摘 要:介绍了Servlet多线程机制,通过一个实例并结合Java 的内存模型说明引起Servlet线程不安全的原因,给出了保证Servlet线程安全的三种解决方案,并说明三种方案在实际开发中的取舍。

  关键字:Servlet 线程安全 同步 Java内存模型 实例变量

  Servlet/JSP技术和ASP、PHP等相比,由于其多线程运行而具有很高的执行效率。由于Servlet/JSP默认是以多线程模式执行的,所以,在编写代码时需要非常细致地考虑多线程的安全性问题。然而,很多人编写Servlet/JSP程序时并没有注意到多线程安全性的问题,这往往造成编写的程序在少量用户访问时没有任何问题,而在并发用户上升到一定值时,就会经常出现一些莫明其妙的问题。

  Servlet的多线程机制
  
  Servlet体系结构是建立在Java多线程机制之上的,它的生命周期是由Web容器负责的。当客户端第一次请求某个Servlet时,Servlet容器将会根据web.xml配置文件实例化这个Servlet类。当有新的客户端请求该Servlet时,一般不会再实例化该Servlet类,也就是有多个线程在使用这个实例。Servlet容器会自动使用线程池等技术来支持系统的运行,如图1所示。

图1 Servlet线程池

  这样,当两个或多个线程同时访问同一个Servlet时,可能会发生多个线程同时访问同一资源的情况,数据可能会变得不一致。所以在用Servlet构建的Web应用时如果不注意线程安全的问题,会使所写的Servlet程序有难以发现的错误。

  Servlet的线程安全问题

  Servlet的线程安全问题主要是由于实例变量使用不当而引起的,这里以一个现实的例子来说明。

Import javax.servlet. *; 
Import javax.servlet.http. *; 
Import java.io. *; 
Public class Concurrent Test extends HttpServlet {PrintWriter output; 
Public void service (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {String username;
Response.setContentType ("text/html; charset=gb2312");
Username = request.getParameter ("username"); 
Output = response.getWriter (); 
Try {Thread. sleep (5000); //为了突出并发问题,在这设置一个延时
} Catch (Interrupted Exception e){}
output.println("用户名:"+Username+"<BR>"); 
}
}

  该Servlet中定义了一个实例变量output,在service方法将其赋值为用户的输出。当一个用户访问该Servlet时,程序会正常的运行,但当多个用户并发访问时,就可能会出现其它用户的信息显示在另外一些用户的浏览器上的问题。这是一个严重的问题。为了突出并发问题,便于测试、观察,我们在回显用户信息时执行了一个延时的操作。假设已在web.xml配置文件中注册了该Servlet,现有两个用户a和b同时访问该Servlet(可以启动两个IE浏览器,或者在两台机器上同时访问),即同时在浏览器中输入:

  a: http://localhost: 8080/servlet/ConcurrentTest? Username=a

  b: http://localhost: 8080/servlet/ConcurrentTest? Username=b

  如果用户b比用户a回车的时间稍慢一点,将得到如图2所示的输出:

图2 a用户和b用户的浏览器输出

  从图2中可以看到,Web服务器启动了两个线程分别处理来自用户a和用户b的请求,但是在用户a的浏览器上却得到一个空白的屏幕,用户a的信息显示在用户b的浏览器上。该Servlet存在线程不安全问题。下面我们就从分析该实例的内存模型入手,观察不同时刻实例变量output的值来分析使该Servlet线程不安全的原因。

  Java的内存模型JMM(Java MemoryModel)JMM主要是为了规定了线程和内存之间的一些关系。根据JMM的设计,系统存在一个主内存(Main Memory),Java中所有实例变量都储存在主存中,对于所有线程都是共享的。每条线程都有自己的工作内存(Working Memory),工作内存由缓存和堆栈两部分组成,缓存中保存的是主存中变量的拷贝,缓存可能并不总和主存同步,也就是缓存中变量的修改可能没有立刻写到主存中;堆栈中保存的是线程的局部变量,线程之间无法相互直接访问堆栈中的变量。根据JMM,我们可以将论文中所讨论的Servlet实例的内存模型抽象为图3所示的模型。

