目录导引

  • 1 非参数统计基本概念
    • 1.1 假设检验
      • 1.1.1 假设检验基本原理
      • 1.1.2 Power Function
      • 1.1.3 无偏检验概念
      • 1.1.4 Neyman-Pearson 引理
    • 1.2 经验分布
      • 1.2.1 经验分布
      • 1.2.2 生存函数
    • 1.3 检验的相对效率
    • 1.4 分位数
    • 1.5 秩与秩检验统计量
      • 1.5.1 无结点秩
      • 1.5.2 有结点秩
        • 1.5.1.1 基本概念
        • 1.5.1.2 性质
    • 1.6 U统计量
      • 1.6.1 单样本
      • 1.6.2 两样本
    • 问题列表

这一个系列的笔记和整理希望可以帮助到正在学习非参数统计的同学。我会慢慢更新各个章节的内容。

1 非参数统计基本概念

1.1 假设检验

1.1.1 假设检验基本原理

一句话理解:考察样本数据是否支持我们对总体的某种猜测

搞明白假设检验需要搞明白三个问题:

  • 1、如何选择原假设和备择假设

(1)我们通常将样本显示出的特点作为对总体的猜想,优先将其选作备择假设
(2)H0H_0H0​是相对于H1H_1H1​给出的
(3)常见的备择假设:变量相关、多组样本位置参数不同

  • 2、ppp值和显著性水平的作用是什么

(1)假设检验的关键是检验统计量T=T(X1,X2,...,Xn)T=T(X_1,X_2,...,X_n)T=T(X1​,X2​,...,Xn​)及其在H0H_0H0​下的分布情况
(2)p=P{∣T∣>t0}p=P\{|T|>t_0\}p=P{∣T∣>t0​}越小,说明拒绝原假设犯错误的代价越小,即第一类错误概率

  • 3、两类错误

(1)拒真错误 | decline H0H_0H0​ while H0H_0H0​ is true
(2)取伪错误 | accept H0H_0H0​ while H1H_1H1​ is true

1.1.2 Power Function

势函数刻画了检验统计量 TTT 落入拒绝域的概率,我们先规范假设检验问题如下再一并给出势函数定义

H0:θ∈Θ0v.s.H1:θ∈Θ1,Θ0∩Θ1=∅H_0:\theta \in \Theta_0 \quad v.s. \quad H_1:\theta \in \Theta_1,\quad \Theta_0 \cap \Theta1 = \emptyH0​:θ∈Θ0​v.s.H1​:θ∈Θ1​,Θ0​∩Θ1=∅
gTn(θ)=P{Tn∈W},θ=Θ1∪Θ2g_{T_n}(\theta)=P\{T_n\in W\}, \quad \theta=\Theta_1 \cup \Theta_2gTn​​(θ)=P{Tn​∈W},θ=Θ1​∪Θ2​

当θ∈Θ0\theta \in \Theta_0θ∈Θ0​时,gTn(θ)g_{T_n}(\theta)gTn​​(θ)反映了犯第一类错误的概率。
当θ∈Θ1\theta \in \Theta_1θ∈Θ1​时,gTn(θ)g_{T_n}(\theta)gTn​​(θ)反映了不犯第二类错误的概率。

举个例子,考虑H0:λ⩾1↔H1:λ<1H_0:\lambda \geqslant1\leftrightarrow H_1:\lambda < 1H0​:λ⩾1↔H1​:λ<1,以∑i=1nxi\sum_{i=1}^n x_i∑i=1n​xi​为充分统计量,构造拒绝域{∑i=1nxi<C}\{\sum_{i=1}^n x_i<C\}{∑i=1n​xi​<C}.则可以得到第一类错误和第二类错误的概率表达式,分别都是λ\lambdaλ的函数

  • α(λ)=P{∑i=1nxi<C∣λ∈H0}\alpha(\lambda) = P\{\sum_{i=1}^n x_i<C | \lambda\in H_0\}α(λ)=P{∑i=1n​xi​<C∣λ∈H0​}
  • β(λ)=1−P{∑i=1nxi<C∣λ∈H1}\beta(\lambda) = 1-P\{\sum_{i=1}^n x_i<C | \lambda\in H_1\}β(λ)=1−P{∑i=1n​xi​<C∣λ∈H1​}

