HashMap实现原理

1.概述

HashMap是基于哈希表的Map接口的非同步实现。元素以键值对的形式存放,并且允许null键和null值,因为key值唯一(不能重复),因此,null键只有一个。另外,hashmap不保证元素存储的顺序,是一种无序的,和放入的顺序并不相同(此类不保证映射的顺序,特别是它不保证该顺序恒久不变)。HashMap是线程不安全的。

2.继承关系

public class HashMap<K,V> extends AbstractMap<K,V>implements Map<K,V>, Cloneable, Serializable

其中相关的属性:(JDK1.8)

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16  默认的初始容量
static final float DEFAULT_LOAD_FACTOR = 0.75f; //加载因子
static final int TREEIFY_THRESHOLD = 8; //链表长度的阈值,当超过8时,会进行树化(不绝对,如下面源码分析)
static final int UNTREEIFY_THRESHOLD = 6; //当树中只有6个或以下,转化为链表
transient int size; //HashMap的大小
int threshold; //判断是否扩容的阈值

Note:HashMap的扩容操作是一项很耗时的任务,所以如果能估算Map的容量,最好给它一个默认初始值,避免进行多次扩容。HashMap的线程是不安全的,多线程环境中推荐是ConcurrentHashMap

从下图中看出,HashMap底层就是一个数组结构,数组中的每一项又是一个链表。当新建一个HashMap的时候,就会初始化一个数组。

3.HashMap的数据存储结构

3.1 HashMap由数组+链表+红黑树进行数据的存储

HashMap采用table数组存储Key-Value的,每一个键值对组成了一个Node节点(JDK1.7为Entry实体,因为jdk1.8加入了红黑树,所以改为Node)。Node节点实际上是一个单向的链表结构,它具有Next指针,可以连接下一个Node节点,以此来解决Hash冲突的问题。

transient Node<K,V>[] table; //默认数组static class Node<K,V> implements Map.Entry<K,V> {final int hash;final K key;V value;Node<K,V> next;

从源码,Node就是数组中的元素,每个 Map.Entry 其实就是一个key-value对,它持有一个指向下一个元素的引用,这就构成了链表。

3.2 HashMap实现存储和读取

put操作

put操作所对应的实现流程如下图所示:

具体的源码实现如下:

//put操作
public V put(K key, V value) {return putVal(hash(key), key, value, false, true);
}//计算key对象的hash值
static final int hash(Object key) { int h;return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);//进行与操作
}//具体添加细节
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {Node<K,V>[] tab; //创建数组Node<K,V> p; //新节点int n, i;if ((tab = table) == null || (n = tab.length) == 0)n = (tab = resize()).length; //对数组进行初始化if ((p = tab[i = (n - 1) & hash]) == null) //(n - 1) & hash 求数组的下标,判断是否有元素。没有tab[i] = newNode(hash, key, value, null);  //直接放入else { //有元素Node<K,V> e; K k;//判断存储的节点是否已存在。//1.两个对象的hash值不同,一定不是同一个对象//2.hash值相同,两个对象也不一定相等if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))e = p; //存储的节点的key的已存在,直接进行替换else if (p instanceof TreeNode) //存储的节点的key的不存在,判断是否为树节点(是不是已经转化为红黑树)e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);else {//即不存在。也不是树节点,for (int binCount = 0; ; ++binCount) {if ((e = p.next) == null) { //直接找到链表的尾部,直接插入p.next = newNode(hash, key, value, null);if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st 判断链表的长度是否大于可以转化为树结构的阈值treeifyBin(tab, hash); //树化break;}if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k)))) //判断是否和插入对象相同break;p = e;}}if (e != null) { // existing mapping for key 存在映射的key,覆盖原值,将原值返回V oldValue = e.value;if (!onlyIfAbsent || oldValue == null)e.value = value;afterNodeAccess(e);return oldValue;}}++modCount;if (++size > threshold) //hashmap的容量大于阈值resize(); //扩容afterNodeInsertion(evict);return null;}

