这本是课程的一个作业研究搜索算法,当时研究了一下Tkinter,然后写了个很简单的机器人走迷宫的界面,并且使用了各种搜索算法来进行搜索,如下图:

使用A*寻找最优路径:

由于时间关系,不分析了,我自己贴代码吧。希望对一些也要用Tkinter的人有帮助。

from Tkinter import *

from random import *

import time

import numpy as np

import util

class Directions:

NORTH = 'North'

SOUTH = 'South'

EAST = 'East'

WEST = 'West'

# Detect elements in the map

window = Tk()

window.title('CityBusPlanner')

window.resizable(0,0)

width = 25

(x, y) = (22, 22)

totalsteps = 0

buidings = [(0, 0), (1, 0), (2, 0), (3, 0), (7, 0), (8, 0), (11, 0), (12, 0), (13, 0),

(17, 0), (18, 0), (21, 0), (21, 1), (2, 2), (5, 2), (8, 2), (9, 2), (12, 2),

(14, 2), (15, 2), (16, 2), (17, 2), (21, 2), (2, 3), (4, 3), (5, 3), (7, 3),

(8, 3), (11, 3), (17, 3), (18, 3), (19, 3), (2, 4), (4, 4), (5, 4), (8, 4),

(9, 4), (14, 4), (15, 4),(17, 4), (18, 4), (19, 4), (0, 6), (2, 6), (4, 6),

(7, 6), (8, 6), (11, 6), (12, 6), (14, 6), (15, 6),(16, 6), (18, 6), (19, 6),

(2, 7), (5, 7), (21, 7), (0, 8), (2, 8), (11, 8), (14, 8), (15, 8), (17, 8),

(18, 8), (21, 8), (4, 9), (5, 9), (7, 9), (9, 9), (11, 9), (14, 9), (21, 9),

(2, 10), (7, 10), (14, 10), (17, 10), (19, 10), (0, 11), (2, 11), (4, 11),

(5, 11), (7, 11), (8, 11), (9, 11), (11, 11), (12, 11), (14, 11), (15, 11),

(16, 11), (17, 11), (18, 11), (19, 11), (0, 13), (2, 13), (3, 13), (5, 13),

(7, 13), (8, 13), (9, 13), (14, 13), (17, 13), (18, 13), (21, 13), (2, 14),

(3, 14), (5, 14), (7, 14),(9, 14), (12, 14), (14, 14), (15, 14), (17, 14),

(18, 14), (21, 14), (2, 15), (3, 15), (5, 15), (7, 15), (9, 15), (12, 15),

(15, 15), (19, 15), (21, 15), (0, 16), (21, 16), (0, 17), (3, 17), (5, 17),

(7, 17),(9, 17), (11, 17), (14, 17), (15, 17), (17, 17), (18, 17), (21, 17),

(2, 18), (3, 18), (5, 18), (7, 18),(9, 18), (11, 18), (14, 18), (17, 18),

(18, 18), (3, 19), (5, 19), (7, 19), (9, 19), (11, 19), (12, 19), (14, 19),

(17, 19), (18, 19), (0, 21), (1, 21), (2, 21), (5, 21), (6, 21), (9, 21),

(10, 21), (11, 21), (12, 21), (15, 21), (16, 21), (18, 21), (19, 21), (21, 21)]

walls = [(10, 0), (0, 12), (21, 12), (14, 21)]

park = [(14, 0), (15, 0), (16, 0)]

robotPos = (21, 12)

view = Canvas(window, width=x * width, height=y * width)

view.grid(row=0, column=0)

searchMapButton = Button(window,text = 'search')

searchMapButton.grid(row = 0,column = 1)

robotView = Canvas(window,width=x * width, height=y * width)

robotView.grid(row = 0,column = 2)

def formatColor(r, g, b):

return '#%02x%02x%02x' % (int(r * 255), int(g * 255), int(b * 255))

def cityMap():

global width, x, y, buidings,walls,park,robot

for i in range(x):

for j in range(y):

view.create_rectangle(

i * width, j * width, (i + 1) * width, (j + 1) * width, fill='white', outline='gray', width=1)

for (i, j) in buidings:

view.create_rectangle(

i * width, j * width, (i + 1) * width, (j + 1) * width, fill='black', outline='gray', width=1)

for (i,j) in walls:

view.create_rectangle(

i * width, j * width, (i + 1) * width, (j + 1) * width, fill='blue', outline='gray', width=1)

for (i,j) in park:

view.create_rectangle(

i * width, j * width, (i + 1) * width, (j + 1) * width, fill='red', outline='gray', width=1)

def robotCityMap():

global width, x, y, buidings,walls,park,robot,robotPos

for i in range(x):

for j in range(y):

robotView.create_rectangle(

i * width, j * width, (i + 1) * width, (j + 1) * width, fill='black', width=1)

robotView.create_rectangle(

robotPos[0] * width, robotPos[1] * width, (robotPos[0] + 1) * width, (robotPos[1] + 1) * width, fill='white', outline='gray', width=1)

# Create City Map

cityMap()

# Create Robot View

robotCityMap()

# Create a robot

robot = view.create_rectangle(robotPos[0] * width + width * 2 / 10, robotPos[1] * width + width * 2 / 10,

robotPos[0] * width + width * 8 / 10, robotPos[1] * width + width * 8 / 10, fill="orange", width=1, tag="robot")

robotSelf = robotView.create_rectangle(robotPos[0] * width + width * 2 / 10, robotPos[1] * width + width * 2 / 10,

robotPos[0] * width + width * 8 / 10, robotPos[1] * width + width * 8 / 10, fill="orange", width=1, tag="robot")

visited = [robotPos]

def move(dx,dy):

global robot,x,y,robotPos,robotSelf,view

global totalsteps

totalsteps = totalsteps + 1

newX = robotPos[0] + dx

newY = robotPos[1] + dy

if (not isEdge(newX, newY)) and (not isBlock(newX, newY)):

#print "move %d" % totalsteps

view.coords(robot, (newX) * width + width * 2 / 10, (newY) * width + width * 2 / 10,

(newX) * width + width * 8 / 10, (newY) * width + width * 8 / 10)

robotView.coords(robotSelf, (newX) * width + width * 2 / 10, (newY) * width + width * 2 / 10,

(newX) * width + width * 8 / 10, (newY) * width + width * 8 / 10)

robotPos = (newX, newY)

if robotPos not in visited:

visited.append(robotPos)

visitedPanel = robotView.create_rectangle(

robotPos[0] * width, robotPos[1] * width, (robotPos[0] + 1) * width, (robotPos[1] + 1) * width, fill='white', outline='gray', width=1)

robotView.tag_lower(visitedPanel,robotSelf)

else:

print "move error"

def callUp(event):

move(0,-1)

def callDown(event):

move(0, 1)

def callLeft(event):

move(-1, 0)

def callRight(event):

move(1, 0)

def isBlock(newX,newY):

global buidings,x,y

for (i,j) in buidings:

if (i == newX) and (j == newY):

return True

return False

def isEdge(newX,newY):

global x,y

if newX >= x or newY >= y or newX < 0 or newY < 0 :

return True

return False

def getSuccessors(robotPos):

n = Directions.NORTH

w = Directions.WEST

s = Directions.SOUTH

e = Directions.EAST

successors = []

posX = robotPos[0]

posY = robotPos[1]

if not isBlock(posX - 1, posY) and not isEdge(posX - 1,posY):

successors.append(w)

if not isBlock(posX, posY + 1) and not isEdge(posX,posY + 1):

successors.append(s)

if not isBlock(posX + 1, posY) and not isEdge(posX + 1,posY):

successors.append(e)

if not isBlock(posX, posY -1) and not isEdge(posX,posY - 1):

successors.append(n)

return successors

def getNewPostion(position,action):

posX = position[0]

posY = position[1]

n = Directions.NORTH

w = Directions.WEST

s = Directions.SOUTH

e = Directions.EAST

if action == n:

return (posX,posY - 1)

elif action == w:

return (posX - 1,posY)

elif action == s:

return (posX,posY + 1)

elif action == e:

return (posX + 1,posY)

delay = False

def runAction(actions):

global delay

n = Directions.NORTH

w = Directions.WEST

s = Directions.SOUTH

e = Directions.EAST

for i in actions:

if delay:

time.sleep(0.05)

if i == n:

#print "North"

move(0, -1)

elif i == w:

#print "West"

move(-1, 0)

elif i == s:

#print "South"

move(0, 1)

elif i == e:

#sprint "East"

move(1, 0)

view.update()

def searchMapTest(event):

global robotPos

actions = []

position = robotPos

for i in range(100):

successors = getSuccessors(position)

successor = successors[randint(0, len(successors) - 1)]

actions.append(successor)

position = getNewPostion(position, successor)

print actions

runAction(actions)

def reverseSuccessor(successor):

n = Directions.NORTH

w = Directions.WEST

s = Directions.SOUTH

e = Directions.EAST

if successor == n:

return s

elif successor == w:

return e

elif successor == s:

return n

elif successor == e:

return w

roads = set()

detectedBuildings = {}

blockColors = {}

blockIndex = 0

def updateBuildings(detectedBuildings):

global robotView,width

for block,buildings in detectedBuildings.items():

color = blockColors[block]

for building in buildings:

robotView.create_rectangle(

building[0] * width, building[1] * width, (building[0] + 1) * width, (building[1] + 1) * width, fill=color, outline=color, width=1)

def addBuilding(position):

global blockIndex,detectedBuildings

isAdd = False

addBlock = ''

for block,buildings in detectedBuildings.items():

for building in buildings:

if building == position:

return

if util.manhattanDistance(position, building) == 1:

if not isAdd:

buildings.add(position)

isAdd = True

addBlock = block

break

else:

#merge two block

for building in detectedBuildings[block]:

detectedBuildings[addBlock].add(building)

detectedBuildings.pop(block)

if not isAdd:

newBlock = set([position])

blockIndex = blockIndex + 1

detectedBuildings['Block %d' % blockIndex] = newBlock

color = formatColor(random(), random(), random())

blockColors['Block %d' % blockIndex] = color

updateBuildings(detectedBuildings)

def addRoad(position):

global robotView,width,robotSelf

visitedPanel = robotView.create_rectangle(

position[0] * width, position[1] * width, (position[0] + 1) * width, (position[1] + 1) * width, fill='white', outline='gray', width=1)

robotView.tag_lower(visitedPanel,robotSelf)

def showPath(positionA,positionB,path):

global robotView,width,view

view.create_oval(positionA[0] * width + width * 3 / 10, positionA[1] * width + width * 3 / 10,

positionA[0] * width + width * 7 / 10, positionA[1] * width + width * 7 / 10, fill='yellow', width=1)

nextPosition = positionA

for action in path:

nextPosition = getNewPostion(nextPosition, action)

view.create_oval(nextPosition[0] * width + width * 4 / 10, nextPosition[1] * width + width * 4 / 10,

nextPosition[0] * width + width * 6 / 10, nextPosition[1] * width + width * 6 / 10, fill='yellow', width=1)

view.create_oval(positionB[0] * width + width * 3 / 10, positionB[1] * width + width * 3 / 10,

positionB[0] * width + width * 7 / 10, positionB[1] * width + width * 7 / 10, fill='yellow', width=1)

hasDetected = set()

def detectLocation(position):

if position not in hasDetected:

hasDetected.add(position)

if isBlock(position[0],position[1]):

addBuilding(position)

elif not isEdge(position[0],position[1]):

addRoad(position)

def detect(position):

posX = position[0]

posY = position[1]

detectLocation((posX,posY + 1))

detectLocation((posX,posY - 1))

detectLocation((posX + 1,posY))

detectLocation((posX - 1,posY))

def heuristic(positionA,positionB):

return util.manhattanDistance(positionA,positionB)

def AstarSearch(positionA,positionB):

"Step 1: define closed: a set"

closed = set()

"Step 2: define fringe: a PriorityQueue "

fringe = util.PriorityQueue()

"Step 3: insert initial node to fringe"

"Construct node to be a tuple (location,actions)"

initialNode = (positionA,[])

initCost = 0 + heuristic(initialNode[0],positionB)

fringe.push(initialNode,initCost)

