动态规划part11

  • 123.买卖股票的最佳时机III
    • 题目描述
    • 思路
    • 拓展
  • 188.买卖股票的最佳时机IV
    • 题目描述
    • 思路
    • 易错点

123.买卖股票的最佳时机III

题目链接:123.买卖股票的最佳时机III
参考:https://programmercarl.com/0123.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4%BD%B3%E6%97%B6%E6%9C%BAIII.html
视频讲解:https://www.bilibili.com/video/BV1WG411K7AR

题目描述

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1: 输入:prices = [3,3,5,0,0,3,1,4] 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天(股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。

示例 2: 输入:prices = [1,2,3,4,5] 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3: 输入:prices = [7,6,4,3,1] 输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为0。

示例 4: 输入:prices = [1] 输出:0

提示:

  • 1 <= prices.length <= 10^5
  • 0 <= prices[i] <= 10^5

思路

这道题目相对 121.买卖股票的最佳时机 和 122.买卖股票的最佳时机II 难了不少。

关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

接来下我用动态规划五部曲详细分析一下:

  1. 确定dp数组以及下标的含义

一天一共就有五个状态,

  • 没有操作 (其实我们也可以不设置这个状态)
  • 第一次持有股票
  • 第一次不持有股票
  • 第二次持有股票
  • 第二次不持有股票

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。

例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。

  1. 确定递推公式

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

  • dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

  • dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

  1. dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

  1. 确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

  1. 举例推导dp数组

以输入[1,2,3,4,5]为例

大家可以看到红色框为最后两次卖出的状态。

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的。

所以最终最大利润是dp[4][4]

以上五部都分析完了,不难写出如下代码:

// 版本一
class Solution {public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(5, 0));dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][0] = dp[i - 1][0];dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[prices.size() - 1][4];}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n × 5)

当然,大家可以看到力扣官方题解里的一种优化空间写法,我这里给出对应的C++版本:

// 版本二
class Solution {public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<int> dp(5, 0);dp[1] = -prices[0];dp[3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[1] = max(dp[1], dp[0] - prices[i]);dp[2] = max(dp[2], dp[1] + prices[i]);dp[3] = max(dp[3], dp[2] - prices[i]);dp[4] = max(dp[4], dp[3] + prices[i]);}return dp[4];}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

大家会发现dp[2]利用的是当天的dp[1]。 但结果也是对的。

我来简单解释一下:

dp[1] = max(dp[1], dp[0] - prices[i]); 如果dp[1]取dp[1],即保持买入股票的状态,那么 dp[2] = max(dp[2], dp[1] + prices[i]);中dp[1] + prices[i] 就是今天卖出。

如果dp[1]取dp[0] - prices[i],今天买入股票,那么dp[2] = max(dp[2], dp[1] + prices[i]);中的dp[1] + prices[i]相当于是今天再卖出股票,一买一卖收益为0,对所得现金没有影响。相当于今天买入股票又卖出股票,等于没有操作,保持昨天卖出股票的状态了。

这种写法看上去简单,其实思路很绕,不建议大家这么写,这么思考,很容易把自己绕进去!

对于本题,把版本一的写法研究明白,足以!

拓展

其实我们可以不设置,‘0. 没有操作’ 这个状态,因为没有操作,手上的现金自然就是0, 正如我们在 121.买卖股票的最佳时机 和 122.买卖股票的最佳时机II 也没有设置这一状态是一样的。

代码如下:

// 版本三
class Solution {public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(5, 0));dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][1] = max(dp[i - 1][1], 0 - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[prices.size() - 1][4];}
};

188.买卖股票的最佳时机IV

题目链接:188.买卖股票的最佳时机IV
参考:https://programmercarl.com/0188.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4%BD%B3%E6%97%B6%E6%9C%BAIV.html
视频讲解:https://www.bilibili.com/video/BV16M411U7XJ

题目描述

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1: 输入:k = 2, prices = [2,4,1] 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。

