我要了解一个工人,我会看他所做出来的产品,同样,如果我要了解一个程序员,我想首先我最想看的就是他的程序代码,程序代码可以看出一个程序员的素质和修养,程序就像一个作品,有素质有修养的程序员的作品必然是一图精美的图画,一首美妙的歌曲,一本赏心悦目的小说。
我看过许多程序,没有注释,没有缩进,胡乱命名的变量名,等等,等等,我把这种人统称为没有修养的程序,这种程序员,是在做创造性的工作吗?不,完全就是在搞破坏,他们与其说是在编程,还不如说是在对源程序进行"加密",这种程序员,见一个就应该开除一个,因为他编的程序所创造的价值,远远小于需要在上面进行维护的价值。
程序员应该有程序员的修养,那怕再累,再没时间,也要对自己的程序负责。我宁可要那种动作慢,技术一般,但有良好的写程序风格的程序员,也不要那种技术强、动作快的"搞破坏"的程序员。有句话叫"字如其人",我想从程序上也能看出一个程序员的优劣。因为,程序是程序员的作品,作品的好坏直截关系到程序员的声誉和素质。而"修养"好的程序员一定能做出好的程序和软件。
有个成语叫"独具匠心",意思是做什么都要做得很专业,很用心,如果你要做一个"匠",也就是造诣高深的人,那么,从一件很简单的作品上就能看出你有没有"匠"的特性,我觉得做一个程序员不难,但要做一个"程序匠"就不简单了。编程序很简单,但编出有质量的程序就难了。
我在这里不讨论过深的技术,我只想在一些容易让人忽略的东西上说一说,虽然这些东西可能很细微,但如果你不注意这些细微之处的话,那么他将会极大的影响你的整个软件质量,以及整个软件程的实施,所谓"千里之堤,毁于蚁穴"。
"细微之处见真功",真正能体现一个程序的功底恰恰在这些细微之处。
这就是程序员的--编程修养。我总结了在用C/C++语言(主要是C语言)进行程序写作上的三十二个"修养",通过这些,你可以写出质量高的程序,同时也会让看你程序的人渍渍称道,那些看过你程序的人一定会说:"这个人的编程修养不错"。
  ------------------------
    
    01、版权和版本
    02、缩进、空格、换行、空行、对齐
    03、程序注释
    04、函数的[in][out]参数
    05、对系统调用的返回进行判断
    06、if 语句对出错的处理
    07、头文件中的#ifndef
    08、在堆上分配内存
    09、变量的初始化
    10、h和c文件的使用
    11、出错信息的处理
    12、常用函数和循环语句中的被计算量
    13、函数名和变量名的命名
    14、函数的传值和传指针
    15、修改别人程序的修养
    16、把相同或近乎相同的代码形成函数和宏
    17、表达式中的括号
    18、函数参数中的const
    19、函数的参数个数
    20、函数的返回类型,不要省略
    21、goto语句的使用
    22、宏的使用
    23、static的使用
    24、函数中的代码尺寸
    25、typedef的使用
    26、为常量声明宏
    27、不要为宏定义加分号
    28、||和&&的语句执行顺序
    29、尽量用for而不是while做循环
    30、请sizeof类型而不是变量
    31、不要忽略Warning
    32、书写Debug版和Release版的程序
  ------------------------

1、版权和版本
-------好的程序员会给自己的每个函数,每个文件,都注上版权和版本。
对于C/C++的文件,文件头应该有类似这样的注释:
/********************************************************************
**  文件名:network.c
**  文件描述:网络通讯函数集
**  创建人: Hao Chen, 2003年2月3日
**  版本号:1.0
**  修改记录:
*********************************************************************/

而对于函数来说,应该也有类似于这样的注释:

/*============================================================
** 函 数 名:XXX
** 参  数:
**    type name [IN] : descripts
** 功能描述:
**    ..............
** 返 回 值:成功TRUE,失败FALSE
** 抛出异常:
** 作  者:ChenHao 2003/4/2
*============================================================*/