1.1.3 无偏检验概念

一个检验不犯第二类错误的概率不小于犯第一类错误的概率:

P{T∈W}={⩽α,θ∈Θ0⩾α,θ∈Θ1P\{T\in W\}=\left \{ \begin{aligned} \leqslant \alpha, \theta \in \Theta_0\\ \geqslant \alpha, \theta \in \Theta_1 \end{aligned} \right.P{T∈W}={⩽α,θ∈Θ0​⩾α,θ∈Θ1​​

举一个例子,对于分布函数p(x)=1θe−xθ,0<xp(x)=\frac{1}{\theta}e^{-\frac{x}{\theta}},0<xp(x)=θ1​e−θx​,0<x
考虑假设检验H0:θ=2↔H1:θ>2H_0:\theta=2 \leftrightarrow H_1:\theta > 2H0​:θ=2↔H1​:θ>2
设置拒绝域W:{(x1,x2):9.5<x1+x2}W:\{(x1, x2):9.5<x1+x2\}W:{(x1,x2):9.5<x1+x2}
那么有落入拒绝域的概率为:
P{(x1,x2)∈W}=1−P{x1+x2⩽9.5}=1−∫09.5∫09.5−x21θ2e−x1+x2θdx1dx2=θ+9.5θe−9.5θP\{(x1, x2)\in W\}=1-P\{x_1+x_2\leqslant 9.5\} \\ =1-\int_{0}^{9.5}\int_{0}^{9.5-x_2}\frac{1}{\theta^2}e^{-\frac{x_1+x_2}{\theta}}dx_1dx_2=\frac{\theta+9.5}{\theta}e^{\frac{-9.5}{\theta}} P{(x1,x2)∈W}=1−P{x1​+x2​⩽9.5}=1−∫09.5​∫09.5−x2​​θ21​e−θx1​+x2​​dx1​dx2​=θθ+9.5​eθ−9.5​
带入H0H_0H0​得到α=0.0497≈0.05\alpha=0.0497\approx 0.05α=0.0497≈0.05,另外一头的β⩾0.05\beta\geqslant 0.05β⩾0.05

1.1.4 Neyman-Pearson 引理

1.2 经验分布

1.2.1 经验分布

经验分布函数

F^n(x)=1n∑i=1nI(Xi⩽x)\hat F_n(x)=\frac{1}{n}\sum_{i=1}^nI(X_i\leqslant x)F^n​(x)=n1​∑i=1n​I(Xi​⩽x)

经验分布函数的性质

(1)E(F^n(x))=F(x),Var(F^n(x))=F(x)(1−F(x))nE(\hat F_n(x))=F(x),Var(\hat F_n(x))=\frac{F(x)(1-F(x))}{n}E(F^n​(x))=F(x),Var(F^n​(x))=nF(x)(1−F(x))​
(2)MSE=Var+bias2=Var→0(n→∞)MSE=Var+bias^2=Var\to 0(n \to \infty)MSE=Var+bias2=Var→0(n→∞),而F^n(x)⟶PF(x)\hat F_n(x)\stackrel{P}{\longrightarrow} F(x)F^n​(x)⟶P​F(x)
(3)sup⁡x∣F^n(x)−F(x)∣→a.s.0\sup\limits_{x} | \hat F_n(x)-F(x)| \stackrel{a.s.}{\to} 0xsup​∣F^n​(x)−F(x)∣→a.s.0
(4)DKW: ∀ϵ>0,P{sup⁡x∣F^n(x)−F(x)∣>ϵ}⩽2e−2nϵ2\forall \epsilon >0,P\{\sup\limits_{x} | \hat F_n(x)-F(x)|>\epsilon\}\leqslant 2e^{-2n\epsilon^2}∀ϵ>0,P{xsup​∣F^n​(x)−F(x)∣>ϵ}⩽2e−2nϵ2