示例 2: 输入:k = 2, prices = [3,2,6,5,0,3] 输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

提示:

  • 0 <= k <= 100
  • 0 <= prices.length <= 1000
  • 0 <= prices[i] <= 1000

思路

这道题目可以说是动态规划:123.买卖股票的最佳时机III 的进阶版,这里要求至多有k次交易。

动规五部曲,分析如下:

  1. 确定dp数组以及下标的含义

在动态规划:123.买卖股票的最佳时机III 中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。

使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

j的状态表示为:

  • 0 表示不操作
  • 1 第一次买入
  • 2 第一次卖出
  • 3 第二次买入
  • 4 第二次卖出

大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入

题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了(因为包含0状态)。

所以二维dp数组的C++定义为:

vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
  1. 确定递推公式

还要强调一下:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可以类比剩下的状态,代码如下:

for (int j = 0; j < 2 * k - 1; j += 2) {dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}

本题和动态规划:123.买卖股票的最佳时机III 最大的区别就是这里要类比j为奇数是买,偶数是卖的状态。

  1. dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

第二次卖出初始化dp[0][4] = 0;

所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]

代码如下:

for (int j = 1; j < 2 * k; j += 2) {dp[0][j] = -prices[0];
}

在初始化的地方同样要类比j为偶数是卖、奇数是买的状态。

  1. 确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

  1. 举例推导dp数组

以输入[1,2,3,4,5],k=2为例。

最后一次卖出,一定是利润最大的,dp[prices.size() - 1][2 * k]即红色部分就是最后求解。

以上分析完毕,C++代码如下:

class Solution {public:int maxProfit(int k, vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));for (int j = 1; j < 2 * k; j += 2) {dp[0][j] = -prices[0];}for (int i = 1;i < prices.size(); i++) {for (int j = 0; j < 2 * k - 1; j += 2) {dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);}}return dp[prices.size() - 1][2 * k];}
};

当然有的解法是定义一个三维数组dp[i][j][k],第i天,第j次买卖,k表示买还是卖的状态,从定义上来讲是比较直观。

但感觉三维数组操作起来有些麻烦,我是直接用二维数组来模拟三维数组的情况,代码看起来也清爽一些。

易错点

上面的代码注意dp数组的初始化和递推公式那里的for循环条件不一样

初始化相当于从 1 开始,每 j加 2 执行一次循环,相当于只对奇数进行操作,所以条件是 j < 2*k ,最大取到 2k-1;

递推公式第二层for循环是从 j=0 开始,每次 j+2 得到尾值(类比链表章节那里的虚拟头节点),在循环里对 j+1 和 j+2 分别操作,所以循环只能到 2k-2,所以循环条件是 j < 2k-1。

这两点一定要想清楚。如果不清楚循环条件,就代入k = 2试一下。

算法训练第五十天 | 123.买卖股票的最佳时机III、188.买卖股票的最佳时机IV相关推荐

  1. 【第50天| ● 123.买卖股票的最佳时机III ● 188.买卖股票的最佳时机IV 】

    123.买卖股票的最佳时机III class Solution {public:int maxProfit(vector<int>& prices) {vector<int& ...

  2. 算法训练第五十一天 | 309.最佳买卖股票时机含冷冻期、714.买卖股票的最佳时机含手续费、股票问题总结

    动态规划part12 309.最佳买卖股票时机含冷冻期 题目描述 思路 总结 714.买卖股票的最佳时机含手续费 题目描述 思路 股票问题总结 309.最佳买卖股票时机含冷冻期 题目链接:309.最佳 ...

  3. 蓝桥杯算法训练合集十五 1.打翻的闹钟2.智斗锅鸡3.文件列表

    目录 1.打翻的闹钟 2.智斗锅鸡 3.文件列表 1.打翻的闹钟 问题描述 冯迭伊曼晚上刷吉米多维奇刷的太勤奋了,几乎天天迟到.崔神为了让VonDieEman改掉迟到的坏毛病,给他买了个闹钟. 一天早 ...