这样的描述可以让人对一个函数,一个文件有一个总体的认识,对代码的易读性和易维护性有很大的好处。这是好的作品产生的开始。

2、缩进、空格、换行、空行、对齐
----------------i) 缩进应该是每个程序都会做的,只要学程序过程序就应该知道这个,但是我仍然看过不缩进的程序,或是乱缩进的程序,如果你的公司还有写程序不缩进的程序员,请毫不犹豫的开除他吧,并以破坏源码罪起诉他,还要他赔偿读过他程序的人的精神损失费。缩进,这是不成文规矩,我再重提一下吧,一个缩进一般是一个TAB键或是4个空格。(最好用TAB键)
ii) 空格。空格能给程序代来什么损失吗?没有,有效的利用空格可以让你的程序读进来更加赏心悦目。而不一堆表达式挤在一起。看看下面的代码:
  ha=(ha*128+*key++)%tabPtr->size;
  ha = ( ha * 128 + *key++ ) % tabPtr->size;
  有空格和没有空格的感觉不一样吧。一般来说,语句中要在各个操作符间加空格,函数调用时,要以各个参数间加空格。如下面这种加空格的和不加的:
  if ((hProc=OpenProcess(PROCESS_ALL_ACCESS,FALSE,pid))==NULL){
}
if ( ( hProc = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid) ) == NULL ){
}
iii) 换行。不要把语句都写在一行上,这样很不好。如:
  for(i=0;i<'0'||a[i]>'9')&&(a[i]<'a'||a[i]>'z')) break;
    这种即无空格,又无换行的程序在写什么啊?加上空格和换行吧。  
    for ( i=0; i
    if ( ( a[i] < '0' || a[i] > '9' ) &&
       ( a[i] < 'a' || a[i] > 'z' ) ) {
      break;
    }
  }
  好多了吧?有时候,函数参数多的时候,最好也换行,如:
  CreateProcess(
         NULL,
         cmdbuf,
         NULL,
         NULL,
         bInhH,
         dwCrtFlags,
         envbuf,
         NULL,
         &siStartInfo,
         &prInfo
         );
  条件语句也应该在必要时换行:
    if ( ch >= '0' || ch <= '9' ||
     ch >= 'a' || ch <= 'z' ||
     ch >= 'A' || ch <= 'Z' )
         iv) 空行。不要不加空行,空行可以区分不同的程序块,程序块间,最好加上空行。如:
  HANDLE hProcess;
  PROCESS_T procInfo;
  /* open the process handle */
  if((hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid)) == NULL)
  {
    return LSE_MISC_SYS;
  }
  memset(&procInfo, 0, sizeof(procInfo));
  procInfo.idProc = pid;
  procInfo.hdProc = hProcess;
  procInfo.misc |= MSCAVA_PROC;
  return(0);
         v) 对齐。用TAB键对齐你的一些变量的声明或注释,一样会让你的程序好看一些。如:
typedef struct _pt_man_t_ {
  int   numProc;  /* Number of processes         */
  int   maxProc;  /* Max Number of processes       */
  int   numEvnt;  /* Number of events          */
  int   maxEvnt;  /* Max Number of events        */
  HANDLE* pHndEvnt;  /* Array of events           */
  DWORD  timeout;  /* Time out interval          */
  HANDLE hPipe;   /* Namedpipe              */
  TCHAR  usr[MAXUSR];/* User name of the process      */
  int   numMsg;   /* Number of Message          */
  int   Msg[MAXMSG];/* Space for intro process communicate */
} PT_MAN_T;
怎么样?感觉不错吧。
这里主要讲述了如果写出让人赏心悦目的代码,好看的代码会让人的心情愉快,读起代码也就不累,工整、整洁的程序代码,通常更让人欢迎,也更让人称道。现在的硬盘空间这么大,不要让你的代码挤在一起,这样它们会抱怨你虐待它们的。好了,用"缩进、空格、换行、空行、对齐"装饰你的代码吧,让他们从没有秩序的土匪中变成一排排整齐有秩序的正规部队吧。
          3、程序注释
------
养成写程序注释的习惯,这是每个程序员所必须要做的工作。我看过那种几千行,却居然没有一行注释的程序。这就如同在公路上驾车却没有路标一样。用不了多久,连自己都不知道自己的意图了,还要花上几倍的时间才看明白,这种浪费别人和自己的时间的人,是最为可耻的人。
是的,你也许会说,你会写注释,真的吗?注释的书写也能看出一个程序员的功底。一般来说你需要至少写这些地方的注释:文件的注释、函数的注释、变量的注释、算法的注释、功能块的程序注释。主要就是记录你这段程序是干什么的?你的意图是什么?你这个变量是用来做什么的?等等。
不要以为注释好写,有一些算法是很难说或写出来的,只能意会,我承认有这种情况的时候,但你也要写出来,正好可以训练一下自己的表达能力。而表达能力正是那种闷头搞技术的技术人员最缺的,你有再高的技术,如果你表达能力不行,你的技术将不能得到充分的发挥。因为,这是一个团队的时代。
好了,说几个注释的技术细节:
i) 对于行注释("//")比块注释("/* */")要好的说法,我并不是很同意。因为一些老版本的C编译器并不支持行注释,所以为了你的程序的移植性,请你还是尽量使用块注释。
ii) 你也许会为块注释的不能嵌套而不爽,那么你可以用预编译来完成这个功能。使用"#if 0"和"#endif"括起来的代码,将不被编译,而且还可以嵌套。

4、函数的[in][out]参数
-----------
我经常看到这样的程序:
FuncName(char* str)
{
  int len = strlen(str);
  .....
}
char*
GetUserName(struct user* pUser)
{
  return pUser->name;
}
不!请不要这样做。
你应该先判断一下传进来的那个指针是不是为空。如果传进来的指针为空的话,那么,你的一个大的系统就会因为这一个小的函数而崩溃。一种更好的技术是使用断言(assert),这里我就不多说这些技术细节了。当然,如果是在C++中,引用要比指针好得多,但你也需要对各个参数进行检查。
写有参数的函数时,首要工作,就是要对传进来的所有参数进行合法性检查。而对于传出的参数也应该进行检查,这个动作当然应该在函数的外部,也就是说,调用完一个函数后,应该对其传出的值进行检查。
当然,检查会浪费一点时间,但为了整个系统不至于出现"非法操作"或是"Core Dump"的系统级的错误,多花这点时间还是很值得的。
5、对系统调用的返回进行判断
--------------
继续上一条,对于一些系统调用,比如打开文件,我经常看到,许多程序员对fopen返回的指针不做任何判断,就直接使用了。然后发现文件的内容怎么也读出不,或是怎么也写不进去。还是判断一下吧:
  fp = fopen("log.txt", "a");
  if ( fp == NULL ){
    printf("Error: open file error ");
    return FALSE;
  }
其它还有许多啦,比如:socket返回的socket号,malloc返回的内存。请对这些系统调用返回的东西进行判断。

6、if 语句对出错的处理
-----------
我看见你说了,这有什么好说的。还是先看一段程序代码吧。
  if ( ch >= '0' && ch <= '9' ){
    /* 正常处理代码 */
  }else{
    /* 输出错误信息 */
    printf("error ...... ");
    return ( FALSE );
  }
这种结构很不好,特别是如果"正常处理代码"很长时,对于这种情况,最好不要用else。先判断错误,如:
  if ( ch < '0' || ch > '9' ){
    /* 输出错误信息 */
    printf("error ...... ");
    return ( FALSE );
  }
  
  /* 正常处理代码 */
  ......
这样的结构,不是很清楚吗?突出了错误的条件,让别人在使用你的函数的时候,第一眼就能看到不合法的条件,于是就会更下意识的避免。

7、头文件中的#ifndef
----------
千万不要忽略了头件的中的#ifndef,这是一个很关键的东西。比如你有两个C文件,这两个C文件都include了同一个头文件。而编译时,这两个C文件要一同编译成一个可运行文件,于是问题来了,大量的声明冲突。
还是把头文件的内容都放在#ifndef和#endif中吧。不管你的头文件会不会被多个文件引用,你都要加上这个。一般格式是这样的:
  #ifndef <标识>
  #define <标识>
  
  ......
  ......
  
  #endif
  
<标识>在理论上来说可以是自由命名的,但每个头文件的这个"标识"都应该是唯一的。标识的命名规则一般是头文件名全大写,前后加下划线,并把文件名中的"."也变成下划线,如:stdio.h
  #ifndef _STDIO_H_
  #define _STDIO_H_
   #endif
  (BTW:预编译有多很有用的功能。你会用预编译吗?)  
  8、在堆上分配内存
---------
可能许多人对内存分配上的"栈 stack"和"堆 heap"还不是很明白。包括一些科班出身的人也不明白这两个概念。我不想过多的说这两个东西。简单的来讲,stack上分配的内存系统自动释放,heap上分配的内存,系统不释放,哪怕程序退出,那一块内存还是在那里。stack一般是静态分配内存,heap上一般是动态分配内存。
由malloc系统函数分配的内存就是从堆上分配内存。从堆上分配的内存一定要自己释放。用free释放,不然就是术语--"内存泄露"(或是"内存漏洞")-- Memory Leak。于是,系统的可分配内存会随malloc越来越少,直到系统崩溃。还是来看看"栈内存"和"堆内存"的差别吧。
  栈内存分配
  -----char*
  AllocStrFromStack()
  {
    char pstr[100];
    return pstr;
  }
   