其中,关于DKW不等式,可以得到对于任意分布函数的一个置信区间,只需要令
ϵn2=ln(2α)/(2n)L(x)=max⁡{F^n(x)−ϵn,0}U(x)=min⁡{F^n(x)+ϵn,1}\begin{aligned} \epsilon_n^2&=ln(\frac{2}{\alpha})/(2n) \\ L(x) &= \max \{\hat F_n(x)-\epsilon_n, 0\} \\ U(x) &=\min \{\hat F_n(x)+\epsilon_n, 1\} \end{aligned} ϵn2​L(x)U(x)​=ln(α2​)/(2n)=max{F^n​(x)−ϵn​,0}=min{F^n​(x)+ϵn​,1}​
就可以证明[L(x),U(x)][L(x),U(x)][L(x),U(x)]是一个F(x)F(x)F(x)的1−α1-\alpha1−α置信区间
P{L(x)⩽F(x)⩽U(x)}⩾1−αP\{L(x)\leqslant F(x) \leqslant U(x)\}\geqslant 1-\alphaP{L(x)⩽F(x)⩽U(x)}⩾1−α

1.2.2 生存函数

生存函数定义
在ttt时刻存活的概率,与分布函数相斥

S(t)=P(T>t)=1−F(t)S(t)=P(T>t)=1-F(t)S(t)=P(T>t)=1−F(t)

危险函数定义
在ttt时刻存活的瞬时死亡率,为对数生存函数的负导数

h(t)=f(t)1−F(t)=−ddtln(S(t))h(t)=\frac{f(t)}{1-F(t)}=-\frac{d}{dt}ln(S(t))h(t)=1−F(t)f(t)​=−dtd​ln(S(t))

生存函数的估计

Sn(t)=1−Fn(t)=1−1n∑i=1nI(ti⩽t)S_n(t)=1-F_n(t)=1-\frac{1}{n}\sum_{i=1}^nI(t_i\leqslant t)Sn​(t)=1−Fn​(t)=1−n1​∑i=1n​I(ti​⩽t)

对数经验生存函数的方差
∵var(g(x))≈[g′(x)]2var(x)andFn(t)≈F(t)∴var{ln[1−Fn(t)]}≈var[1−Fn(t)][1−F(t)]2=1nF(t)[1−F(t)][1−F(t)]2=F(t)n[1−F(t)]\begin{aligned} \because var(g(x)) &\approx [g'(x)]^2var(x)\quad and \quad F_n(t) \approx F(t) \\ \therefore var\{ln[1-F_n(t)]\} &\approx \frac{var[1-F_n(t)]}{[1-F(t)]^2} \\ &=\frac{1}{n}\frac{F(t)[1-F(t)]}{[1-F(t)]^2} =\frac{F(t)}{n[1-F(t)]} \end{aligned} ∵var(g(x))∴var{ln[1−Fn​(t)]}​≈[g′(x)]2var(x)andFn​(t)≈F(t)≈[1−F(t)]2var[1−Fn​(t)]​=n1​[1−F(t)]2F(t)[1−F(t)]​=n[1−F(t)]F(t)​​

1.3 检验的相对效率

对于同一个假设检验问题,不同的统计量有不同的是函数,一般好的检验有较大的势。在显著性水平固定的情况下,样本量越大,势越大。比较两个检验的相对效率相当于比较两个检验在相同的势条件下,需要的样本量大小,量小者更优。

渐进相对效率的英文是Asymptotic Relative Efficiency, Pitman ARE是一个代表

针对原假设只取单个值的假设检验问题H0:θ=θ0↔H1:θ≠θ0H_0:\theta=\theta_0\leftrightarrow H_1:\theta \neq \theta_0H0​:θ=θ0​↔H1​:θ​=θ0​,在原假设的一个邻域内,固定势1−β1-\beta1−β,令备择假设θi\theta_iθi​逼近原假设θ0\theta_0θ0​,将两个统计量的样本量比值极限定义为渐进相对效率。

取一个序列lim⁡i→∞θi=θ0,θi≠θ0\lim\limits_{i \to \infty}{\theta_i}=\theta_0,\theta_i \neq \theta_0i→∞lim​θi​=θ0​,θi​​=θ0​,构造两种检验统计量V,TV,TV,T在第iii个备择假设下需要样本量为ni,min_i,m_ini​,mi​.