"Step 4: Loop to do search"

while not fringe.isEmpty():

node = fringe.pop()

if node[0] == positionB:

return node[1]

if node[0] not in closed:

closed.add(node[0])

for successor in getSuccessors(node[0]):

actions = list(node[1])

actions.append(successor)

newPosition = getNewPostion(node[0], successor)

childNode = (newPosition,actions)

cost = len(actions) + heuristic(childNode[0],positionB)

fringe.push(childNode,cost)

return []

def AstarSearchBetweenbuildings(building1,building2):

"Step 1: define closed: a set"

closed = set()

"Step 2: define fringe: a PriorityQueue "

fringe = util.PriorityQueue()

"Step 3: insert initial node to fringe"

"Construct node to be a tuple (location,actions)"

initialNode = (building1,[])

initCost = 0 + heuristic(initialNode[0],building2)

fringe.push(initialNode,initCost)

"Step 4: Loop to do search"

while not fringe.isEmpty():

node = fringe.pop()

if util.manhattanDistance(node[0],building2) == 1:

return node[1]

if node[0] not in closed:

closed.add(node[0])

for successor in getSuccessors(node[0]):

actions = list(node[1])

actions.append(successor)

newPosition = getNewPostion(node[0], successor)

childNode = (newPosition,actions)

cost = len(actions) + heuristic(childNode[0],building2)

fringe.push(childNode,cost)

return []

def calculatePositions(buildingA,path):

positions = set()

positions.add(buildingA)

nextPosition = buildingA

for action in path:

nextPosition = getNewPostion(nextPosition, action)

positions.add(nextPosition)

return positions

def showRoad(fullRoad):

global view,width

for road in fullRoad:

view.create_oval(road[0] * width + width * 4 / 10, road[1] * width + width * 4 / 10,

road[0] * width + width * 6 / 10, road[1] * width + width * 6 / 10, fill='yellow', width=1)

view.update()

def search(node):

successors = getSuccessors(node[0])

detect(node[0])

for successor in successors:

nextPosition = getNewPostion(node[0], successor)

if nextPosition not in roads:

runAction([successor]) # to the next node

roads.add(nextPosition)

search((nextPosition,[successor],[reverseSuccessor(successor)]))

runAction(node[2]) #back to top node

def searchConsiderTopVisit(node,topWillVisit):

successors = getSuccessors(node[0])

detect(node[0])

newTopWillVisit = set(topWillVisit)

for successor in successors:

nextPosition = getNewPostion(node[0], successor)

newTopWillVisit.add(nextPosition)

for successor in successors:

nextPosition = getNewPostion(node[0], successor)

if nextPosition not in roads and nextPosition not in topWillVisit:

runAction([successor]) # to the next node

roads.add(nextPosition)

newTopWillVisit.remove(nextPosition)

searchConsiderTopVisit((nextPosition,[successor],[reverseSuccessor(successor)]),newTopWillVisit)

runAction(node[2]) #back to top node

def searchShortestPathBetweenBlocks(block1,block2):

shortestPath = []

buildingA = (0,0)

buildingB = (0,0)

for building1 in block1:

for building2 in block2:

path = AstarSearchBetweenbuildings(building1, building2)

if len(shortestPath) == 0:

shortestPath = path

buildingA = building1

buildingB = building2

elif len(path) < len(shortestPath):

shortestPath = path

buildingA = building1

buildingB = building2

return (buildingA,buildingB,shortestPath)

def addBuildingToBlocks(linkedBlock,buildingA):

global detectedBuildings

newLinkedBlock = linkedBlock.copy()

for block,buildings in detectedBuildings.items():

for building in buildings:

if util.manhattanDistance(buildingA, building) == 1:

newLinkedBlock[block] = buildings

break

return newLinkedBlock

def bfsSearchNextBlock(initBuilding,linkedBlock):

global detectedBuildings

closed = set()

fringe = util.Queue()

initNode = (initBuilding,[])

fringe.push(initNode)

while not fringe.isEmpty():

node = fringe.pop()

newLinkedBlock = addBuildingToBlocks(linkedBlock,node[0])

if len(newLinkedBlock) == len(detectedBuildings):

return node[1]

if len(newLinkedBlock) > len(linkedBlock): # find a new block

actions = list(node[1])