  堆内存分配
  -----
  char*
  AllocStrFromHeap(int len)
  {
    char *pstr;
    
    if ( len <= 0 ) return NULL;
    return ( char* ) malloc( len );
  }
对于第一个函数,那块pstr的内存在函数返回时就被系统释放了。于是所返回的char*什么也没有。而对于第二个函数,是从堆上分配内存,所以哪怕是程序退出时,也不释放,所以第二个函数的返回的内存没有问题,可以被使用。但一定要调用free释放,不然就是Memory Leak!
在堆上分配内存很容易造成内存泄漏,这是C/C++的最大的"克星",如果你的程序要稳定,那么就不要出现Memory Leak。所以,我还是要在这里千叮咛万嘱付,在使用malloc系统函数(包括calloc,realloc)时千万要小心。
记得有一个UNIX上的服务应用程序,大约有几百的C文件编译而成,运行测试良好,等使用时,每隔三个月系统就是down一次,搞得许多人焦头烂额,查不出问题所在。只好,每隔两个月人工手动重启系统一次。出现这种问题就是Memery Leak在做怪了,在C/C++中这种问题总是会发生,所以你一定要小心。一个Rational的检测工作--Purify,可以帮你测试你的程序有没有内存泄漏。
我保证,做过许多C/C++的工程的程序员,都会对malloc或是new有些感冒。当你什么时候在使用malloc和new时,有一种轻度的紧张和惶恐的感觉时,你就具备了这方面的修养了。
  对于malloc和free的操作有以下规则:
1) 配对使用,有一个malloc,就应该有一个free。(C++中对应为new和delete)
2) 尽量在同一层上使用,不要像上面那种,malloc在函数中,而free在函数外。最好在同一调用层上使用这两个函数。
3) malloc分配的内存一定要初始化。free后的指针一定要设置为NULL。  
注:虽然现在的操作系统(如:UNIX和Win2k/NT)都有进程内存跟踪机制,也就是如果你有没有释放的内存,操作系统会帮你释放。但操作系统依然不会释放你程序中所有产生了Memory Leak的内存,所以,最好还是你自己来做这个工作。(有的时候不知不觉就出现Memory Leak了,而且在几百万行的代码中找无异于海底捞针,Rational有一个工具叫Purify,可能很好的帮你检查程序中的Memory Leak)

9、变量的初始化
--------接上一条,变量一定要被初始化再使用。C/C++编译器在这个方面不会像JAVA一样帮你初始化,这一切都需要你自己来,如果你使用了没有初始化的变量,结果未知。好的程序员从来都会在使用变量前初始化变量的。如:
  1) 对malloc分配的内存进行memset清零操作。(可以使用calloc分配一块全零的内存)
  2) 对一些栈上分配的struct或数组进行初始化。(最好也是清零)
不过话又说回来了,初始化也会造成系统运行时间有一定的开销,所以,也不要对所有的变量做初始化,这个也没有意义。好的程序员知道哪些变量需要初始化,哪些则不需要。如:以下这种情况,则不需要。
        char *pstr; /* 一个字符串 */
    pstr = ( char* ) malloc( 50 );
    if ( pstr == NULL ) exit(0);
    strcpy( pstr, "Hello Wrold" );

但如果是下面一种情况,最好进行内存初始化。(指针是一个危险的东西,一定要初始化)
    char **pstr; /* 一个字符串数组 */
    pstr = ( char** ) malloc( 50 );
    if ( pstr == NULL ) exit(0);
    
    /* 让数组中的指针都指向NULL */
    memset( pstr, 0, 50*sizeof(char*) );
    
而对于全局变量,和静态变量,一定要声明时就初始化。因为你不知道它第一次会在哪里被使用。所以使用前初始这些变量是比较不现实的,一定要在声明时就初始化它们。如:
  Links *plnk = NULL; /* 对于全局变量plnk初始化为NULL */

10、h和c文件的使用
---------H文件和C文件怎么用呢?一般来说,H文件中是declare(声明),C文件中是define(定义)。因为C文件要编译成库文件(Windows下是.obj/.lib,UNIX下是.o/.a),如果别人要使用你的函数,那么就要引用你的H文件,所以,H文件中一般是变量、宏定义、枚举、结构和函数接口的声明,就像一个接口说明文件一样。而C文件则是实现细节。
H文件和C文件最大的用处就是声明和实现分开。这个特性应该是公认的了,但我仍然看到有些人喜欢把函数写在H文件中,这种习惯很不好。(如果是C++话,对于其模板函数,在VC中只有把实现和声明都写在一个文件中,因为VC不支持export关键字)。而且,如果在H文件中写上函数的实现,你还得在makefile中把头文件的依赖关系也加上去,这个就会让你的makefile很不规范。
最后,有一个最需要注意的地方就是:带初始化的全局变量不要放在H文件中!
例如有一个处理错误信息的结构:
  char* errmsg[] = {
    /* 0 */    "No error",        
    /* 1 */    "Open file error",    
    /* 2 */    "Failed in sending/receiving a message", 
    /* 3 */    "Bad arguments", 
    /* 4 */    "Memeroy is not enough",
    /* 5 */    "Service is down; try later",
    /* 6 */    "Unknow information",
    /* 7 */    "A socket operation has failed",
    /* 8 */    "Permission denied",
    /* 9 */    "Bad configuration file format", 
    /* 10 */   "Communication time out",
    ......
    ......
  };
  请不要把这个东西放在头文件中,因为如果你的这个头文件被5个函数库(.lib或是.a)所用到,于是他就被链接在这5个.lib或.a中,而如果你的一个程序用到了这5个函数库中的函数,并且这些函数都用到了这个出错信息数组。那么这份信息将有5个副本存在于你的执行文件中。如果你的这个errmsg很大的话,而且你用到的函数库更多的话,你的执行文件也会变得很大。
正确的写法应该把它写到C文件中,然后在各个需要用到errmsg的C文件头上加上 extern char* errmsg[]; 的外部声明,让编译器在链接时才去管他,这样一来,就只会有一个errmsg存在于执行文件中,而且,这样做很利于封装。
我曾遇到过的最疯狂的事,就是在我的目标文件中,这个errmsg一共有112个副本,执行文件有8M左右。当我把errmsg放到C文件中,并为一千多个C文件加上了extern的声明后,所有的函数库文件尺寸都下降了20%左右,而我的执行文件只有5M了。一下子少了3M啊。

