转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/42264479

什么是PCA?

在数据挖掘或者图像处理等领域经常会用到主成分分析,这样做的好处是使要分析的数据的维度降低了,但是数据的主要信息还能保留下来,并且,这些变换后的维两两不相关!至于为什么?那就接着往下看。在本文中,将会很详细的解答这些问题:PCA、SVD、特征值、奇异值、特征向量这些关键词是怎么联系到一起的?又是如何在一个矩阵上体现出来?它们如何决定着一个矩阵的性质?能不能用一种直观又容易理解的方式描述出来?

数据降维

为了说明什么是数据的主成分,先从数据降维说起。数据降维是怎么回事儿?假设三维空间中有一系列点,这些点分布在一个过原点的斜面上,如果你用自然坐标系x,y,z这三个轴来表示这组数据的话,需要使用三个维度,而事实上,这些点的分布仅仅是在一个二维的平面上,那么,问题出在哪里?如果你再仔细想想,能不能把x,y,z坐标系旋转一下,使数据所在平面与x,y平面重合?这就对了!如果把旋转后的坐标系记为x',y',z',那么这组数据的表示只用x'和y'两个维度表示即可!当然了,如果想恢复原来的表示方式,那就得把这两个坐标之间的变换矩阵存下来。这样就能把数据维度降下来了!但是,我们要看到这个过程的本质,如果把这些数据按行或者按列排成一个矩阵,那么这个矩阵的秩就是2!这些数据之间是有相关性的,这些数据构成的过原点的向量的最大线性无关组包含2个向量,这就是为什么一开始就假设平面过原点的原因!那么如果平面不过原点呢?这就是数据中心化的缘故!将坐标原点平移到数据中心,这样原本不相关的数据在这个新坐标系中就有相关性了!有趣的是,三点一定共面,也就是说三维空间中任意三点中心化后都是线性相关的,一般来讲n维空间中的n个点一定能在一个n-1维子空间中分析!所以,不要说数据不相关,那是因为坐标没选对!

上面这个例子里把数据降维后并没有丢弃任何东西,因为这些数据在平面以外的第三个维度的分量都为0。现在,我假设这些数据在z'轴有一个很小的抖动,那么我们仍然用上述的二维表示这些数据,理由是我认为这两个轴的信息是数据的主成分,而这些信息对于我们的分析已经足够了,z'轴上的抖动很有可能是噪声,也就是说本来这组数据是有相关性的,噪声的引入,导致了数据不完全相关,但是,这些数据在z'轴上的分布与原点构成的夹角非常小,也就是说在z'轴上有很大的相关性,综合这些考虑,就可以认为数据在x',y'轴上的投影构成了数据的主成分!

现在,关于什么是数据的主成分已经很好的回答了。下面来看一个更具体的例子。

下面是一些学生的成绩:

首先,假设这些科目成绩不相关,也就是说某一科考多少份与其他科没有关系。那么一眼就能看出来,数学、物理、化学这三门成绩构成了这组数据的主成分(很显然,数学作为第一主成分,因为数学成绩拉的最开)。为什么一眼能看出来?因为坐标轴选对了!下面再看一组数据,还能不能一眼看出来:

是不是有点凌乱了?你还能看出来数据的主成分吗?显然不能,因为在这坐标系下数据分布很散乱。所以说,看到事物的表象而看不到其本质,是因为看的角度有问题!如果把这些数据在空间中画出来,也许你一眼就能看出来。但是,对于高维数据,能想象其分布吗?就算能描述分布,如何精确地找到这些主成分的轴?如何衡量你提取的主成分到底占了整个数据的多少信息?要回答这些问题,需要将上面的分析上升到理论层面。接下来就是PCA的理论分析。

PCA推导

以下面这幅图开始我们的推导:

上面是二维空间中的一组数据,很明显,数据的分布让我们很容易就能看出来主成分的轴(简称主轴)的大致方向。下面的问题就是如何通过数学计算找出主轴的方向。来看这张图:

现在要做的事情就是寻找u1的方向,对于这点,我想好多人都有经验,这不就是以前用最小二乘法拟合数据时做的事情吗!对,最小二乘法求出来的直线(二维)的方向就是u1的方向!那u2的方向呢?因为这里是二维情况,所以u2方向就是跟u1垂直的方向,对于高维数据,怎么知道u2的方向?经过下面的理论推导,各个主轴都能确定下来。

给定一组数据:(如无说明,以下推导中出现的向量都是默认是列向量)

将其中心化后表示为:

中心化后的数据在第一主轴u1方向上分布散的最开,也就是说在u1方向上的投影的绝对值之和最大(也可以说方差最大),计算投影的方法就是将x与u1做内积,由于只需要求u1的方向,所以设u1是单位向量。

也就是最大化下式:

也即最大化:

解释:平方可以把绝对值符号拿掉,光滑曲线处理起来方便。

两个向量做内积可以转化成矩阵乘法:

所以目标函数可以表示为:

括号里面就是矩阵乘法表示内积,转置以后的行向量乘以列向量得到一个数。因为一个数的转置还是其本身,所以又可以将目标函数化为:

这样就可以把括号去掉!去掉以后变成:

由于u1和i无关,可以把它拿到求和符外面:

注意,其实括号里面是一个矩阵乘以自身的转置,这个矩阵形式如下:

X矩阵的第i列就是xi,于是有:

所以目标函数最后化为:

上式到底有没有最大值呢?如果没有前面的1/n,那就是就是一个标准的二次型!并且XX'(为了方便,用'表示转置)得到的矩阵是一个半正定的对称阵!为什么?首先XX'是对称阵,因为(XX')'=XX',下面证明它是半正定,什么是半正定?就是所有特征值大于等于0。

假设XX'的某一个特征值为,对应的特征向量为,则有:

证明完毕!对于半正定阵的二次型,存在最大值!现在问题就是如何求目标函数的最大值?以及取最大值时u1的方向?下面介绍两种方法。

方法一  拉格朗日乘数法

目标函数和约束条件构成了一个最大化问题:

构造拉格朗日函数:

对u1求导

显然,u1即为XX'特征值对应的特征向量!XX'的所有特征值和特征向量都满足上式,那么将上式代入目标函数表达式即可得到

所以,如果取最大的那个特征值,那么得到的目标值就最大。有可能你会有疑问,为什么一阶导数为0就是极大值呢?那么再求二阶导数:

二阶导数半负定,所以,目标函数在最大特征值所对应的特征向量上取得最大值!所以,第一主轴方向即为第一大特征值对应的特征向量方向。第二主轴方向为第二大特征值对应的特征向量方向,以此类推,证明类似。

下面介绍第二种方法

方法二  奇异值法

这方法是从矩阵分析里面总结的,随便取个名叫奇异值法。

首先,对于向量x,其二范数(也就是模长)的平方为:

所以有:

把二次型化成一个范数的形式,最大化上式也即这个问题:对于一个矩阵,它对一个向量做变换,变换前后的向量的模长伸缩尺度如何才能最大?这个很有趣,简直就是把矩阵的真面目给暴露出来了。为了给出解答,下面引入矩阵分析中的一个定理:

表示矩阵A的最大奇异值!一个矩阵A的奇异值为AA'(或A'A)的特征值开平方,前面讲过AA'的特征值都大于等于0。当x为单位向量时,上式就是我们的目标函数表达式。然而,上式只是告诉我们能取到最大值是多少,并没有说取到最大值时x的方向,要想知道取到最大值时的方向,那就来证明这个定理吧!

考察对称阵

为其n个特征值,并令与之对应的单位特征向量为:

对了,忘了提醒,对称阵不同特征值对应的特征向量两两正交!这组特征向量构成了空间中的一组单位正交基。

任意取一个向量x,将其表示为

代入上式可得

由于这些单位特征向量两两正交,只有相同的做内积为1,不同的做内积为0.所以上式做内积出来的结果为:

根据特征值的大小关系有

所以

定理得证!

显然,当时取得最大值

再回到我们的问题,需要最大化:

将X'代入上面证明过程中的矩阵A,则u1的方向即为A'A=(X')'X'=XX'对大特征值对应的特征向量的方向!

所以第一主轴已经找到,第二主轴为次大特征值对应的特征向量的方向,以此类推。

两种方法殊途同归,现在来解答关于主成分保留占比的问题。上面我们知道第一主轴对应的最大值是最大奇异值(也就是AA'最大特征值开平方),第二主轴对应的最大值是次大奇异值,以此类推。那么假设取前r大奇异值对应的主轴作为提取的主成分,则提取后的数据信息占比为:

分子是前r大奇异值的平方和,分母是所有奇异值的平方和。

到此,主成分分析PCA就讲完了,文章最后提到了奇异值,关于这个,后面的奇异值分解(SVD)文章将会详细讲解并给出其具体应用!

PCA主成分分析(原理+例子)相关推荐

  1. python sklearn.decomposition.PCA 主成分分析, 原理详解

    引用文章1: 主成分分析(PCA)原理详解 https://blog.csdn.net/program_developer/article/details/80632779 引用文章2: 彻底理解样本 ...