'''

if len(node[1]) > 0:

lastAction = node[1][len(node[1]) - 1]

for successor in getSuccessors(node[0]):

if successor == lastAction:

nextPosition = getNewPostion(node[0], successor)

actions.append(successor)

return actions + bfsSearchNextBlock(nextPosition, newLinkedBlock)

'''

return node[1] + bfsSearchNextBlock(node[0], newLinkedBlock)

if node[0] not in closed:

closed.add(node[0])

for successor in getSuccessors(node[0]):

actions = list(node[1])

actions.append(successor)

nextPosition = getNewPostion(node[0], successor)

childNode = (nextPosition,actions)

fringe.push(childNode)

return []

def isGoal(node):

global detectedBuildings,robotPos

linkedBlock = {}

positions = calculatePositions(robotPos, node[1])

for position in positions:

for block,buildings in detectedBuildings.items():

for building in buildings:

if util.manhattanDistance(position, building) == 1:

linkedBlock[block] = buildings

print len(linkedBlock)

if len(linkedBlock) == 17:

return True

else:

return False

def roadHeuristic(road):

return 0

def AstarSearchRoad():

global robotPos,detectedBuildings

"Step 1: define closed: a set"

closed = set()

"Step 2: define fringe: a PriorityQueue "

fringe = util.PriorityQueue()

"Step 3: insert initial node to fringe"

"Construct node to be a tuple (location,actions)"

initRoad = (robotPos,[])

initCost = 0 + roadHeuristic(initRoad)

fringe.push(initRoad,initCost)

"Step 4: Loop to do search"

while not fringe.isEmpty():

node = fringe.pop()

if isGoal(node):

print len(closed)

return node[1]

if node[0] not in closed:

closed.add(node[0])

for successor in getSuccessors(node[0]):

actions = list(node[1])

actions.append(successor)

newPosition = getNewPostion(node[0], successor)

childNode = (newPosition,actions)

cost = len(actions) + roadHeuristic(childNode)

fringe.push(childNode,cost)

return []

def searchRoad(building):

global detectedBuildings,robotPos

linkedBlock = {}

initBuilding = building

return bfsSearchNextBlock(initBuilding,linkedBlock)

def searchShortestRoad():

shortestRoad = []

shortestPositions = set()

for block,buildings in detectedBuildings.items():

for building in buildings:

road = searchRoad(building)

positions = calculatePositions(building, road)

if len(shortestPositions) == 0 or len(positions) < len(shortestPositions):

shortestRoad = road

shortestPositions = positions

print len(shortestPositions)

showRoad(shortestPositions)

def searchMap(event):

print "Search Map"

global robotPos,roads,detectedBuildings,delay

actions = []

#roads = set()s

#roads.add(robotPos)

#fringe = util.Stack()

initNode = (robotPos,[],[]) # (position,forwardActions,backwarsdActions)

#fringe.push(initNode)

roads.add(robotPos)

search(initNode)

#searchConsiderTopVisit(initNode, set())

print detectedBuildings

print len(detectedBuildings)

#path = AstarSearchBetweenbuildings((6,21), (2, 18))

#showPath((6,21),(2,18), path)

'''

shortestRoad = set()

for block1 in detectedBuildings.values():

roads = set()

for block2 in detectedBuildings.values():

if not block1 == block2:

(buildingA,buildingB,path) = searchShortestPathBetweenBlocks(block1, block2)

#showPath(buildingA,buildingB,path)

positions = calculatePositions(buildingA,buildingB,path)

roads = roads | positions

if len(shortestRoad) == 0 or len(roads) < len(shortestRoad):

shortestRoad = roads

print len(shortestRoad)

showRoad(shortestRoad)

'''

'''

block1 = detectedBuildings.values()[3]

print block1

block2 = detectedBuildings.values()[5]

print block2

(buildingA,buildingB,path) = searchShortestPathBetweenBlocks(block1, block2)

print buildingA,buildingB,path

showPath(buildingA,buildingB,path)

block1 = detectedBuildings.values()[10]

print block1

block2 = detectedBuildings.values()[20]

print block2

(buildingA,buildingB,path) = searchShortestPathBetweenBlocks(block1, block2)

print buildingA,buildingB,path

showPath(buildingA,buildingB,path)

