本文转载自:https://github.com/apachecn/MachineLearning

集成方法: ensemble method(元算法: meta algorithm) 概述

  • 概念:是对其他算法进行组合的一种形式。

  • 通俗来说: 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见。 机器学习处理问题时又何尝不是如此? 这就是集成方法背后的思想。

  • 集成方法:

    1. 投票选举(bagging: 自举汇聚法 bootstrap aggregating): 是基于数据随机重抽样分类器构造的方法
    2. 再学习(boosting): 是基于所有分类器的加权求和的方法

集成方法 场景

目前 bagging 方法最流行的版本是: 随机森林(random forest)
选男友:美女选择择偶对象的时候,会问几个闺蜜的建议,最后选择一个综合得分最高的一个作为男朋友

目前 boosting 方法最流行的版本是: AdaBoost
追女友:3个帅哥追同一个美女,第1个帅哥失败->(传授经验:姓名、家庭情况) 第2个帅哥失败->(传授经验:兴趣爱好、性格特点) 第3个帅哥成功

bagging 和 boosting 区别是什么?

  1. bagging 是一种与 boosting 很类似的技术, 所使用的多个分类器的类型(数据量和特征量)都是一致的。
  2. bagging 是由不同的分类器(1.数据随机化 2.特征随机化)经过训练,综合得出的出现最多分类结果;boosting 是通过调整已有分类器错分的那些数据来获得新的分类器,得出目前最优的结果。
  3. bagging 中的分类器权重是相等的;而 boosting 中的分类器加权求和,所以权重并不相等,每个权重代表的是其对应分类器在上一轮迭代中的成功度。

随机森林

随机森林 概述

  • 随机森林指的是利用多棵树对样本进行训练并预测的一种分类器。
  • 决策树相当于一个大师,通过自己在数据集中学到的知识用于新数据的分类。但是俗话说得好,一个诸葛亮,玩不过三个臭皮匠。随机森林就是希望构建多个臭皮匠,希望最终的分类效果能够超过单个大师的一种算法。

随机森林 原理

那随机森林具体如何构建呢?
有两个方面:

  1. 数据的随机性化
  2. 待选特征的随机化

使得随机森林中的决策树都能够彼此不同,提升系统的多样性,从而提升分类性能。

数据的随机化:使得随机森林中的决策树更普遍化一点,适合更多的场景。

(有放回的准确率在:70% 以上, 无放回的准确率在:60% 以上)

  1. 采取有放回的抽样方式 构造子数据集,保证不同子集之间的数量级一样(不同子集/同一子集 之间的元素可以重复)
  2. 利用子数据集来构建子决策树,将这个数据放到每个子决策树中,每个子决策树输出一个结果。
  3. 然后统计子决策树的投票结果,得到最终的分类 就是 随机森林的输出结果。
  4. 如下图,假设随机森林中有3棵子决策树,2棵子树的分类结果是A类,1棵子树的分类结果是B类,那么随机森林的分类结果就是A类。

待选特征的随机化

  1. 子树从所有的待选特征中随机选取一定的特征。
  2. 在选取的特征中选取最优的特征。

下图中,蓝色的方块代表所有可以被选择的特征,也就是目前的待选特征;黄色的方块是分裂特征。
左边是一棵决策树的特征选取过程,通过在待选特征中选取最优的分裂特征(别忘了前文提到的ID3算法,C4.5算法,CART算法等等),完成分裂。
右边是一个随机森林中的子树的特征选取过程。

随机森林 开发流程

收集数据:任何方法
准备数据:转换样本集
分析数据:任何方法
训练算法:通过数据随机化和特征随机化,进行多实例的分类评估
测试算法:计算错误率
使用算法:输入样本数据,然后运行 随机森林 算法判断输入数据分类属于哪个分类,最后对计算出的分类执行后续处理

随机森林 算法特点

优点:几乎不需要输入准备、可实现隐式特征选择、训练速度非常快、其他模型很难超越、很难建立一个糟糕的随机森林模型、大量优秀、免费以及开源的实现。
缺点:劣势在于模型大小、是个很难去解释的黑盒子。
适用数据范围:数值型和标称型