由上面的源码可知,,当添加一个Key-Value时,我们通过hash()计算出Key所对应的hash值,然后去调用putVal()真正的执行put操作。

  1. 首先判断数组是否为空,如果是,则进行初始化。
  2. 其次,根据**(n - 1) & hash**求出要添加对象所在的索引位置,判断此索引的内容是否为空,如果是,则直接存储,
  3. 如果不是,则判断索引位置的对象和要存储的对象是否相同,首先判断hash值知否相等,在判断key是否相等。(1.两个对象的hash值不同,一定不是同一个对象。2.hash值相同,两个对象也不一定相等)。如果是同一个对象,则直接进行覆盖,返回原值。
  4. 如果不是,则判断是否为树节点对象,如果是,直接添加
  5. 当既不是相同对象,又不是树节点,直接将其插入到链表的尾部。在进行判断是否需要进行树化。
  6. 最后,判断hashmap的size是否达到阈值,进行扩容resize()处理。

resize()扩容操作
当hashmap中的元素越来越多的时候,碰撞的几率也就越来越高(因为数组的长度是固定的),所以为了提高效率,就要对hashmap的数组进行扩容,而在hashmap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。

那么hashmap什么时候进行扩容呢?当hashmap中的元素个数超过数组大小loadFactor时,就会进行数组扩容,loadFactor的默认值为0.75,也就是说,默认情况下,数组大小为16,那么当hashmap中元素个数超过160.75=12的时候,就把数组的大小扩展为2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知hashmap中元素的个数,那么预设元素的个数能够有效的提高hashmap的性能。

初始化和扩容的具体流程如下:

 final Node<K,V>[] resize() {Node<K,V>[] oldTab = table;int oldCap = (oldTab == null) ? 0 : oldTab.length;int oldThr = threshold;int newCap, newThr = 0;if (oldCap > 0) {if (oldCap >= MAXIMUM_CAPACITY) {threshold = Integer.MAX_VALUE;return oldTab;}//进行数组的扩容,长度为原来的2倍,阈值为原来的2倍else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&oldCap >= DEFAULT_INITIAL_CAPACITY)newThr = oldThr << 1; // double threshold}else if (oldThr > 0) // initial capacity was placed in thresholdnewCap = oldThr;**//进行数组的初始化,容量为默认值16,阈值为16*0.75**else {               // zero initial threshold signifies using defaultsnewCap = DEFAULT_INITIAL_CAPACITY;newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);}if (newThr == 0) {float ft = (float)newCap * loadFactor;newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?(int)ft : Integer.MAX_VALUE);}threshold = newThr;//把原数组的元素调整到新数组中@SuppressWarnings({"rawtypes","unchecked"})Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];table = newTab;if (oldTab != null) {for (int j = 0; j < oldCap; ++j) {Node<K,V> e;//判断当前索引j的位置是否存在元素eif ((e = oldTab[j]) != null) {oldTab[j] = null;//判断 e.next是不是有值,简而言之,就是判断当前位置是否是树或者链表if (e.next == null)//调整到新数组中newTab[e.hash & (newCap - 1)] = e;//如果是红黑树,进行树的拆分(具体不讲了)else if (e instanceof TreeNode)((TreeNode<K,V>)e).split(this, newTab, j, oldCap);//如果是链表else { // preserve orderNode<K,V> loHead = null, loTail = null;Node<K,V> hiHead = null, hiTail = null;Node<K,V> next;//遍历链表do {next = e.next;//生成低位链表if ((e.hash & oldCap) == 0) {if (loTail == null)loHead = e;elseloTail.next = e;loTail = e;}//生成高位链表else {if (hiTail == null)hiHead = e;elsehiTail.next = e;hiTail = e;}} while ((e = next) != null);//将低位链表调整到新数组if (loTail != null) {loTail.next = null;newTab[j] = loHead;}//将高位链表调整到新数组if (hiTail != null) {hiTail.next = null;newTab[j + oldCap] = hiHead;}}}}}return newTab;}

treeifyBin操作
树化的基本操作流程如下:(不涉及左旋和右旋操作,因为不会呀)