在H0H_0H0​成立时,lim⁡i→∞gVni(θ0)=lim⁡i→∞gTmi(θ0)=α\lim\limits_{i\to \infty}{g_{V_{n_i}}(\theta_0)} = \lim\limits_{i\to \infty}{g_{T_{m_i}}(\theta_0)}=\alphai→∞lim​gVni​​​(θ0​)=i→∞lim​gTmi​​​(θ0​)=α
在H1H_1H1​成立时,$$

通过一个定理,可以得到Pitman ARE的简便解法:

1.4 分位数

顺序统计量与分布函数
分位数的定义

假定XXX服从概率密度为f(x)f(x)f(x)的分布,令0<p<10<p<10<p<1,满足等式F(mp)=P(X<mp)⩽p,F(mp+)=P(X⩽mp)⩾pF(m_p)=P(X<m_p)\leqslant p,F(m_p+)=P(X\leqslant m_p)\geqslant pF(mp​)=P(X<mp​)⩽p,F(mp​+)=P(X⩽mp​)⩾p唯一的根mpm_pmp​称为分布F(x)F(x)F(x)的ppp分位数

对于连续分布只需要

满足等式F(mp)=P(X<mp)=pF(m_p)=P(X<m_p)=pF(mp​)=P(X<mp​)=p的唯一的mpm_pmp​

对比两个定义的差异性,离散性分布可能在mpm_pmp​上的概率非零,使得F(mp+)>F(mp)F(m_p+)>F(m_p)F(mp​+)>F(mp​),找不到一个F(mp)=pF(m_p)=pF(mp​)=p的完美解,而连续分布显然可以。

分位数的估计
mp={X(k),kn+1=p,X(k)+(X(k+1)−X(k))[(n+1)p−k],kn+1<p<k+1n+1.m_p=\left \{ \begin{aligned} X_{(k)} \quad\quad\quad\quad\quad\quad\quad\quad &, \frac{k}{n+1}=p ,\\ X_{(k)}+(X_{(k+1)}-X_{(k)})[(n+1)p-k]&, \frac{k}{n+1}<p<\frac{k+1}{n+1}. \end{aligned} \right . mp​=⎩⎪⎪⎨⎪⎪⎧​X(k)​X(k)​+(X(k+1)​−X(k)​)[(n+1)p−k]​,n+1k​=p,,n+1k​<p<n+1k+1​.​
注意,[(n+1)p-k]是一个连续插值

分位数可视化应用

  • 箱线图
  • QQ图

1.5 秩与秩检验统计量

1.5.1 无结点秩

Ri=∑j=1nI(Xj⩽Xi)R_i=\sum_{j=1}^n I(X_j \leqslant X_i) Ri​=j=1∑n​I(Xj​⩽Xi​)
对于SRS样本{X1,X2,...,Xn}\{X_1,X_2,...,X_n\}{X1​,X2​,...,Xn​},其秩{R1,R2,...,Rn}\{R_1,R_2,...,R_n\}{R1​,R2​,...,Rn​}等可能地取(1,2,...,n)(1,2,...,n)(1,2,...,n)的n!n!n!种排列中的一个。
P(R=(i1,i2,...,in))=1n!P(R=(i_1,i_2,...,i_n))=\frac{1}{n!} P(R=(i1​,i2​,...,in​))=n!1​

期望与方差
E(R1)=n+12Var(Ri)=E(Ri2)−[E(Ri)]2=n(n+1)(2n+1)61n−(n+1)222=n2−112cov(Ri,Rj)=E[Ri−E(Ri)][Rj−E(Rj)]=−n+112\begin{aligned} E(R_1)&=\frac{n+1}{2} \\ Var(R_i)&=E(R_i^2)-[E(R_i)]^2 \\ &= \frac{n(n+1)(2n+1)}{6}\frac{1}{n}-\frac{(n+1)^2}{2^2} \\ &= \frac{n^2-1}{12} \\ cov(R_i,R_j) &=E[R_i-E(R_i)][R_j-E(R_j)] \\ &=-\frac{n+1}{12} \end{aligned} E(R1​)Var(Ri​)cov(Ri​,Rj​)​=2n+1​=E(Ri2​)−[E(Ri​)]2=6n(n+1)(2n+1)​n1​−22(n+1)2​=12n2−1​=E[Ri​−E(Ri​)][Rj​−E(Rj​)]=−12n+1​​
秩和与平方秩和
∑i=1nα(Ri)=∑r=1nr=n(n+1)2∑i=1nα(Ri)2=∑r=1nr2=n(n+1)(2n+1)6\begin{aligned} \sum_{i=1}^n \alpha(R_i) &=\sum_{r=1}^n r \\ &=\frac{n(n+1)}{2} \\ \sum_{i=1}^n \alpha(R_i)^2 &=\sum_{r=1}^n r^2 \\ &=\frac{n(n+1)(2n+1)}{6} \end{aligned} i=1∑n​α(Ri​)i=1∑n​α(Ri​)2​=r=1∑n​r=2n(n+1)​=r=1∑n​r2=6n(n+1)(2n+1)​​

