Linux kernal 鬼斧神工,博大精深,让人叹为观止,拍手叫绝。然匠心独运的设计并非扑朔迷离、盘根错节,真正的匠心独运乃辞简理博、化繁为简,在简洁中昭显优雅和智慧,kfifo就是这样一种数据结构,它就是这样简约高效,匠心独运,妙不可言,下面就跟大家一起探讨学习。

一、kfifo概述

本文分析的原代码版本 2.6.32.63
kfifo的头文件 include/linux/kfifo.h
kfifo的源文件 kernel/kfifo.c

kfifo是一种"First In First Out “数据结构,它采用了前面提到的环形缓冲区来实现,提供一个无边界的字节流服务。采用环形缓冲区的好处为,当一个数据元素被用掉后,其余数据元素不需要移动其存储位置,从而减少拷贝提高效率。更重要的是,kfifo采用了并行无锁技术,kfifo实现的单生产/单消费模式的共享队列是不需要加锁同步的。

   1: struct kfifo {
   2:     unsigned char *buffer;    /* the buffer holding the data */
   3:     unsigned int size;    /* the size of the allocated buffer */
   4:     unsigned int in;    /* data is added at offset (in % size) */
   5:     unsigned int out;    /* data is extracted from off. (out % size) */
   6:     spinlock_t *lock;    /* protects concurrent modifications */
   7: };
buffer 用于存放数据的缓存
size 缓冲区空间的大小,在初化时,将它向上圆整成2的幂
in 指向buffer中队头
out 指向buffer中的队尾
lock 如果使用不能保证任何时间最多只有一个读线程和写线程,必须使用该lock实施同步。

它的结构如图:

这看起来与普通的环形缓冲区没有什么差别,但是让人叹为观止的地方就是它巧妙的用 in 和 out 的关系和特性,处理各种操作,下面我们来详细分析。

二、kfifo内存分配和初始化

首先,看一个很有趣的函数,判断一个数是否为2的次幂,按照一般的思路,求一个数n是否为2的次幂的方法为看 n % 2 是否等于0, 我们知道“取模运算”的效率并没有 “位运算” 的效率高,有兴趣的同学可以自己做下实验。下面再验证一下这样取2的模的正确性,若n为2的次幂,则n和n-1的二进制各个位肯定不同 (如8(1000)和7(0111)),&出来的结果肯定是0;如果n不为2的次幂,则各个位肯定有相同的 (如7(0111) 和6(0110)),&出来结果肯定为0。是不是很巧妙?

   1: bool is_power_of_2(unsigned long n)
   2: {
   3:     return (n != 0 && ((n & (n - 1)) == 0));
   4: }

再看下kfifo内存分配和初始化的代码,前面提到kfifo总是对size进行2次幂的圆整,这样的好处不言而喻,可以将kfifo->size取模运算可以转化为与运算,如下:
          kfifo->in % kfifo->size 可以转化为 kfifo->in & (kfifo->size – 1)

“取模运算”的效率并没有 “位运算” 的效率高还记得不,不放过任何一点可以提高效率的地方。

   1: struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, spinlock_t *lock)
   2: {
   3:     unsigned char *buffer;
   4:     struct kfifo *ret;
   5:  
   6:     /*
   7:      * round up to the next power of 2, since our 'let the indices
   8:      * wrap' technique works only in this case.
   9:      */
  10:     if (!is_power_of_2(size)) {
  11:         BUG_ON(size > 0x80000000);
  12:         size = roundup_pow_of_two(size);
  13:     }
  14:  
  15:     buffer = kmalloc(size, gfp_mask);
  16:     if (!buffer)
  17:         return ERR_PTR(-ENOMEM);
  18:  
  19:     ret = kfifo_init(buffer, size, gfp_mask, lock);
  20:  
  21:     if (IS_ERR(ret))
  22:         kfree(buffer);
  23:  
  24:     return ret;
  25: }

三、kfifo并发无锁奥秘---内存屏障

 

  为什么kfifo实现的单生产/单消费模式的共享队列是不需要加锁同步的呢?天底下没有免费的午餐的道理人人都懂,下面我们就来看看kfifo实现并发无锁的奥秘。

我们知道 编译器编译源代码时,会将源代码进行优化,将源代码的指令进行重排序,以适合于CPU的并行执行。然而,内核同步必须避免指令重新排序,优化屏障(Optimization barrier)避免编译器的重排序优化操作,保证编译程序时在优化屏障之前的指令不会在优化屏障之后执行