final void treeifyBin(Node<K,V>[] tab, int hash) {int n, index; Node<K,V> e;//当数组的长度小于最大默认数组长度64时,进行扩容if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)resize();else if ((e = tab[index = (n - 1) & hash]) != null) {TreeNode<K,V> hd = null, tl = null;do {//将链表节点转化为树节点,同时生成一个双向链表,因此,可以说红黑树中隐藏着一个双向链表TreeNode<K,V> p = replacementTreeNode(e, null);if (tl == null)hd = p;else {p.prev = tl;tl.next = p;}tl = p;} while ((e = e.next) != null);if ((tab[index] = hd) != null)hd.treeify(tab);}}//链表节点转化为树节点, 本质上treeNode也是双向链表,从下面的继承关系看,treeNode拥有prev和next属性。
TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {return new TreeNode<>(p.hash, p.key, p.value, next);
}static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {TreeNode<K,V> parent;  // red-black tree linksTreeNode<K,V> left;TreeNode<K,V> right;TreeNode<K,V> prev;    // needed to unlink next upon deletionboolean red;
}static class Entry<K,V> extends HashMap.Node<K,V> {Entry<K,V> before, after;Entry(int hash, K key, V value, Node<K,V> next) {super(hash, key, value, next);}
}static class Node<K,V> implements Map.Entry<K,V> {final int hash;final K key;V value;Node<K,V> next;
}//树化的真正操作
final void treeify(Node<K,V>[] tab) {TreeNode<K,V> root = null;for (TreeNode<K,V> x = this, next; x != null; x = next) {next = (TreeNode<K,V>)x.next;x.left = x.right = null;//将root节点置为黑色(根据红黑树的定义)if (root == null) {x.parent = null;x.red = false;root = x;}else {K k = x.key;int h = x.hash;Class<?> kc = null;//判断插入节点在红黑树的哪边for (TreeNode<K,V> p = root;;) {int dir, ph;K pk = p.key;//小于root节点,放在左边if ((ph = p.hash) > h)dir = -1;//大于root节点,放在右边else if (ph < h)dir = 1;//等于root节点,经过下面的方法尽心过多次判断,确认是否等于else if ((kc == null &&(kc = comparableClassFor(k)) == null) ||(dir = compareComparables(kc, k, pk)) == 0)dir = tieBreakOrder(k, pk);TreeNode<K,V> xp = p;//根据dir判断放在左边还是右边if ((p = (dir <= 0) ? p.left : p.right) == null) {x.parent = xp;//放在左边(与root相等,也放在左边)if (dir <= 0)xp.left = x;//放在右边elsexp.right = x;//进行平衡操作(下面过程省略) root = balanceInsertion(root, x);break;}}}}//将隐藏的双向链表调整头结点moveRootToFront(tab, root);}

get操作

public V get(Object key) {Node<K,V> e;return (e = getNode(hash(key), key)) == null ? null : e.value;
}//计算key的hash值
static final int hash(Object key) {int h;return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
//具体实现final Node<K,V> getNode(int hash, Object key) {Node<K,V>[] tab; Node<K,V> first, e; int n; K k;if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & hash]) != null) { //数组不能为空并且当前索引位置的元素不能为空;如果为空,直接返回null值if (first.hash == hash && // always check first node//检查第一个元素,如果是,直接返回((k = first.key) == key || (key != null && key.equals(k))))return first;if ((e = first.next) != null) {//向下寻找if (first instanceof TreeNode)return ((TreeNode<K,V>)first).getTreeNode(hash, key);do {if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))return e;} while ((e = e.next) != null);}}return null;}

由上面的源码可知,,当通过Key获取值时,我们通过hash()计算出Key所对应的hash值,然后去调用getNode()真正的执行get操作。

containsKey操作

public boolean containsKey(Object key) {return getNode(hash(key), key) != null;
}//计算key的hash值
static final int hash(Object key) {int h;return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
//具体实现final Node<K,V> getNode(int hash, Object key) {Node<K,V>[] tab; Node<K,V> first, e; int n; K k;if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & hash]) != null) { //数组不能为空并且当前索引位置的元素不能为空;如果为空,直接返回null值if (first.hash == hash && // always check first node//检查第一个元素,如果是,直接返回((k = first.key) == key || (key != null && key.equals(k))))return first;if ((e = first.next) != null) {//向下寻找if (first instanceof TreeNode)return ((TreeNode<K,V>)first).getTreeNode(hash, key);do {if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))return e;} while ((e = e.next) != null);}}return null;}

containsKey方法是先计算hash然后使用hash和table.length取摸得到index值,遍历table[index]元素查找是否包含key相同的值。