'''

searchShortestRoad()

'''

path = searchRoad()

#path = AstarSearchRoad()

positions = calculatePositions(robotPos, path)

print len(positions)

showRoad(positions)

delay = True

#runAction(path)

'''

window.bind("", callUp)

window.bind("", callDown)

window.bind("", callRight)

window.bind("", callLeft)

window.bind("s", searchMap)

searchMapButton.bind("",searchMap)

window.mainloop()

下面的util.py使用的是加州伯克利的代码:

# util.py

# -------

# Licensing Information: You are free to use or extend these projects for

# educational purposes provided that (1) you do not distribute or publish

# solutions, (2) you retain this notice, and (3) you provide clear

# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.

#

# Attribution Information: The Pacman AI projects were developed at UC Berkeley.

# The core projects and autograders were primarily created by John DeNero

# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).

# Student side autograding was added by Brad Miller, Nick Hay, and

# Pieter Abbeel (pabbeel@cs.berkeley.edu).

import sys

import inspect

import heapq, random

"""

Data structures useful for implementing SearchAgents

"""

class Stack:

"A container with a last-in-first-out (LIFO) queuing policy."

def __init__(self):

self.list = []

def push(self,item):

"Push 'item' onto the stack"

self.list.append(item)

def pop(self):

"Pop the most recently pushed item from the stack"

return self.list.pop()

def isEmpty(self):

"Returns true if the stack is empty"

return len(self.list) == 0

class Queue:

"A container with a first-in-first-out (FIFO) queuing policy."

def __init__(self):

self.list = []

def push(self,item):

"Enqueue the 'item' into the queue"

self.list.insert(0,item)

def pop(self):

"""

Dequeue the earliest enqueued item still in the queue. This

operation removes the item from the queue.

"""

return self.list.pop()

def isEmpty(self):

"Returns true if the queue is empty"

return len(self.list) == 0

class PriorityQueue:

"""

Implements a priority queue data structure. Each inserted item

has a priority associated with it and the client is usually interested

in quick retrieval of the lowest-priority item in the queue. This

data structure allows O(1) access to the lowest-priority item.

Note that this PriorityQueue does not allow you to change the priority

of an item. However, you may insert the same item multiple times with

different priorities.

"""

def __init__(self):

self.heap = []

self.count = 0

def push(self, item, priority):

# FIXME: restored old behaviour to check against old results better

# FIXED: restored to stable behaviour

entry = (priority, self.count, item)

# entry = (priority, item)

heapq.heappush(self.heap, entry)

self.count += 1

def pop(self):

(_, _, item) = heapq.heappop(self.heap)

# (_, item) = heapq.heappop(self.heap)

return item

def isEmpty(self):

return len(self.heap) == 0

class PriorityQueueWithFunction(PriorityQueue):

"""

Implements a priority queue with the same push/pop signature of the

Queue and the Stack classes. This is designed for drop-in replacement for

those two classes. The caller has to provide a priority function, which

extracts each item's priority.

"""

def __init__(self, priorityFunction):

"priorityFunction (item) -> priority"

self.priorityFunction = priorityFunction # store the priority function

PriorityQueue.__init__(self) # super-class initializer

def push(self, item):

"Adds an item to the queue with priority from the priority function"

PriorityQueue.push(self, item, self.priorityFunction(item))

def manhattanDistance( xy1, xy2 ):

"Returns the Manhattan distance between points xy1 and xy2"

return abs( xy1[0] - xy2[0] ) + abs( xy1[1] - xy2[1] )

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

python走迷宫_Python使用Tkinter实现机器人走迷宫相关推荐

  1. python中文编辑_python用Tkinter做自己的中文代码编辑器

    前面我们给了Tkinter接管Python输入和输出的介绍,我们不难可以想到,能用Tkinter来开发自己的Python代码编辑器.例如可以使用Text控件作代码编辑器. 实际上我在HP_tk2中已经 ...

  2. python视窗版_Python GUI tkinter窗口视窗学习3

    Python GUI tkinter窗口视窗学习3 # test9 import tkinter as tk window = tk.Tk() window.title('my test9') win ...