  2. PCA主成分分析原理及分析实践详细介绍

    自己的博客在Github上,访问不多.这篇文章竟然被别人发了出来,还是贴到CSDN上,更方便检索吧. 原文:<http://blog.genesino.com/2016/10/PCA/> ...

  3. PCA主成分分析原理与基础知识

    笔记的主要内容是 PCA(主成分分析) 原理和基本知识,相关数学原理和核心概念. 什么是PCA分析? 主成分分析(PCA, principal component analysis)是一种数学降维方法 ...

  4. PCA(主成分分析)原理详解

    PCA概念 PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法.PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称 ...

  5. PCA主成分分析原理理解学习(源于b站某视频)

    Principal Component Analysis 主成分分析 地址:https://www.bilibili.com/video/BV1E5411E71z?spm_id_from=333.33 ...

  6. pca主成分分析原理

    基本思想 几个数学思想: 其方差Var(F1)越大,表示F1包含的信息越多. 从数学上可以证明,原变量协方差矩阵的特征根是主成分的方差,所以前m个较大特征根就代表前m个较大的主成分方差值:原变量协方差 ...

  7. PCA主成分分析原理的三种角度的理解

    主成分分析算是降维算法中的一个经典算法了.网上也有很多博客介绍了这个算法.这篇文章从三个不同的角度,对PCA方法做了详细的分析,不同的角度进行推导最后得到的也都是同一个结果,推导过程需要些数学基础,但 ...

  8. 机器学习算法之PCA(主成分分析)人脸识别,最小重构误差和最大化散度证明,PCA主成分分析原理剖析,PCA人脸识别matlab实现,PCA人脸识别python实现

    目录 PCA介绍 PCA大致思路 PCA人脸识别(特征脸法) matlab代码实现 Python代码实现 PCA几何解释 PCA证明最小重构误差和最大散度等价 实验结果 PCA介绍 主成分分析(Pri ...

  9. PCA(主成分分析-principal components analysis)学习笔记以及源代码实战讲解

    PCA(主成分分析-principal components analysis)学习笔记以及源代码实战讲解 文章目录 PCA(主成分分析-principal components analysis)学 ...

  10. 无监督学习 | PCA 主成分分析之客户分类

    文章目录 1. 开始 2. 数据探索 2.2 特征相关性 2.3 可视化特征分布 3. 数据预处理 3.1 特征缩放 3.2 异常值检测 4. 数据转换 4.1 主成分分析(PCA) 4.2 降维 4 ...

最新文章

  1. SharePoint 2010中的客户端模型
  2. SLAM中大场景下室内外区域的地图管理方法
  3. 学习计算机视觉你需要知道这关键的八点
  4. pip ValueError: check_hostname requires server_hostname
  5. 安卓bochs模拟linux_云电脑?不需要的,有了这个模拟器,手机轻松变电脑
  6. 怎么修改_PDF怎么修改文字?其实修改PDF内容很简单
  7. php 半角全角,PHP 全角转半角实现代码
  8. gitlab版本控制系统源码部署
  9. 使用 Python 和 Flask 实现 RESTful services
  10. 《码出高效:Java开发手册》百度网盘下载
  11. Linux快捷键的使用
  12. hysys动态模拟教程_hysys动态模拟介绍
  13. 使用 LinuxGSM 搭建饥荒联机服务器(带洞穴)
  14. 线上平台/线下渠道,VR营销渠道大盘点
  15. 第一章 企业管理概论
  16. iOS7 UUID唯一标识
  17. Win10将谷歌浏览器设置为默认浏览器(修改默认应用)
  18. 免费小说分享—《异界之九阳真经》
  19. PyQt5 基本窗口控件(状态栏/窗口/图标/提示消息/QLabel/文本类控件)
  20. 第七章第三题(计算数字的出现次数)(Count occurrence of numbers) - 编程练习题答案

热门文章

  1. Linux命令详解(2) – mv
  2. [Camera]摄像头图像处理及色彩模型
  3. Field baseMapper in xxxxx required a bean of type 'xxxxxx' that could not be found 问题
  4. 生成指定范围的随机数
  5. Android实现蓝牙(BlueTooth)设备检测连接
  6. 广东省考计算机面试题,广东省考面试心得 -电脑资料
  7. 资深猎头解密:什么样的简历一投就中?
  8. Fabric 1.0源代码分析(22)Ledger #blkstorage(block文件存储)
  9. 牛啊,全国DNS服务器IP地址都在这里了
  10. 机器学习技术在日常生活和商业领域的应用有哪些,主要带来了什么商业收益?