1.5.2 有结点秩

1.5.1.1 基本概念

结长τ\tauτ 一个数的重复个数
结数ggg 有重复的数的个数

我们对于一段相同的数,这么处理他们的秩,先以RjR_jRj​记假设不相同条件下的秩,且这组数据的第一个选手的秩为r+1r+1r+1。
α(Rj)=1τ[(r+1)+(r+2)+...+(r+τ)]=r+τ+12\alpha(R_j)=\frac{1}{\tau}[(r+1)+(r+2)+...+(r+\tau)]=r+\frac{\tau+1}{2} α(Rj​)=τ1​[(r+1)+(r+2)+...+(r+τ)]=r+2τ+1​

1.5.1.2 性质

相同一段长度的数据,如果全部相同或者如果全部不相同,他们的秩和不变,但是秩平方和不同。
B1=(r+1)2+...+(r+τ)2=τr2+rτ(τ+1)+τ(τ+1)(2τ+1)6B2=(r+τ+12)2×τ=τr2+rτ(τ+1)+τ(τ+1)24B_1= (r+1)^2+...+(r+\tau)^2 = \tau r^2+r\tau(\tau + 1)+\frac{\tau(\tau+1)(2\tau+1)}{6} \\ B_2=(r+\frac{\tau+1}{2})^2\times \tau =\tau r^2+r\tau(\tau + 1)+\frac{\tau(\tau+1)^2}{4} B1​=(r+1)2+...+(r+τ)2=τr2+rτ(τ+1)+6τ(τ+1)(2τ+1)​B2​=(r+2τ+1​)2×τ=τr2+rτ(τ+1)+4τ(τ+1)2​
差值为τ3−τ12\frac{\tau^3-\tau}{12}12τ3−τ​,这是一个非常经典的数值,后面一直会见到

一般来说,
秩和与平方秩和满足如下:
∑i=1nα(Ri)=n(n+1)2∑i=1nα(Ri)2=n(n+1)(2n+1)6−∑j=1gτj3−τj12\begin{aligned} \sum_{i=1}^n \alpha(R_i) &= \frac{n(n+1)}{2} \\ \sum_{i=1}^n \alpha(R_i)^2 &= \frac{n(n+1)(2n+1)}{6} - \sum_{j=1}^g \frac{\tau_j^3 - \tau_j}{12} \end{aligned} i=1∑n​α(Ri​)i=1∑n​α(Ri​)2​=2n(n+1)​=6n(n+1)(2n+1)​−j=1∑g​12τj3​−τj​​​

还有两个重要性质

性质1
性质2

1.6 U统计量

非参数统计中得U统计量与参数统计中的充分完备统计量有着相似的地位,后者是用来找UMVUE的。

1.6.1 单样本

参数θ\thetaθ的有如下定义

Eh(X1,X2,...,Xk)=θ,∀θ∈ΘEh(X_1,X_2,...,X_k)=\theta,\quad \forall \theta \in \ThetaEh(X1​,X2​,...,Xk​)=θ,∀θ∈Θ

当这样的kernel存在,且kkk是使得成立的最小样本量,参数θ\thetaθ就是kkk阶可估参数。

对称核的构造

h∗(X1,X2,...,Xk)=1k!∑(i1,i2,...,ik)h(Xi1,Xi2,...,Xik)h^*(X_1,X_2,...,X_k)=\frac{1}{k!}\sum\limits_{(i_1,i_2,...,i_k)}h(X_{i_1},X_{i_2},...,X_{i_k})h∗(X1​,X2​,...,Xk​)=k!1​(i1​,i2​,...,ik​)∑​h(Xi1​​,Xi2​​,...,Xik​​)

U统计量的构造
简单来说,就是把一个样本量大小为nnn的样本,组合出所有的大小为kkk的样本做(kn)\left( _k^n \right )(kn​)个对称核,取平均。