3.2 HashMap的面试相关

HashMap和Hashtable的区别

HashMap和Hashtable都实现了Map接口,。主要的区别有:

  1. 对Null key 和Null value的支持:HashMap可以接受为null的键值(key)和值(value),Hashtable不能接受null值,会产生空指针异常。
  2. 线程是否安全: HashMap是非synchronized,而Hashtable是synchronized,这意味着Hashtable是线程安全的,多个线程可以共享一个Hashtable;而如果没有正确的同步的话,多个线程是不能共享HashMap的
  3. 效率: 由于Hashtable是线程安全的,所以在单线程环境下比HashMap要慢。如果你不需要同步,只需要单一线程,那么使用HashMap性能要好过Hashtable。
  4. 初始容量大小和每次扩充容量大小的不同:HashMap初始大小为16,扩容为2的幂次方;HashTable初始为11,扩容为2n+1
  5. 底层结构:HashMap会将链表长度大于阈值是转化为红黑树(会先判断当前数组的长度是否小于 64,是则扩容,而不转化),将链表转化为红黑树,以减少搜索时间。Hashtable 没有这样的机制。

HashMap 和 HashSet区别
HashSet 底层就是基于 HashMap 实现的。(HashSet的对象相当于存储在HashMap的Key上,所以保证了唯一性)

HashSet如何检查重复
当你把对象加入HashSet时,HashSet会先计算对象的hashcode值来判断对象加入的位置,同时也会与其他加入的对象的hashcode值作比较,如果没有相符的hashcode,HashSet会假设对象没有重复出现。但是如果发现有相同hashcode值的对象,这时会调用equals()方法来检查hashcode相等的对象是否真的相同。如果两者相同,HashSet就不会让加入操作成功。

hashCode()与equals()的相关规定:
如果两个对象相等,则hashcode一定也是相同的
两个对象相等,对两个equals方法返回true
两个对象有相同的hashcode值,它们也不一定是相等的
综上,equals方法被覆盖过,则hashCode方法也必须被覆盖
hashCode()的默认行为是对堆上的对象产生独特值。如果没有重写hashCode(),则该class的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)。
==与equals的区别:
==是判断两个变量或实例是不是指向同一个内存空间 equals是判断两个变量或实例所指向的内存空间的值是不是相同
==是指对内存地址进行比较 equals()是对字符串的内容进行比较
==指引用是否相同 equals()指的是值是否相同

HashMap 的长度为什么是2的幂次方
为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀。Hash 值的范围值-2147483648到2147483647,前后加起来大概40亿的映射空间,只要哈希函数映射得比较均匀松散,一般应用是很难出现碰撞的。因此,我们首先用hash对数组的长度取模运算,得到的余数才能用来要存放的位置也就是对应的数组下标 hash%tab.length。但是,当数组的长度为2的幂次方时,hash%tab.length等价于hash&(tab.lenngth-1)。(取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作)。并且 采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是2的幂次方

HashMap 多线程操作导致死循环问题
当重新调整HashMap大小的时候,确实存在条件竞争,因为如果两个线程都发现HashMap需要重新调整大小了,它们会同时试着调整大小。在调整大小的过程中,存储在链表中的元素的次序会反过来,因为移动到新的bucket位置的时候,HashMap并不会将元素放在链表的尾部,而是放在头部,这是为了避免尾部遍历(tail traversing)。如果条件竞争发生了,那么就死循环了。

HashMap底层实现原理相关推荐

  1. HashMap底层实现原理,红黑树,B+树,B树的结构原理,volatile关键字,CAS(比较与交换)实现原理

    HashMap底层实现原理,红黑树,B+树,B树的结构原理,volatile关键字,CAS(比较与交换)实现原理 首先HashMap是Map的一个实现类,而Map存储形式是键值对(key,value) ...