图3 Servlet实例的JMM模型

  下面根据图3所示的内存模型,来分析当用户a和b的线程(简称为a线程、b线程)并发执行时,Servlet实例中所涉及变量的变化情况及线程的执行情况,如图4所示。

调度时刻  a线程 b线程 
T1 访问Servlet页面   
T2    访问Servlet页面 
T3  output=a的输出username=a休眠5000毫秒,让出CPU    
T4    output=b的输出(写回主存)username=b休眠5000毫秒,让出CPU 
T5  在用户b的浏览器上输出a线程的username的值,a线程终止。    
T6   在用户b的浏览器上输出b线程的username的值,b线程终止。 
                  图4 Servlet实例的线程调度情况

  从图4中可以清楚的看到,由于b线程对实例变量output的修改覆盖了a线程对实例变量output的修改,从而导致了用户a的信息显示在了用户b的浏览器上。如果在a线程执行输出语句时,b线程对output的修改还没有刷新到主存,那么将不会出现图2所示的输出结果,因此这只是一种偶然现象,但这更增加了程序潜在的危险性。 
设计线程安全的Servlet

  通过上面的分析,我们知道了实例变量不正确的使用是造成Servlet线程不安全的主要原因。下面针对该问题给出了三种解决方案并对方案的选取给出了一些参考性的建议。

  1、实现 SingleThreadModel 接口

  该接口指定了系统如何处理对同一个Servlet的调用。如果一个Servlet被这个接口指定,那么在这个Servlet中的service方法将不会有两个线程被同时执行,当然也就不存在线程安全的问题。这种方法只要将前面的Concurrent Test类的类头定义更改为:

Public class Concurrent Test extends HttpServlet implements SingleThreadModel {
…………
}

  2、同步对共享数据的操作

  使用synchronized 关键字能保证一次只有一个线程可以访问被保护的区段,在本论文中的Servlet可以通过同步块操作来保证线程的安全。同步后的代码如下:

…………
Public class Concurrent Test extends HttpServlet { …………
Username = request.getParameter ("username"); 
Synchronized (this){
Output = response.getWriter (); 
Try {
Thread. Sleep (5000);
} Catch (Interrupted Exception e){}
output.println("用户名:"+Username+"<BR>"); 

}
}

  3、避免使用实例变量

  本实例中的线程安全问题是由实例变量造成的,只要在Servlet里面的任何方法里面都不使用实例变量,那么该Servlet就是线程安全的。

  修正上面的Servlet代码,将实例变量改为局部变量实现同样的功能,代码如下:

…… 
Public class Concurrent Test extends HttpServlet {public void service (HttpServletRequest request, HttpServletResponse 
Response) throws ServletException, IOException {
Print Writer output; 
String username;
Response.setContentType ("text/html; charset=gb2312");
…… 

}

  对上面的三种方法进行测试,可以表明用它们都能设计出线程安全的Servlet程序。但是,如果一个Servlet实现了SingleThreadModel接口,Servlet引擎将为每个新的请求创建一个单独的Servlet实例,这将引起大量的系统开销。SingleThreadModel在Servlet2.4中已不再提倡使用;同样如果在程序中使用同步来保护要使用的共享的数据,也会使系统的性能大大下降。这是因为被同步的代码块在同一时刻只能有一个线程执行它,使得其同时处理客户请求的吞吐量降低,而且很多客户处于阻塞状态。另外为保证主存内容和线程的工作内存中的数据的一致性,要频繁地刷新缓存,这也会大大地影响系统的性能。所以在实际的开发中也应避免或最小化 Servlet 中的同步代码;在Serlet中避免使用实例变量是保证Servlet线程安全的最佳选择。从Java 内存模型也可以知道,方法中的临时变量是在栈上分配空间,而且每个线程都有自己私有的栈空间,所以它们不会影响线程的安全。

  小结

  Servlet的线程安全问题只有在大量的并发访问时才会显现出来,并且很难发现,因此在编写Servlet程序时要特别注意。线程安全问题主要是由实例变量造成的,因此在Servlet中应避免使用实例变量。如果应用程序设计无法避免使用实例变量,那么使用同步来保护要使用的实例变量,但为保证系统的最佳性能,应该同步可用性最小的代码路径。

转载于:https://blog.51cto.com/liumm/294087

Servlet多线程机制相关推荐

  1. Java实用教程笔记 Java多线程机制

    Java多线程机制 泛型要考,后来又说不考了 多线程不考 12.1 进程与线程Process and Thread 12.2Java中的线程Threads in Java 线程的状态与生命周期The ...