举个例子,如果多核CPU执行以下程序:

   1: a = 1;
   2: b = a + 1;
   3: assert(b == 2);

假设初始时a和b的值都是0,a处于CPU1-cache中,b处于CPU0-cache中。如果按照下面流程执行这段代码:

1 CPU0执行a=1; 
2 因为a在CPU1-cache中,所以CPU0发送一个read invalidate消息来占有数据 
3 CPU0将a存入store buffer 
4 CPU1接收到read invalidate消息,于是它传递cache-line,并从自己的cache中移出该cache-line 
5 CPU0开始执行b=a+1; 
6 CPU0接收到了CPU1传递来的cache-line,即“a=0” 
7 CPU0从cache中读取a的值,即“0” 
8 CPU0更新cache-line,将store buffer中的数据写入,即“a=1” 
9 CPU0使用读取到的a的值“0”,执行加1操作,并将结果“1”写入b(b在CPU0-cache中,所以直接进行) 
10 CPU0执行assert(b == 2); 失败

软件可通过读写屏障强制内存访问次序。读写屏障像一堵墙,所有在设置读写屏障之前发起的内存访问,必须先于在设置屏障之后发起的内存访问之前完成,确保内存访问按程序的顺序完成。Linux内核提供的内存屏障API函数说明如下表。内存屏障可用于多处理器和单处理器系统,如果仅用于多处理器系统,就使用smp_xxx函数,在单处理器系统上,它们什么都不要。

smp_rmb
适用于多处理器的读内存屏障。
smp_wmb
适用于多处理器的写内存屏障。
smp_mb
适用于多处理器的内存屏障。

如果对上述代码加上内存屏障,就能保证在CPU0取a时,一定已经设置好了a = 1:

   1: void foo(void)
   2: {
   3:  a = 1;
   4:  smp_wmb();
   5:  b = a + 1;
   6: }

这里只是简单介绍了内存屏障的概念,如果想对内存屏障有进一步理解,请参考我的译文《为什么需要内存屏障》。

四、kfifo的入队__kfifo_put和出队__kfifo_get操作

__kfifo_put是入队操作,它先将数据放入buffer中,然后移动in的位置,其源代码如下:

   1: unsigned int __kfifo_put(struct kfifo *fifo,
   2:             const unsigned char *buffer, unsigned int len)
   3: {
   4:     unsigned int l;
   5:  
   6:     len = min(len, fifo->size - fifo->in + fifo->out);
   7:  
   8:     /*
   9:      * Ensure that we sample the fifo->out index -before- we
  10:      * start putting bytes into the kfifo.
  11:      */
  12:  
  13:     smp_mb();
  14:  
  15:     /* first put the data starting from fifo->in to buffer end */
  16:     l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));
  17:     memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);
  18:  
  19:     /* then put the rest (if any) at the beginning of the buffer */
  20:     memcpy(fifo->buffer, buffer + l, len - l);
  21:  
  22:     /*
  23:      * Ensure that we add the bytes to the kfifo -before-
  24:      * we update the fifo->in index.
  25:      */
  26:  
  27:     smp_wmb();
  28:  
  29:     fifo->in += len;
  30:  
  31:     return len;
  32: }

6行,环形缓冲区的剩余容量为fifo->size - fifo->in + fifo->out,让写入的长度取len和剩余容量中较小的,避免写越界;

13行,加内存屏障,保证在开始放入数据之前,fifo->out取到正确的值(另一个CPU可能正在改写out值)

16行,前面讲到fifo->size已经2的次幂圆整,而且kfifo->in % kfifo->size 可以转化为 kfifo->in & (kfifo->size – 1),所以fifo->size - (fifo->in & (fifo->size - 1)) 即位 fifo->in 到 buffer末尾所剩余的长度,l取len和剩余长度的最小值,即为需要拷贝l 字节到fifo->buffer + fifo->in的位置上。

17行,拷贝l 字节到fifo->buffer + fifo->in的位置上,如果l = len,则已拷贝完成,第20行len – l 为0,将不执行,如果l = fifo->size - (fifo->in & (fifo->size - 1)) ,则第20行还需要把剩下的 len – l 长度拷贝到buffer的头部。

27行,加写内存屏障,保证in 加之前,memcpy的字节已经全部写入buffer,如果不加内存屏障,可能数据还没写完,另一个CPU就来读数据,读到的缓冲区内的数据不完全,因为读数据是通过 in – out 来判断的。