  3. python listbox排序_python – 从tkinter.Listbox中提取项目列表

    我编写了以下tkinter脚本来了解如何将数据列表添加到tkinter.Listbox小部件中.我发现了两种方法. 接下来,我想从tkinter.Listbox小部件中提取相同的列表.在4种不同的方法 ...

  4. python布局管理_Python基础=== Tkinter Grid布局管理器详解

    本文转自:https://www.cnblogs.com/ruo-li-suo-yi/p/7425307.html          @ 箬笠蓑衣 Grid(网格)布局管理器会将控件放置到一个二维的表 ...

  5. python tk下拉列表_Python 窗体(tkinter)下拉列表框(Combobox)实例

    废话不多说,看代码吧! import tkinter from tkinter import ttk def go(*args): #处理事件,*args表示可变参数 print(comboxlist ...

  6. python转盘抽奖_Python使用Tkinter实现转盘抽奖器的步骤详解

    我使用 Python 中的 Tkinter 模块实现了一个简单的滚动抽奖器,接下来继续写一个简单的转盘抽奖器. 滚动抽奖器与点名的场景相似,是从一群人中抽出中奖的人,奖品是提前确定了的,抽奖只是确定中 ...

  7. python创建对话框_Python使用tkinter打造自定义对话框完整代码

    问题来源:前一阵发过一个技术文章Python编写抽奖式随机提问程序,其中有个弹出式对话框,好像上海科技大学宋老师在群里当时问了一句对话框中中奖姓名是否能显示的大一些,如图: 当时记得标准的tkinte ...

  8. python对话框代码_Python、tkinter、复杂对话框和代码结构

    当实现复杂的对话框(即,具有大约10个或更多窗口小部件的对话框,尤其是在多个框架中排列时),创建需要许多tkinter调用,当代码保持在单个方法中时,代码可能会变得越来越复杂(难以读取和维护).一般来 ...

  9. python 离线翻译软件_Python使用tkinter制作在线翻译软件

    tkinter的功能是如此强大,竟然还能做翻译软件.当然是在线的,我发现有一个quicktranslate模块,可以提供在线翻译功能,相当于提供了一个翻译的接口,利用它就可以制作在线翻译软件了.下面是 ...

最新文章

  1. Android中Service深入学习
  2. c++基础——程序流程结构之选择结构
  3. 笔试训练1 知识点整理
  4. 图自编码器的起源和应用
  5. dll文件:关于MFC程序不能定位输入点
  6. Go语言实时GC - 三色标记算法
  7. Linux内核 之 menuconfig各个选项介绍[转]
  8. 奉劝各位准大一的学弟学妹们,这个暑假只要作对一件事,大学的时候你就是王者!
  9. html-菜鸟--书架仿饿了么首页—Html学习(1)
  10. android 安装卸载应用提醒_Android监听应用程序安装和卸载
  11. 北京旅游攻略?Python动态图给你展示!
  12. python multiprocessing dummy Pool 使用
  13. KendoUI系列:switch 开关
  14. 计算机视觉笔记及资料整理(含图像分割、目标检测)
  15. 【翻译】智能制造中EDA 应用及益处系列之四:精密故障检测与分类(FDC)
  16. 电工电子电力拖动及自动化技术考核实训台QY-DG800D
  17. Redis设计与实现——对象
  18. 求二叉树根节点到叶节点的所有路径
  19. Cypress系列(43)- visit() 命令详解
  20. brendan eich_编程领域的变革者:Brendan Eich

热门文章

  1. vsftp中anon_world_readable_only参数具体使用
  2. 回归评价指标:MAE、MSE、RMSE、MAPE和R-Squared
  3. 敏捷项目如何保证测试质量
  4. Linux运维常见面试题汇总
  5. 谷歌浏览器插件打包ChromePackage-extention
  6. 魔方教程一步一步图解(史上最简单的魔方入门教程)新手一看就会
  7. java 让坦克移动_坦克大战_坦克移动
  8. linux批量修改文件名称脚本,linux批量文件改名脚本
  9. Linux 邮件服务
  10. RK3399:HDMI输出固定频率与热插拔