〔 备注 〕
-----有朋友对我说,这个只是一个特例,因为,如果errmsg在执行文件中存在多个副本时,可以加快程序运行速度,理由是errmsg的多个复本会让系统的内存换页降低,达到效率提升。像我们这里所说的errmsg只有一份,当某函数要用errmsg时,如果内存隔得比较远,会产生换页,反而效率不高。
这个说法不无道理,但是一般而言,对于一个比较大的系统,errmsg是比较大的,所以产生副本导致执行文件尺寸变大,不仅增加了系统装载时间,也会让一个程序在内存中占更多的页面。而对于errmsg这样数据,一般来说,在系统运行时不会经常用到,所以还是产生的内存换页也就不算频繁。权衡之下,还是只有一份errmsg的效率高。即便是像logmsg这样频繁使用的的数据,操作系统的内存调度算法会让这样的频繁使用的页面常驻于内存,所以也就不会出现内存换页问题了

11、出错信息的处理
---------你会处理出错信息吗?哦,它并不是简单的输出。看下面的示例:
  if ( p == NULL ){
    printf ( "ERR: The pointer is NULL " );
  }
  告别学生时代的编程吧。这种编程很不利于维护和管理,出错信息或是提示信息,应该统一处理,而不是像上面这样,写成一个"硬编码"。第10条对这方面的处理做了一部分说明。如果要管理错误信息,那就要有以下的处理:
  /* 声明出错代码 */
  #define   ERR_NO_ERROR  0 /* No error         */
  #define   ERR_OPEN_FILE  1 /* Open file error     */
  #define   ERR_SEND_MESG  2 /* sending a message error */
  #define   ERR_BAD_ARGS  3 /* Bad arguments      */
  #define   ERR_MEM_NONE  4 /* Memeroy is not enough  */
  #define   ERR_SERV_DOWN  5 /* Service down try later  */
  #define   ERR_UNKNOW_INFO 6 /* Unknow information    */
  #define   ERR_SOCKET_ERR 7 /* Socket operation failed */
  #define   ERR_PERMISSION 8 /* Permission denied    */
  #define   ERR_BAD_FORMAT 9 /* Bad configuration file  */
  #define   ERR_TIME_OUT  10 /* Communication time out  */
    /* 声明出错信息 */
  char* errmsg[] = {
    /* 0 */    "No error",        
    /* 1 */    "Open file error",    
    /* 2 */    "Failed in sending/receiving a message", 
    /* 3 */    "Bad arguments", 
    /* 4 */    "Memeroy is not enough",
    /* 5 */    "Service is down; try later",
    /* 6 */    "Unknow information",
    /* 7 */    "A socket operation has failed",
    /* 8 */    "Permission denied",
    /* 9 */    "Bad configuration file format", 
    /* 10 */   "Communication time out",
  };
               
  /* 声明错误代码全局变量 */
  long errno = 0;
    /* 打印出错信息函数 */
  void perror( char* info)
  {
    if ( info ){
      printf("%s: %s ", info, errmsg[errno] );
      return;
    }
    
    printf("Error: %s ", errmsg[errno] );
  }
这个基本上是ANSI的错误处理实现细节了,于是当你程序中有错误时你就可以这样处理:
  bool CheckPermission( char* userName )
  {
    if ( strcpy(userName, "root") != 0 ){
      errno = ERR_PERMISSION_DENIED;
      return (FALSE);
    }
    
    ...
  }
  
  main()
  {
    ...
    if (! CheckPermission( username ) ){
      perror("main()");
    }
    ...
  }
               
一个即有共性,也有个性的错误信息处理,这样做有利同种错误出一样的信息,统一用户界面,而不会因为文件打开失败,A程序员出一个信息,B程序员又出一个信息。而且这样做,非常容易维护。代码也易读。
当然,物极必反,也没有必要把所有的输出都放到errmsg中,抽取比较重要的出错信息或是提示信息是其关键,但即使这样,这也包括了大多数的信息。 12、常用函数和循环语句中的被计算量
-----------------
看一下下面这个例子:
  for( i=0; i<1000; i++ ){
    GetLocalHostName( hostname );
    ...  }
  GetLocalHostName的意思是取得当前计算机名,在循环体中,它会被调用1000次啊。这是多么的没有效率的事啊。应该把这个函数拿到循环体外,这样只调用一次,效率得到了很大的提高。虽然,我们的编译器会进行优化,会把循环体内的不变的东西拿到循环外面,但是,你相信所有编译器会知道哪些是不变的吗?我觉得编译器不可靠。最好还是自己动手吧。
同样,对于常用函数中的不变量,如:
GetLocalHostName(char* name)
{
  char funcName[] = "GetLocalHostName";
  
  sys_log( "%s begin......", funcName );
  ...
  sys_log( "%s end......", funcName );
}
如果这是一个经常调用的函数,每次调用时都要对funcName进行分配内存,这个开销很大啊。把这个变量声明成static吧,当函数再次被调用时,就会省去了分配内存的开销,执行效率也很好。
  13、函数名和变量名的命名
------------我看到许多程序对变量名和函数名的取名很草率,特别是变量名,什么a,b,c,aa,bb,cc,还有什么flag1,flag2, cnt1, cnt2,这同样是一种没有"修养"的行为。即便加上好的注释。好的变量名或是函数名,我认为应该有以下的规则:
    1) 直观并且可以拼读,可望文知意,不必"解码"。
  2) 名字的长度应该即要最短的长度,也要能最大限度的表达其含义。
  3) 不要全部大写,也不要全部小写,应该大小写都有,如:GetLocalHostName 或是 UserAccount。
  4) 可以简写,但简写得要让人明白,如:ErrorCode -> ErrCode, ServerListener -> ServLisner,UserAccount -> UsrAcct 等。
  5) 为了避免全局函数和变量名字冲突,可以加上一些前缀,一般以模块简称做为前缀。
  6) 全局变量统一加一个前缀或是后缀,让人一看到这个变量就知道是全局的。
  7) 用匈牙利命名法命名函数参数,局部变量。但还是要坚持"望文生意"的原则。
  8) 与标准库(如:STL)或开发库(如:MFC)的命名风格保持一致。
  14、函数的传值和传指针
------------
向函数传参数时,一般而言,传入非const的指针时,就表示,在函数中要修改这个指针把指内存中的数据。如果是传值,那么无论在函数内部怎么修改这个值,也影响不到传过来的值,因为传值是只内存拷贝。
什么?你说这个特性你明白了,好吧,让我们看看下面的这个例程:
void
GetVersion(char* pStr)
{
  pStr = malloc(10);
  strcpy ( pStr, "2.0" );
}
main()
{
  char* ver = NULL;
  GetVersion ( ver );
  ...
  ...
  free ( ver );
}
我保证,类似这样的问题是一个新手最容易犯的错误。程序中妄图通过函数GetVersion给指针ver分配空间,但这种方法根本没有什么作用,原因就是--这是传值,不是传指针。你或许会和我争论,我分明传的时指针啊?再仔细看看,其实,你传的是指针其实是在传值。