29行,注意这里 只是用了 fifo->in +=  len而未取模,这就是kfifo的设计精妙之处,这里用到了unsigned int的溢出性质,当in 持续增加到溢出时又会被置为0,这样就节省了每次in向前增加都要取模的性能,锱铢必较,精益求精,让人不得不佩服。

__kfifo_get是出队操作,它从buffer中取出数据,然后移动out的位置,其源代码如下:

   1: unsigned int __kfifo_get(struct kfifo *fifo,
   2:              unsigned char *buffer, unsigned int len)
   3: {
   4:     unsigned int l;
   5:  
   6:     len = min(len, fifo->in - fifo->out);
   7:  
   8:     /*
   9:      * Ensure that we sample the fifo->in index -before- we
  10:      * start removing bytes from the kfifo.
  11:      */
  12:  
  13:     smp_rmb();
  14:  
  15:     /* first get the data from fifo->out until the end of the buffer */
  16:     l = min(len, fifo->size - (fifo->out & (fifo->size - 1)));
  17:     memcpy(buffer, fifo->buffer + (fifo->out & (fifo->size - 1)), l);
  18:  
  19:     /* then get the rest (if any) from the beginning of the buffer */
  20:     memcpy(buffer + l, fifo->buffer, len - l);
  21:  
  22:     /*
  23:      * Ensure that we remove the bytes from the kfifo -before-
  24:      * we update the fifo->out index.
  25:      */
  26:  
  27:     smp_mb();
  28:  
  29:     fifo->out += len;
  30:  
  31:     return len;
  32: }

6行,可去读的长度为fifo->in – fifo->out,让读的长度取len和剩余容量中较小的,避免读越界;

13行,加读内存屏障,保证在开始取数据之前,fifo->in取到正确的值(另一个CPU可能正在改写in值)

16行,前面讲到fifo->size已经2的次幂圆整,而且kfifo->out % kfifo->size 可以转化为 kfifo->out & (kfifo->size – 1),所以fifo->size - (fifo->out & (fifo->size - 1)) 即位 fifo->out 到 buffer末尾所剩余的长度,l取len和剩余长度的最小值,即为从fifo->buffer + fifo->in到末尾所要去读的长度。

17行,从fifo->buffer + fifo->out的位置开始读取l长度,如果l = len,则已读取完成,第20行len – l 为0,将不执行,如果l =fifo->size - (fifo->out & (fifo->size - 1)) ,则第20行还需从buffer头部读取 len – l 长。

27行,加内存屏障,保证在修改out前,已经从buffer中取走了数据,如果不加屏障,可能先执行了增加out的操作,数据还没取完,令一个CPU可能已经往buffer写数据,将数据破坏,因为写数据是通过fifo->size - (fifo->in & (fifo->size - 1))来判断的 。

29行,注意这里 只是用了 fifo->out +=  len 也未取模,同样unsigned int的溢出性质,当out 持续增加到溢出时又会被置为0,如果in先溢出,出现 in  < out 的情况,那么 in – out 为负数(又将溢出),in – out 的值还是为buffer中数据的长度。

这里图解一下 in 先溢出的情况,size = 64, 写入前 in = 4294967291, out = 4294967279 ,数据 in – out = 12;

写入 数据16个字节,则 in + 16 = 4294967307,溢出为 11,此时 in – out = –4294967268,溢出为28,数据长度仍然正确,由此可见,在这种特殊情况下,这种计算仍然正确,是不是让人叹为观止,妙不可言?

五、扩展

kfifo设计精巧,妙不可言,但主要为内核提供服务,内存屏障函数也主要为内核提供服务,并未开放出来,但是我们学习到了这种设计巧妙之处,就可以依葫芦画瓢,写出自己的并发无锁环形缓冲区,这将在下篇文章中给出,至于内存屏障函数的问题,好在gcc 4.2以上的版本都内置提供__sync_synchronize()这类的函数,效果相差不多。《并发无锁环形队列的实现》给出自己的并发无锁的实现,有兴趣的朋友可以参考一下。

FIFO - linux内核数据结构相关推荐

  1. go移植linux内核书名叫啥,Go语言移植Linux内核数据结构hlist

    hlist(哈希链表)可以通过相应的Hash算法,迅速找到相关的链表Head及节点. 在有些应用场景,比Go标准库提供的list(一种双向链表)更合适. 依照list.h中的源码,我实现了一个Go语言 ...