  4. 《算法和数据结构》算法零基础五十题讲解

    前言   很多人加我都是想询问如何学好算法.我的方法是我用了 十年 的时间,自己总结出来的,不可能适合所有人,但是我觉得挺有效的,如果你觉得可行,尽管一试!   首先,我们心中要有一团

  5. UPC 2020年夏混合个人训练第五十场【DEG】

    问题 D: 01矩阵 时间限制: 1 Sec 内存限制: 128 MB 样例输入 2 2 1 1 样例输出 10 提示 对于20%的数据:n,m,x,y≤3 对于40%的数据:n,m,x,y≤70 对 ...

  6. 蓝桥杯算法训练合集十二 1.比较2.计算最小公倍数3.比赛安排4.潜伏者5.P0702

    目录 1.比较 2.计算最小公倍数 3.比赛安排 4.潜伏者 5.P0702 1.比较 问题描述 给出一个n长的数列,再进行m次询问,每次询问询问两个区间[L1,R1],[L2,R2], 询问数列第L ...

  7. 代码随想录算法训练营第五十天|动态规划:139.单词拆分、多重背包理论基础、背包问题总结

    [139.单词拆分] 这个题目是一个背包问题.但是他稍微有点不太一样.在于这题判断能否装满背包是在判断单词是否出现在字典中,如果出现,就代表能装满. 背包是长度为i的字符串 物品是长度为i-j的子串 ...

  8. 代码随想录算法训练营第五十六天-动态规划16|● 583. 两个字符串的删除操作 ● 72. 编辑距离 ● 编辑距离总结篇

    一.583. 两个字符串的删除操作 给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符. 示例: 输入: &qu ...

  9. 极客算法训练笔记(六),十大经典排序之希尔排序,快速排序

    目录 抛砖引玉 希尔排序 快速排序 抛砖引玉 十大经典排序算法江山图 十大经典排序算法江山图 排序算法的衡量指标我这里不再重复,上一篇我已经列举分析的很清楚了,但是非常重要,没看到我上一篇的小伙伴墙裂 ...

最新文章

  1. DateReader,DateAdapter,DateSet和SqlCommand的基本使用方法
  2. 腾讯信息流热点挖掘技术实践
  3. Android 6.0 运行时权限处理
  4. .net中实现拖拽控件
  5. tomcat server.xml各个端口的作用
  6. Winform中使用FastReport的PictureObject时通过代码设置图片源并使Image图片旋转90度
  7. Python *与** 参数问题
  8. 一段人人都应该知道的从Vue到React的过渡史
  9. NHibernate学习之基础配置
  10. xgboost: 速度快效果好的boosting模型
  11. 冷却水的循环方式有哪几种_VOCs2.0 | 闭式循环水系统,减少VOCs逸散的有效设施...
  12. Docker详解(五)——Docker基本使用
  13. View绘制详解(四),谝一谝layout过程
  14. TLSF内存分配器记录
  15. 游戏视频怎么录制,游戏录制软件哪个好
  16. 汉语拼音字母n和l、in和ing的发音有什么区别?
  17. 《蜗居》:海外解读中国新样本
  18. 清空el-form表单数据(整理)
  19. [2012-08-21] HTTPC 的使用
  20. Delphi Web前端开发教程(2):基于TMS WEB Core框架

热门文章

  1. 企鲸客SCRM免费赠送企业微信考勤机
  2. web开发实战,学习路线让你少走弯路
  3. MongoDB安装BIN没有目录
  4. 《瘟疫传说:无罪》成功背后是Asobo Studios在游戏设计中的超强控制力
  5. Mozilla XUL分析
  6. 金山wps2017校招笔试(前端A卷)
  7. python 练习题:018:大象喝水
  8. 神经时间序列的频域和时频域分析研究的建议和指南
  9. 三星手机通讯录导出 .spb格式转.vcf
  10. Mathematica中数据类型的互换——实数(即小数)to有理数(即分数),有理数(即分数)to实数(即小数)