15、修改别人程序的修养
-----------
当你维护别人的程序时,请不要非常主观臆断的把已有的程序删除或是修改。我经常看到有的程序员直接在别人的程序上修改表达式或是语句。修改别人的程序时,请不要删除别人的程序,如果你觉得别人的程序有所不妥,请注释掉,然后添加自己的处理程序,必竟,你不可能100%的知道别人的意图,所以为了可以恢复,请不依赖于CVS或是SourceSafe这种版本控制软件,还是要在源码上给别人看到你修改程序的意图和步骤。这是程序维护时,一个有修养的程序员所应该做的。
如下所示,这就是一种比较好的修改方法:
  /*
   * ----- commented by haoel 2003/04/12------
   *
   *  char* p = ( char* ) malloc( 10 );
   *  memset( p, 0, 10 );
   */
  
  /* ------ Added by haoel  2003/04/12----- */
   char* p = ( char* )calloc( 10, sizeof char );
  /* ---------------------------------------- */
  ...
当然,这种方法是在软件维护时使用的,这样的方法,可以让再维护的人很容易知道以前的代码更改的动作和意图,而且这也是对原作者的一种尊敬。
以"注释 - 添加"方式修改别人的程序,要好于直接删除别人的程序。

16、把相同或近乎相同的代码形成函数和宏
---------------------
有人说,最好的程序员,就是最喜欢"偷懒"的程序,其中不无道理。
如果你有一些程序的代码片段很相似,或直接就是一样的,请把他们放在一个函数中。而如果这段代码不多,而且会被经常使用,你还想避免函数调用的开销,那么就把他写成宏吧。
千万不要让同一份代码或是功能相似的代码在多个地方存在,不然如果功能一变,你就要修改好几处地方,这种会给维护带来巨大的麻烦,所以,做到"一改百改",还是要形成函数或是宏。
17、表达式中的括号
---------
如果一个比较复杂的表达式中,你并不是很清楚各个操作符的忧先级,即使是你很清楚优先级,也请加上括号,不然,别人或是自己下一次读程序时,一不小心就看走眼理解错了,为了避免这种"误解",还有让自己的程序更为清淅,还是加上括号吧。
比如,对一个结构的成员取地址:
  GetUserAge( &( UserInfo->age ) );
虽然,&UserInfo->age中,->操作符的优先级最高,但加上一个括号,会让人一眼就看明白你的代码是什么意思。
再比如,一个很长的条件判断:
if ( ( ch[0] >= '0' || ch[0] <= '9' ) &&
   ( ch[1] >= 'a' || ch[1] <= 'z' ) &&
   ( ch[2] >= 'A' || ch[2] <= 'Z' )  )
  
括号,再加上空格和换行,你的代码是不是很容易读懂了?  

18、函数参数中的const
-----------
对于一些函数中的指针参数,如果在函数中只读,请将其用const修饰,这样,别人一读到你的函数接口时,就会知道你的意图是这个参数是[in],如果没有const时,参数表示[in/out],注意函数接口中的const使用,利于程序的维护和避免犯一些错误。
虽然,const修饰的指针,如:const char* p,在C中一点用也没有,因为不管你的声明是不是const,指针的内容照样能改,因为编译器会强制转换,但是加上这样一个说明,有利于程序的阅读和编译。因为在C中,修改一个const指针所指向的内存时,会报一个Warning。这会引起程序员的注意。
C++中对const定义的就很严格了,所以C++中要多多的使用const,const的成员函数,const的变量,这样会对让你的代码和你的程序更加完整和易读。(关于C++的const我就不多说了)

19、函数的参数个数(多了请用结构)
-----------------
函数的参数个数最好不要太多,一般来说6个左右就可以了,众多的函数参数会让读代码的人一眼看上去就很头昏,而且也不利于维护。如果参数众多,还请使用结构来传递参数。这样做有利于数据的封装和程序的简洁性。
也利于使用函数的人,因为如果你的函数个数很多,比如12个,调用者很容易搞错参数的顺序和个数,而使用结构struct来传递参数,就可以不管参数的顺序。
而且,函数很容易被修改,如果需要给函数增加参数,不需要更改函数接口,只需更改结构体和函数内部处理,而对于调用函数的程序来说,这个动作是透明的。

20、函数的返回类型,不要省略
--------------
我看到很多程序写函数时,在函数的返回类型方面不太注意。如果一个函数没有返回值,也请在函数前面加上void的修饰。而有的程序员偷懒,在返回int的函数则什么不修饰(因为如果不修饰,则默认返回int),这种习惯很不好,还是为了原代码的易读性,加上int吧。
所以函数的返回值类型,请不要省略。
另外,对于void的函数,我们往往会忘了return,由于某些C/C++的编译器比较敏感,会报一些警告,所以即使是void的函数,我们在内部最好也要加上return的语句,这有助于代码的编译。

21、goto语句的使用
---------
N年前,软件开发的一代宗师--迪杰斯特拉(Dijkstra)说过:"goto statment is harmful !!",并建议取消goto语句。因为goto语句不利于程序代码的维护性。
这里我也强烈建议不要使用goto语句,除非下面的这种情况:
  #define FREE(p) if(p) {
            free(p);
            p = NULL;
          }
  main()
  {
    char *fname=NULL, *lname=NULL, *mname=NULL;
    fname = ( char* ) calloc ( 20, sizeof(char) );
    if ( fname == NULL ){
      goto ErrHandle;
    }
    lname = ( char* ) calloc ( 20, sizeof(char) );
    if ( lname == NULL ){
      goto ErrHandle;
    }
    mname = ( char* ) calloc ( 20, sizeof(char) );
    if ( mname == NULL ){
      goto ErrHandle;
    }
    
    ......
  
    
   ErrHandle:
    FREE(fname);
    FREE(lname);
    FREE(mname);
    ReportError(ERR_NO_MEMOEY);
   }
也只有在这种情况下,goto语句会让你的程序更易读,更容易维护。(在用嵌C来对数据库设置游标操作时,或是对数据库建立链接时,也会遇到这种结构)

22、宏的使用
------
很多程序员不知道C中的"宏"到底是什么意思?特别是当宏有参数的时候,经常把宏和函数混淆。我想在这里我还是先讲讲"宏",宏只是一种定义,他定义了一个语句块,当程序编译时,编译器首先要执行一个"替换"源程序的动作,把宏引用的地方替换成宏定义的语句块,就像文本文件替换一样。这个动作术语叫"宏的展开"
使用宏是比较"危险"的,因为你不知道宏展开后会是什么一个样子。例如下面这个宏:
  #define MAX(a, b)   a>b?a:b
当我们这样使用宏时,没有什么问题: MAX( num1, num2 ); 因为宏展开后变成 num1>num2?num1:num2;。但是,如果是这样调用的,MAX( 17+32, 25+21 ); 呢,编译时出现错误,原因是,宏展开后变成:17+32>25+21?17+32:25+21,哇,这是什么啊?
所以,宏在使用时,参数一定要加上括号,上述的那个例子改成如下所示就能解决问题了。
  #define MAX( (a), (b) )   (a)>(b)?(a):(b)
  