U(X1,X2,...,Xn)=1(kn)∑(i1,i2,...,ik)h∗(Xi1,Xi2,...,Xik)U(X_1,X_2,...,X_n)=\frac{1}{\left( _k^n \right )}\sum\limits_{(i_1,i_2,...,i_k)}h^*(X_{i_1},X_{i_2},...,X_{i_k})U(X1​,X2​,...,Xn​)=(kn​)1​(i1​,i2​,...,ik​)∑​h∗(Xi1​​,Xi2​​,...,Xik​​)

小练习:

  • 证明全体一阶矩存在的分布族,对于其1阶可估参数θ=E(X)\theta=E(X)θ=E(X),对称核h(X1)=X1h(X_1)=X_1h(X1​)=X1​,其生成的U统计量为样本均值。
  • 证明全体二阶矩有限的分布族,对于其2阶可估参数θ=E(X−EX)2\theta=E(X-EX)^2θ=E(X−EX)2,非对称核h(X1,X2)=X12−X1X2h(X_1,X_2)=X_1^2-X_1X_2h(X1​,X2​)=X12​−X1​X2​生成的U统计量就是样本方差。

U统计量的性质

期望 E(U(X1,X2,...,Xn))=θE(U(X_1,X_2,...,X_n))=\thetaE(U(X1​,X2​,...,Xn​))=θ
方差 var(U(X1,X2,...,Xn))=1(kn)∑c=1k(ck)(k−cn−k)σc2var(U(X_1,X_2,...,X_n))=\frac{1}{(_k^n)} \sum_{c=1}^k(_c^k)(_{k-c}^{n-k})\sigma_c^2var(U(X1​,X2​,...,Xn​))=(kn​)1​∑c=1k​(ck​)(k−cn−k​)σc2​
大样本量下,U统计量均方收敛到σ12\sigma_1^2σ12​,从而U统计量是θ\thetaθ的相合估计

备注,上面的σc2\sigma_c^2σc2​指的是:
如果一组{i1,i2,...,ik}\{i_1,i_2,...,i_k\}{i1​,i2​,...,ik​}和另外一组{j1,j2,...,jk}\{j_1,j_2,...,j_k\}{j1​,j2​,...,jk​}有ccc个元素是一样的,那么
σc2=cov[h(Xi1,Xi2,...,Xik),h(Xj1,Xj2,...,Xjk)]=E(hc(X1,X2,...,Xc)−θ)2\begin{aligned} \sigma_c^2 &=cov[h(X_{i_1},X_{i_2},...,X_{i_k}),h(X_{j_1},X_{j_2},...,X_{j_k})] \\ &=E(h_c(X_1,X_2,...,X_c)-\theta)^2 \end{aligned} σc2​​=cov[h(Xi1​​,Xi2​​,...,Xik​​),h(Xj1​​,Xj2​​,...,Xjk​​)]=E(hc​(X1​,X2​,...,Xc​)−θ)2​
这里hc(X1,X2,...,Xc)=E(x1,x2,...,xc,Xc+1,...,Xk)h_c(X_1,X_2,...,X_c)=E(x_1,x_2,...,x_c,X_{c+1},...,X_k)hc​(X1​,X2​,...,Xc​)=E(x1​,x2​,...,xc​,Xc+1​,...,Xk​)

Hoeffding定理

Wilcoxon检验统计量的核

1.6.2 两样本

问题列表

  • 为什么好的检验要有大的势
  • 为什么在显著性水平固定的情况下,样本量越大,势越大
  • 固定势,令备择假设逼近原假设怎么理解
  • 概率应该写成P()还是P{}
  • U统计量方差计算部分
  • U统计量的相合估计
  • 本章节所有的计算部分都很重要
  • 一致最优势检验
  • N-P引理的拓展

【非参数统计01】非参数统计基本概念:假设检验,经验分布,ARE,分位数,秩检验,U统计量相关推荐

  1. 统计学(三):置信区间; Z 检验(样本平均数的假设检验), 均值分布, 附Python实现(大牌护肤品碧欧泉背后的秘密)

    引言   本篇博文开始前,请熟知如下链接中的概念:当然,如果直接开始,遇到遗忘的统计学名词再返回查找也没问题. 统计学(二):假设检验导论 (深入浅出超详解,附Python 代码):置信区间与 Z 检 ...