  2. linux内核数据结构实现--链表、队列和哈希

    C是面向过程的语言,但是linux内核却用C实现了一套面向对象的设计模式,linux内核中处处体现着面向对象的思想. 1. 内核链表和list_entry 1.1 普通链表实现 我们在语法书上学到的链 ...

  3. linux内核数据结构之链表

    1.前言 最近写代码需用到链表结构,正好公共库有关于链表的.第一眼看时,觉得有点新鲜,和我之前见到的链表结构不一样,只有前驱和后继指针,而没有数据域.后来看代码注释发现该代码来自linux内核,在li ...

  4. 【Linux】Linux内核数据结构:IDR(redix树)

    1. 引言 最近在系统里遇到了IDR结构体,后来看了一下,是内核的一个基础结构. 这个是怎么引入的,引入是为了什么呢? 最早的时候,我们的结构体是一个类似于大结构体套小结构体. struct A {i ...

  5. Linux内核数据结构——链表

    目录 目录 简介 单向链表 双向链表 环形链表 Linux内核中的链表实现 offsetof container_of container_of 第一部分 container_of 第二部分 链表初始 ...

  6. linux 内核 数据结构 file_operations、file、inode

    文件操作结构 将驱动程序操作连接到设备编号,结构定义在<linux/fs.h>,其中包含一组函数指针,每个打开的文件(在内部由一个file结构表示)和一组函数关联(通过包含指向一个file ...

  7. Linux 内核数据结构解析--无锁链表

    无锁链表定义在include/linux/llist.h.无锁链表是一种单向链表 定义: struct llist_head {struct llist_node *first; };struct l ...

  8. 模仿Linux内核kfifo实现的循环缓存

    想实现个循环缓冲区(Circular Buffer),搜了些资料多数是基于循环队列的实现方式.使用一个变量存放缓冲区中的数据长度或者空出来一个空间来判断缓冲区是否满了.偶然间看到分析Linux内核的循 ...

  9. linux内核循环,模仿Linux内核kfifo实现的循环缓存

    想实现个循环缓冲区(Circular Buffer),搜了些资料多数是基于循环队列的实现方式.使用一个变量存放缓冲区中的数据长度或者空出来一个空间来判断缓冲区是否满了.偶然间看到分析Linux内核的循 ...

最新文章

  1. 距离 Java 开发者玩转 Serverless,到底还有多远?
  2. cs231n 学习笔记(5)——神经网络part1:建立神经网络架构
  3. 【Python】全网最新最全Pyecharts可视化教程(一)
  4. springboot+dynamic多数据源配置
  5. 小程序 | 使用GitHub创建图床存储器解决CDN配额耗尽问题
  6. chrome linux添加图标,分享|在 Linux 下体验谷歌 Material风格的GTK和图标主题Paper
  7. Fence Repair (二叉树求解)(优先队列,先取出小的)
  8. 数字通信计算机仿真问题汇总,燕山大学数字通信计算机仿真课设模板.doc
  9. gateway报错Parameter 2 of method redisRateLimiter in org.springframework.cloud.gateway.config.GatewayR
  10. 学习帮——提高智商、改善记忆力的120种绝佳方法!
  11. prlooks插件下载_ae looks插件下载
  12. 2021年JAVA多线程并发编程面试题(持续更新)
  13. 【ThreeJS基础教程-高级几何体篇】2.5 加载GLTF/GLB格式文件,Draco压缩文件的获取与加载
  14. 【正点原子MP157连载】 第九章 TF-A移植-摘自【正点原子】【正点原子】STM32MP1嵌入式Linux驱动开发指南V1.7
  15. 编码的奥秘:手电筒剖析
  16. 统计建模与R软件 薛毅 陈立萍 清华大学出版社第四章课后答案
  17. 手机做了防抓包,如何抓包
  18. Linux 笔记本电脑选购指南
  19. 使用Markdown制作简历
  20. 痞子衡嵌入式:ARM Cortex-M内核那些事(6)- 系统堆栈机制

热门文章

  1. 损失函数Loss Function
  2. 神策数据 2022 年春节放假通知
  3. 临近期末,这些题不来看看吗?(下)
  4. 简数采集器数据发布到WordPress
  5. QPushbutton之setProperty
  6. Java GUI编程(3)---JLabel设置图片
  7. 【第一章 第1节】Web网页的基本概念
  8. word中打出希腊字母
  9. 如何获取每月第一个/最后一个交易日
  10. 业余挣点零花钱,分享一些 Python 赚钱的门路