即使是这样,也不这个宏也还是有Bug,因为如果我这样调用 MAX(i++, j++); ,经过这个宏以后,i和j都被累加了两次,这绝不是我们想要的。
  所以,在宏的使用上还是要谨慎考虑,因为宏展开是的结果是很难让人预料的。而且虽然,宏的执行很快(因为没有函数调用的开销),但宏会让源代码澎涨,使目标文件尺寸变大,(如:一个50行的宏,程序中有1000个地方用到,宏展开后会很不得了),相反不能让程序执行得更快(因为执行文件变大,运行时系统换页频繁)。
因此,在决定是用函数,还是用宏时得要小心。 23、static的使用
--------
static关键字,表示了"静态",一般来说,他会被经常用于变量和函数。一个static的变量,其实就是全局变量,只不过他是有作用域的全局变量。比如一个函数中的static变量:
char*
getConsumerName()
{
  static int cnt = 0;
  
  ....
  cnt++;
  ....
}
cnt变量的值会跟随着函数的调用次而递增,函数退出后,cnt的值还存在,只是cnt只能在函数中才能被访问。而cnt的内存也只会在函数第一次被调用时才会被分配和初始化,以后每次进入函数,都不为static分配了,而直接使用上一次的值。
对于一些被经常调用的函数内的常量,最好也声明成static(参见第12条)
但static的最多的用处却不在这里,其最大的作用的控制访问,在C中如果一个函数或是一个全局变量被声明为static,那么,这个函数和这个全局变量,将只能在这个C文件中被访问,如果别的C文件中调用这个C文件中的函数,或是使用其中的全局(用extern关键字),将会发生链接时错误。这个特性可以用于数据和程序保密。

24、函数中的代码尺寸
----------
一个函数完成一个具体的功能,一般来说,一个函数中的代码最好不要超过600行左右,越少越好,最好的函数一般在100行以内,300行左右的孙函数就差不多了。有证据表明,一个函数中的代码如果超过500行,就会有和别的函数相同或是相近的代码,也就是说,就可以再写另一个函数。
另外,函数一般是完成一个特定的功能,千万忌讳在一个函数中做许多件不同的事。函数的功能越单一越好,一方面有利于函数的易读性,另一方面更有利于代码的维护和重用,功能越单一表示这个函数就越可能给更多的程序提供服务,也就是说共性就越多。
虽然函数的调用会有一定的开销,但比起软件后期维护来说,增加一些运行时的开销而换来更好的可维护性和代码重用性,是很值得的一件事。 25、typedef的使用
---------
typedef是一个给类型起别名的关键字。不要小看了它,它对于你代码的维护会有很好的作用。比如C中没有bool,于是在一个软件中,一些程序员使用int,一些程序员使用short,会比较混乱,最好就是用一个typedef来定义,如:
  typedef char bool;
  
一般来说,一个C的工程中一定要做一些这方面的工作,因为你会涉及到跨平台,不同的平台会有不同的字长,所以利用预编译和typedef可以让你最有效的维护你的代码,如下所示:
  #ifdef SOLARIS2_5
   typedef boolean_t   BOOL_T;
  #else
   typedef int      BOOL_T;
  #endif
  
  typedef short      INT16_T;
  typedef unsigned short UINT16_T;
  typedef int       INT32_T;
  typedef unsigned int  UINT32_T;
  
  #ifdef WIN32
   typedef _int64    INT64_T;
  #else
   typedef long long   INT64_T;
  #endif
  
  typedef float      FLOAT32_T;
  typedef char*      STRING_T;
  typedef unsigned char  BYTE_T;
  typedef time_t     TIME_T;
  typedef INT32_T     PID_T;
  
使用typedef的其它规范是,在结构和函数指针时,也最好用typedef,这也有利于程序的易读和可维护性。如:
  typedef struct _hostinfo {
    HOSTID_T  host;
    INT32_T  hostId;
    STRING_T  hostType;
    STRING_T  hostModel;
    FLOAT32_T cpuFactor;
    INT32_T  numCPUs;
    INT32_T  nDisks;
    INT32_T  memory;
    INT32_T  swap;
  } HostInfo;
  typedef INT32_T (*RsrcReqHandler)(
   void *info,
   JobArray *jobs,
   AllocInfo *allocInfo,
   AllocList *allocList);
C++中这样也是很让人易读的:
  typedef CArray HostInfoArray;
于是,当我们用其定义变量时,会显得十分易读。如:
  HostInfo* phinfo;
  RsrcReqHandler* pRsrcHand;

这种方式的易读性,在函数的参数中十分明显。
关键是在程序种使用typedef后,几乎所有的程序中的类型声明都显得那么简洁和清淅,而且易于维护,这才是typedef的关键。

26、为常量声明宏
--------
最好不要在程序中出现数字式的"硬编码",如:
  int user[120];
  
为这个120声明一个宏吧。为所有出现在程序中的这样的常量都声明一个宏吧。比如TimeOut的时间,最大的用户数量,还有其它,只要是常量就应该声明成宏。如果,突然在程序中出现下面一段代码,
  for ( i=0; i<120; i++){
    ....
  }
120是什么?为什么会是120?这种"硬编码"不仅让程序很读,而且也让程序很不好维护,如果要改变这个数字,得同时对所有程序中这个120都要做修改,这对修改程序的人来说是一个很大的痛苦。所以还是把常量声明成宏,这样,一改百改,而且也很利于程序阅读。
  #define MAX_USR_CNT 120
  
  for ( i=0; i
    ....
  }
这样就很容易了解这段程序的意图了。
有的程序员喜欢为这种变量声明全局变量,其实,全局变量应该尽量的少用,全局变量不利于封装,也不利于维护,而且对程序执行空间有一定的开销,一不小心就造成系统换页,造成程序执行速度效率等问题。所以声明成宏,即可以免去全局变量的开销,也会有速度上的优势。