  2. HashMap底层实现原理/HashMap与HashTable区别/HashMap与HashSet区别(转)

    HashMap底层实现原理/HashMap与HashTable区别/HashMap与HashSet区别 文章来源:http://www.cnblogs.com/beatIteWeNerverGiveU ...

  3. Java中HashMap底层实现原理

    Java面试绕不开的问题: Java中HashMap底层实现原理(JDK1.8)源码分析 这几天学习了HashMap的底层实现,但是发现好几个版本的,代码不一,而且看了Android包的HashMap ...

  4. java源码系列:HashMap底层存储原理详解——4、技术本质-原理过程-算法-取模具体解决什么问题

    目录 简介 取模具体解决什么问题? 通过数组特性,推导ascii码计算出来的下标值,创建数组非常占用空间 取模,可保证下标,在HashMap默认创建下标之内 简介 上一篇文章,我们讲到 哈希算法.哈希 ...

  5. HashMap底层实现原理--详细

    参考链接: Java集合 - (源码解析)"HashMap底层实现原理–详细" 为什么面试要问 hashmap 的原理

  6. 聊聊Java系列-集合之HashMap底层结构原理

    前言           由于HashMap在我们的工作和面试中会经常遇到,所以搞懂HashMap的底层结构原理就显得十分有必要了.在JDK1.8之前,HashMap的底层采用的数据结构是数组+链表, ...

  7. JDK1.7中HashMap底层实现原理

    JDK1.7中HashMap底层实现原理 一.数据结构 HashMap中的数据结构是数组+单链表的组合,以键值对(key-value)的形式存储元素的,通过put()和get()方法储存和获取对象. ...

  8. Java面试绕不开的问题: Java中HashMap底层实现原理(JDK1.8)源码分析

    这几天学习了HashMap的底层实现,但是发现好几个版本的,代码不一,而且看了Android包的HashMap和JDK中的HashMap的也不是一样,原来他们没有指定JDK版本,很多文章都是旧版本JD ...

  9. 【java】HashMap底层实现原理及面试题

    目录 一.哈希表(散列) 1.什么是哈希表 2.什么是哈希冲突(面试题) 3.解决哈希冲突的方法(面试题) (1) 开放地址法 ① 线性探查 ②二次探查 ③随机探查 (2) 再哈希法 (3) 链地址法 ...

  10. hashmap实现原理_Java中HashMap底层实现原理(JDK1.8)源码分析

    在JDK1.6,JDK1.7中,HashMap采用位桶+链表实现,即使用链表处理冲突,同一hash值的链表都存储在一个链表里.但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依 ...

最新文章

  1. 畸变的单目摄像机标定
  2. cacti忘记密码怎么办
  3. c语言编写订货系统,学位论文_基于c语言的仓库订货系统的仿真.doc
  4. 节省公司的宽带接入成本
  5. EOS资源模型(1)资源说明
  6. java testng 优化_java+testNG测试框架搭建----jenkins自动化执行
  7. leetcode 88
  8. iPhone 14系列影像规格曝光:长焦镜头或再度缺席
  9. python中match用法_python re.match()用法相关示例
  10. pcl学习之kd-tree
  11. Android 四大组件学习之Activity三
  12. Linux缺少libaio包
  13. 虚拟化实战——存储(二)
  14. AndroidStudio高德地图获取key
  15. CPU内存乱序访问与内存屏障
  16. 2019你好想跳槽了?程序员们谨记:哪里都不好混!
  17. 10天学安卓-第一天
  18. 10个常用的JS工具库
  19. Ubuntu 常用命令
  20. C语言将一个十进制数转化为二进制

热门文章

  1. 网络之华为USG6000防火墙日志清理
  2. 黑月教主工具脱水印_一键去水印!傻瓜式图片处理工具Inpaint
  3. 清华校友中的两大人工智能大牛贾扬清和何凯明
  4. python脚本实现QQ自动发送消息
  5. Magisk升级Zygisk
  6. 【Python】torrentParser1.01
  7. Linux PTP IEEE1588使用
  8. 清明上河图30亿像素_清明上河图全图下载
  9. 描述Map/Reduce框架的清明上河图
  10. emWin使用(1)——LCD屏幕接口、LCD驱动芯片确定