  2. 【AI Studio】飞桨图像分类零基础训练营 - 01 - 图像处理基本概念

    前言:这里是图像分类的第一课笔记,如题,第一节可主要讲述了图像处理的操作,也就是数据集处理.根据之前学过的知识理解,训练集往往是有限的,为了扩大训练集,总会人为的制造数据.这时数据处理就体现了.而且实 ...

  3. MySQL学习笔记01【数据库概念、MySQL安装与使用】

    MySQL 文档-黑马程序员(腾讯微云):https://share.weiyun.com/RaCdIwas 1-MySQL基础.pdf.2-MySQL约束与设计.pdf.3-MySQL多表查询与事务 ...

  4. 沐阳Python扫盲01类的概念与实例

    沐阳Python扫盲01类的概念与实例 文章目录 沐阳Python扫盲01类的概念与实例 前言 一.面向过程编程的实现 二.面向对象编程的实现 总结 前言 让我们从一个实际的游戏人物例子出发,学习理解 ...

  5. 计算与推断思维 九、经验分布

    九.经验分布 原文:Empirical Distributions 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 大部分数据科学都涉及来自大型随机样本的数据. 在本节中,我们将 ...

  6. AI数学基础——经验分布,熵

    经验分布 经验分布函数是与样本经验测度相关的分布函数. 该分布函数是在n个数据点中的每一个上都跳跃1 / n的阶梯函数. 其在测量变量的任何指定值处的值是小于或等于指定值的测量变量的观测值的数. 经验 ...

  7. 机器学习中的数学——常用概率分布(九):经验分布(Empirical分布)

    分类目录:<机器学习中的数学>总目录 相关文章: · 常用概率分布(一):伯努利分布(Bernoulli分布) · 常用概率分布(二):范畴分布(Multinoulli分布) · 常用概率 ...

  8. 最大似然函数、交叉熵和经验分布的关系

    这是对<deep learning>书中(5.59)式和均方损失是经验分布和高斯模型之间的交叉熵的理解. 经验分布 最大似然函数能推导出交叉熵,他们俩本质是一回事,推导的桥梁就是经验分布. ...

  9. 统计学习方法——知识点(1)经验分布

    名词理解:联合分布.边缘分布.经验分布 给定一个训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . ( x N , y N ) } T=\{(x_1,y ...

  10. 假设检验2_t分布的应用

    系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 例如:第一章 Python 机器学习入门之pandas的使用 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮 ...

最新文章

  1. jboss-as-web-7.0.1.Final 配置 SSL
  2. iOS HTTP与 HTTPS
  3. JAVA获取系统相关信息
  4. (chap1 网络基础知识)网络的构成要素:(4-6)集线器和3层交换机
  5. EF映射之修改数据库
  6. 函授计算机与科学论文,函授计算机科学与技术论文
  7. 全球最高龄男性去世享年113岁 生前喜欢泡温泉(图)
  8. 基于jsp+mysql+Spring+hibernate+的SSH在线学习交流论坛平台
  9. Spring Boot工作笔记-RabbitMQ中Unsupported major.minor version 52.0问题
  10. 爱因斯坦谜题:谁养鱼(C#版)
  11. windows2003中使用命令行添加IP筛选器规则
  12. 分享三个免费的前端模板网站
  13. visio一分二的箭头_visio软件双箭头连接线怎么画?
  14. ios 苹果手机适配代码
  15. mysql数据库安装过程蜿蜒曲折
  16. app开发者帐号(个人开发帐号、团队帐号、企业帐号、教育帐号)
  17. Pyinstaller打包eel和pygame需要注意的坑
  18. 人脸属性分析--性别、年龄和表情识别(转)
  19. Linux —— 时间问题(GMT,UTC,DST,CST,CET表示什么、UTC与CST之间的转换)
  20. css中2D转换效果实现(4)

热门文章

  1. 史上最强三千六百道脑筋急转弯
  2. 关于计算机网络安全实验报告总结,信息安全实验总结报告
  3. solidworks导出xml文件 (matlab打开)
  4. Stata+R: 一文读懂中介效应分析
  5. 最新PS2022下载含安装操作步骤
  6. 吉林大学高等数学A3作业答案新版
  7. 步进电机工作原理 驱动 _28BYJ-48 以及程序实例下载
  8. LwIP 协议栈之 udp 协议解析
  9. 数据库系统概论 思维导图
  10. 达思sql数据库修复软件:用友金蝶管家婆思迅中了勒索病毒怎么办?