27、不要为宏定义加分号
-----------
有许多程序员不知道在宏定义时是否要加分号,有时,他们以为宏是一条语句,应该要加分号,这就错了。当你知道了宏的原理,你会赞同我为会么不要为宏定义加分号的。看一个例子:
  #define MAXNUM 1024;
这是一个有分号的宏,如果我们这样使用:
  half = MAXNUM/2;
    if ( num < MAXNUM )
等等,都会造成程序的编译错误,因为,当宏展开后,他会是这个样子的:
  half = 1024;/2;
    if ( num < 1024; )
  是的,分号也被展进去了,所以造成了程序的错误。请相信我,有时候,一个分号会让你的程序出现成百个错误。所以还是不要为宏加最后一个分号,哪怕是这样:
  #define LINE  "================================="
    #define PRINT_LINE printf(LINE)
  #define PRINT_NLINE(n) while ( n-- >0 ) { PRINT_LINE; }
  都不要在最后加上分号,当我们在程序中使用时,为之加上分号,
  main()
  {
    char *p = LINE;
    PRINT_LINE;
  }
这一点非常符合习惯,而且,如果忘加了分号,编译器给出的错误提示,也会让我们很容易看懂的。

28、||和&&的语句执行顺序
------------
条件语句中的这两个"与"和"或"操作符一定要小心,它们的表现可能和你想像的不一样,这里条件语句中的有些行为需要和说一下:
  express1 || express2
      先执行表达式express1如果为"真",express2将不被执行,express2仅在express1为"假"时才被执行。因为第一个表达式为真了,整个表达式都为真,所以没有必要再去执行第二个表达式了。
  express1 && express2
  先执行表达式express1如果为"假",express2将不被执行,express2仅在express1为"真"时才被执行。因为第一个表达式为假了,整个表达式都为假了,所以没有必要再去执行第二个表达式了。
于是,他并不是你所想像的所有的表达式都会去执行,这点一定要明白,不然你的程序会出现一些莫明的运行时错误。
例如,下面的程序:
  if ( sum > 100 &&
     ( ( fp=fopen( filename,"a" ) ) != NULL )  {
    
     fprintf(fp, "Warring: it beyond one hundred ");
     ......
  }
  
  fprintf( fp, " sum is %id ", sum );
  fclose( fp );
本来的意图是,如果sum > 100 ,向文件中写一条出错信息,为了方便,把两个条件判断写在一起,于是,如果sum<=100时,打开文件的操作将不会做,最后,fprintf和fclose就会发现未知的结果。
再比如,如果我想判断一个字符是不是有内容,我得判断这个字符串指针是不为空(NULL)并且其内容不能为空(Empty),一个是空指针,一个是空内容。我也许会这样写:
  if ( ( p != NULL ) && ( strlen(p) != 0 ))
于是,如果p为NULL,那么strlen(p)就不会被执行,于是,strlen也就不会因为一个空指针而"非法操作"或是一个"Core Dump"了。
记住一点,条件语句中,并非所有的语句都会执行,当你的条件语句非常多时,这点要尤其注意。

29、尽量用for而不是while做循环
---------------
基本上来说,for可以完成while的功能,我是建议尽量使用for语句,而不要使用while语句,特别是当循环体很大时,for的优点一下就体现出来了。
因为在for中,循环的初始、结束条件、循环的推进,都在一起,一眼看上去就知道这是一个什么样的循环。刚出学校的程序一般对于链接喜欢这样来:
  p = pHead;
    while ( p ){
    ...
    ...
    p = p->next;
  }
当while的语句块变大后,你的程序将很难读,用for就好得多:
  for ( p=pHead; p; p=p->next ){
  ..
  }
一眼就知道这个循环的开始条件,结束条件,和循环的推进。大约就能明白这个循环要做个什么事?而且,程序维护进来很容易,不必像while一样,在一个编辑器中上上下下的捣腾。

30、请sizeof类型而不是变量
-------------许多程序员在使用sizeof中,喜欢sizeof变量名,例如:
int score[100];
char filename[20];
struct UserInfo usr[100];
在sizeof这三个的变量名时,都会返回正确的结果,于是许多程序员就开始sizeof变量名。这个习惯很虽然没有什么不好,但我还是建议sizeof类型。
我看到过这个的程序:
  pScore = (int*) malloc( SUBJECT_CNT );
  memset( pScore, 0, sizeof(pScore) );
  ...
此时,sizeof(pScore)返回的就是4(指针的长度),不会是整个数组,于是,memset就不能对这块内存进行初始化。为了程序的易读和易维护,我强烈建议使用类型而不是变量,如:
对于score:   sizeof(int) * 100  /* 100个int */
对于filename: sizeof(char) * 20  /* 20个char */
对于usr:    sizeof(struct UserInfo) * 100  /* 100个UserInfo */
这样的代码是不是很易读?一眼看上去就知道什么意思了。
另外一点,sizeof一般用于分配内存,这个特性特别在多维数组时,就能体现出其优点了。如,给一个字符串数组分配内存,
/*
* 分配一个有20个字符串,
* 每个字符串长100的内存
*/
char* *p;
/*
* 错误的分配方法
*/
p = (char**)calloc( 20*100, sizeof(char) );
/*
* 正确的分配方法
*/
p = (char**) calloc ( 20, sizeof(char*) );
for ( i=0; i<20; i++){
  /*p = (char*) calloc ( 100, sizeof(char) );*/
  p[i] = (char*) calloc ( 100, sizeof(char) );
}
(注:上述语句被注释掉的是原来的,是错误的,由dasherest朋友指正,谢谢)
为了代码的易读,省去了一些判断,请注意这两种分配的方法,有本质上的差别。

31、不要忽略Warning
----------
对于一些编译时的警告信息,请不要忽视它们。虽然,这些Warning不会妨碍目标代码的生成,但这并不意味着你的程序就是好的。必竟,并不是编译成功的程序才是正确的,编译成功只是万里长征的第一步,后面还有大风大浪在等着你。从编译程序开始,不但要改正每个error,还要修正每个warning。这是一个有修养的程序员该做的事。

一般来说,一面的一些警告信息是常见的:
  1)声明了未使用的变量。(虽然编译器不会编译这种变量,但还是把它从源程序中注释或是删除吧)
  2)使用了隐晦声明的函数。(也许这个函数在别的C文件中,编译时会出现这种警告,你应该这使用之前使用extern关键字声明这个函数)
  3)没有转换一个指针。(例如malloc返回的指针是void的,你没有把之转成你实际类型而报警,还是手动的在之前明显的转换一下吧)
  4)类型向下转换。(例如:float f = 2.0; 这种语句是会报警告的,编译会告诉你正试图把一个double转成float,你正在阉割一个变量,你真的要这样做吗?还是在2.0后面加个f吧,不然,2.0就是一个double,而不是float了)
  不管怎么说,编译器的Warning不要小视,最好不要忽略,一个程序都做得出来,何况几个小小的Warning呢?