  2. linux 内核信号量与用户态信号量(system v,信号量在Linux多线程机制中的应用

    [摘 要]本文以信号量原理为基础,重点阐述信号量在Linux多线程同步机制中的实现特色. [关键词]信号量:Linux:多线程:同步 1 信号量 1965年E. W. Dijkstra首次提出信号量的 ...

  3. 《Java程序设计》实验报告——Java的多线程机制

    浙江理工大学 <Java程序设计>  实验报告  20 19-20 20学年第 1学期      学  院 信息学院 班  级 计算机科学与技术18(3) 姓  名 申屠志刚 学  号 2 ...

  4. 《Exploring in UE4》多线程机制详解[原理分析]

    目录 一.概述 二."标准"多线程 三.AsyncTask系统 3.1 FQueuedThreadPool线程池 3.2 Asyntask与IQueuedWork 3.3 其他相关 ...

  5. Dalvik/ART(ANDROID)中的多线程机制(3)

    封装任务 Message 在整个消息处理机制中,message又叫task,封装了任务携带的信息和处理该任务的handler.message的用法比较简单,这里不做总结了.但是有这么几点需要注意(待补 ...

  6. 线程 sleep 取消_C/C++ 多线程机制

    一.C/C++多线程操作说明 C/C++多线程基本操作如下: 1. 线程的建立结束 2. 线程的互斥和同步 3. 使用信号量控制线程 4. 线程的基本属性配置 在C/C++代码编写时,使用多线程机制, ...

  7. C#的多线程机制探索1

    注:本文中出现的代码均在.net Framework RC3环境中运行通过 一.多线程的概念 Windows是一个多任务的系统,如果你使用的是windows 2000及其以上版本,你可以通过任务管理器 ...

  8. Java的多线程机制系列:(四)不得不提的volatile及指令重排序(happen-before)

    一.不得不提的volatile volatile是个很老的关键字,几乎伴随着JDK的诞生而诞生,我们都知道这个关键字,但又不太清楚什么时候会使用它:我们在JDK及开源框架中随处可见这个关键字,但并发专 ...

  9. C#的多线程机制初探 (引自 http://www.daima.com.cn/info/234.htm ,在此感谢原作者)

    注:本文中出现的代码均在.net Framework RC3环境中运行通过 一.多线程的概念 Windows是一个多任务的系统,如果你使用的是windows 2000及其以上版本,你可以通过任务管 ...

最新文章

  1. 为什么,AX中存储的数据与我们日常理解相违背。
  2. 数据结构之堆栈排序图文详解及代码(C++实现)
  3. 【Java设计模式】GOF32 - 单例模式
  4. pip代理解决pip下载失败问题
  5. 广播 消息 没有服务器,服务器节点消息广播
  6. Python实现过段时间计算机自动锁屏小程序
  7. 什么是大端序和小端序,为什么要有字节序
  8. EFI格式linux启动u盘,制作BIOS和EFI多启动U盘
  9. python几种排序_Python实现几种排序算法
  10. %12d在c语言中的意思,《C语言程序设计》习题.doc
  11. 各种水龙头拆卸图解_各种水龙头拆卸图解法
  12. python3x程序设计基础周元哲_Python 3 x程序设计基础
  13. Educational Codeforces Round 67 E.Tree Painting (树形dp)
  14. word中填充效果锁定纵横比_操作基础知识Word文字编辑
  15. python扫雷游戏代码_基于Python实现的扫雷游戏实例代码
  16. 小白入门Python Web开发介绍(持续更新)
  17. win10下ant下载安装配置记录
  18. 微信android系统要求,系统设计要求
  19. 51单片机undefined identifier问题求助
  20. 为开启VM虚拟化,关闭Win10的Hyper-V

热门文章

  1. 谷歌要构建自己的区块链技术
  2. 初步学习Django-第五篇:ORM详解
  3. 用 :focus-within 实现纯 CSS 下拉框组件
  4. 动画 - 收藏集 - 掘金
  5. python pip 安装
  6. django 创建项目
  7. Objective-C 编程语言官网文档(二)-对象,类以及消息
  8. Drawable之color示例
  9. [CF1073E]Segment Sum
  10. 复变函数系列(三 ) - 复变函数的积分