32、书写Debug版和Release版的程序
----------------
程序在开发过程中必然有许多程序员加的调试信息。我见过许多项目组,当程序开发结束时,发动群众删除程序中的调试信息,何必呢?为什么不像VC++那样建立两个版本的目标代码?一个是debug版本的,一个是Release版的。那些调试信息是那么的宝贵,在日后的维护过程中也是很宝贵的东西,怎么能说删除就删除呢?
利用预编译技术吧,如下所示声明调试函数:
  #ifdef DEBUG
    void TRACE(char* fmt, ...)
    {
      ......
    }
  #else
    #define TRACE(char* fmt, ...)
  #endif
于是,让所有的程序都用TRACE输出调试信息,只需要在在编译时加上一个参数"-DDEBUG",如:
  cc -DDEBUG -o target target.c
于是,预编译器发现DEBUG变量被定义了,就会使用TRACE函数。而如果要发布给用户了,那么只需要把取消"-DDEBUG"的参数,于是所有用到TRACE宏,这个宏什么都没有,所以源程序中的所有TRACE语言全部被替换成了空。一举两得,一箭双雕,何乐而不为呢?
顺便提一下,两个很有用的系统宏,一个是"__FILE__",一个是"__LINE__",分别表示,所在的源文件和行号,当你调试信息或是输出错误时,可以使用这两个宏,让你一眼就能看出你的错误,出现在哪个文件的第几行中。这对于用C/C++做的大工程非常的管用。
综上所述32条,都是为了三大目的--
  1、程序代码的易读性。
  2、程序代码的可维护性,
  3、程序代码的稳定可靠性。
  有修养的程序员,就应该要学会写出这样的代码!这是任何一个想做编程高手所必需面对的细小的问题,编程高手不仅技术要强,基础要好,而且最重要的是要有"修养"!
好的软件产品绝不仅仅是技术,而更多的是整个软件的易维护和可靠性。  
软件的维护有大量的工作量花在代码的维护上,软件的Upgrade,也有大量的工作花在代码的组织上,所以好的代码,清淅的,易读的代码,将给大大减少软件的维护和升级成本。

单片机软件设计架构(C语言)相关推荐

  1. 三层架构:软件设计架构

    三层架构:软件设计架构 1. 界面层(表示层):用户看的得界面.用户可以通过界面上的组件和服务器进行交互 2. 业务逻辑层:处理业务逻辑的. 3. 数据访问层:操作数据存储文件.

  2. 第二届 “国信蓝点”软件设计大赛 C语言模拟题(附程序题 解题程序)

    第二届 "国信蓝点"软件设计大赛 C语言模拟题 一 .以下是简答题: 1.代码填空 形如:"abccba","abcba"的串称为回文串,下 ...

  3. 单片机课程设计电梯(c语言),单片机课程设计之电梯控制系统.docx

    PAGE \* MERGEFORMAT 23 JIANGSU UNIVERSITY OF TECHNOLOGY 单片机应用系统设计 电梯控制器 学 院: 电气信息工程学院 专 业: 测控技术与仪器 班 ...

  4. 软件设计架构之DDD,SOA,原始,REST,Actor,CQRS

    from:http://www.jdon.com/soa.html http://www.jdon.com/45728 http://www.jdon.com/cqrs.html 1.SOA: 首先M ...

  5. 25页PPT带你吃透微信、陌陌等著名IM软件设计架构(值得珍藏)

    源 /  网络    文 /  佚名 对微信.陌陌等进行了分析,发出来分享一下. 电量:对于移动设备最大的瓶颈就是电量了.因为用户不可能随时携带电源,充电宝.所以必须考虑到电量问题.那就要检查我们工程 ...

  6. 微信、陌陌等著名IM软件设计架构详解【转】

    原贴http://blog.csdn.net/justinjing0612/article/details/38322353 对微信.陌陌等进行了分析,发出来分享一下(时间有些久了) 电量:对于移动设 ...

  7. 微信、陌陌等著名IM软件设计架构详解(转)

    对微信.陌陌等进行了分析,发出来分享一下(时间有些久了) 电量:对于移动设备最大的瓶颈就是电量了.因为用户不可能随时携带电源,充电宝.所以必须考虑到电量问题.那就要检查我们工程是不是有后台运行,心跳包 ...

  8. 单片机课程设计车灯c语言,基于单片机的汽车车灯控制系统.pdf

    您所在位置:网站首页 > 海量文档 &nbsp>&nbsp学术论文&nbsp>&nbsp大学论文 基于单片机的汽车车灯控制系统.pdf4页 本文档一共 ...

  9. 单片机课程设计洗衣机c语言,基于51单片机洗衣机控制器的设计(附程序)☆

    基于51单片机洗衣机控制器的设计(附程序)☆(任务书,开题报告,中期检查表,毕业论文21000字,程序) 摘  要 洗衣机是人们日常生活中常见的一种家电,已经成为人们生活中不可缺少的家用电器.在工业生 ...

最新文章

  1. 这个最基本的生命细节才被揭开——25毫秒核孔穿梭
  2. 十分钟轻松让你认识Entity Framework 7
  3. jQuery中增加新元素后没法响应原有的事件
  4. new,delete总结
  5. mybatis返回map键值对_mybatis返回map结果集怎么配置
  6. html页面缓存纪txt,cdn缓存的html静态页未更新小记
  7. python multiprocessing — 基于进程的并行
  8. 电脑wifi不见了_大家好,我是来给你家 WiFi 提速的
  9. 设计模式C++实现 —— 策略模式
  10. Lua for Windows 开始学习Lua编程
  11. 为什么创业你只为少数人服务就够了?
  12. Redability
  13. 使用js生成条形码以及二维码
  14. Android第一行代码踩坑qwq
  15. Unity3d之-使用BMFont制作美术字体
  16. android中的尺寸单位是什么,Android中各种长度尺寸单位(dp,dip,px,sp,pt)的区别
  17. 2022-01-15:中心对称数 III。 中心对称数是指一个数字在旋转了 180 度之后看起来依旧相同的数字(或者上下颠倒地看)。 写一个函数来计算范围在 [low, high] 之间中心对称数的个
  18. Java系列课程第二十二天(网络编程、正则表达式)
  19. HTTP中常见的各种状态码详解及解决方案
  20. CUDA PTX ISA阅读笔记(一)

热门文章

  1. MacOS系统下 adb 调试电视相关(homebrew安装 adb)
  2. 谷歌五笔输入法_输入法之争
  3. 把手机当作电脑显示器指导参考
  4. 功率谱(PS)和功率谱密度(PSD)是否一样、谱估计谱图纵轴数值为什么为负
  5. 使用计算属性实现购物车功能效果(商品数量增减、单选多选计算金额和总价,)
  6. arbexpress使用教程_信号发生器使用说明
  7. 管理者做好团队建设必看的书推荐
  8. 截取计算机全屏画面的方法有,全屏截图快捷键的快捷键是什么
  9. HDOJ 1846 Brave Game(巴士博弈)
  10. Android中Canvas和Paint的常用方法