项目案例: 声纳信号分类

项目概述

这是 Gorman 和 Sejnowski 在研究使用神经网络的声纳信号分类中使用的数据集。任务是训练一个模型来区分声纳信号。

开发流程

收集数据:提供的文本文件
准备数据:转换样本集
分析数据:手工检查数据
训练算法:在数据上,利用 random_forest() 函数进行优化评估,返回模型的综合分类结果
测试算法:在采用自定义 n_folds 份随机重抽样 进行测试评估,得出综合的预测评分
使用算法:若你感兴趣可以构建完整的应用程序,从案例进行封装,也可以参考我们的代码

收集数据:提供的文本文件

样本数据:sonar-all-data.txt

0.02,0.0371,0.0428,0.0207,0.0954,0.0986,0.1539,0.1601,0.3109,0.2111,0.1609,0.1582,0.2238,0.0645,0.066,0.2273,0.31,0.2999,0.5078,0.4797,0.5783,0.5071,0.4328,0.555,0.6711,0.6415,0.7104,0.808,0.6791,0.3857,0.1307,0.2604,0.5121,0.7547,0.8537,0.8507,0.6692,0.6097,0.4943,0.2744,0.051,0.2834,0.2825,0.4256,0.2641,0.1386,0.1051,0.1343,0.0383,0.0324,0.0232,0.0027,0.0065,0.0159,0.0072,0.0167,0.018,0.0084,0.009,0.0032,R
0.0453,0.0523,0.0843,0.0689,0.1183,0.2583,0.2156,0.3481,0.3337,0.2872,0.4918,0.6552,0.6919,0.7797,0.7464,0.9444,1,0.8874,0.8024,0.7818,0.5212,0.4052,0.3957,0.3914,0.325,0.32,0.3271,0.2767,0.4423,0.2028,0.3788,0.2947,0.1984,0.2341,0.1306,0.4182,0.3835,0.1057,0.184,0.197,0.1674,0.0583,0.1401,0.1628,0.0621,0.0203,0.053,0.0742,0.0409,0.0061,0.0125,0.0084,0.0089,0.0048,0.0094,0.0191,0.014,0.0049,0.0052,0.0044,R
0.0262,0.0582,0.1099,0.1083,0.0974,0.228,0.2431,0.3771,0.5598,0.6194,0.6333,0.706,0.5544,0.532,0.6479,0.6931,0.6759,0.7551,0.8929,0.8619,0.7974,0.6737,0.4293,0.3648,0.5331,0.2413,0.507,0.8533,0.6036,0.8514,0.8512,0.5045,0.1862,0.2709,0.4232,0.3043,0.6116,0.6756,0.5375,0.4719,0.4647,0.2587,0.2129,0.2222,0.2111,0.0176,0.1348,0.0744,0.013,0.0106,0.0033,0.0232,0.0166,0.0095,0.018,0.0244,0.0316,0.0164,0.0095,0.0078,R

准备数据:转换样本集

# 导入csv文件
def loadDataSet(filename):dataset = []with open(filename, 'r') as fr:for line in fr.readlines():if not line:continuelineArr = []for featrue in line.split(','):# strip()返回移除字符串头尾指定的字符生成的新字符串str_f = featrue.strip()if str_f.isdigit(): # 判断是否是数字# 将数据集的第column列转换成float形式lineArr.append(float(str_f))else:# 添加分类标签lineArr.append(str_f)dataset.append(lineArr)return dataset

分析数据:手工检查数据

训练算法:在数据上,利用 random_forest() 函数进行优化评估,返回模型的综合分类结果

  • 样本数据随机无放回抽样-用于交叉验证
def cross_validation_split(dataset, n_folds):"""cross_validation_split(将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取)

    Args:
        dataset     原始数据集
        n_folds     数据集dataset分成n_flods份
    Returns:
        dataset_split    list集合,存放的是:将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取
    """dataset_split = list()dataset_copy = list(dataset)       # 复制一份 dataset,防止 dataset 的内容改变fold_size = len(dataset) / n_foldsfor i in range(n_folds):fold = list()                  # 每次循环 fold 清零,防止重复导入 dataset_splitwhile len(fold) < fold_size:   # 这里不能用 if,if 只是在第一次判断时起作用,while 执行循环,直到条件不成立# 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性            index = randrange(len(dataset_copy))# 将对应索引 index 的内容从 dataset_copy 中导出,并将该内容从 dataset_copy 中删除。# pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。fold.append(dataset_copy.pop(index))  # 无放回的方式# fold.append(dataset_copy[index])  # 有放回的方式dataset_split.append(fold)# 由dataset分割出的n_folds个数据构成的列表,为了用于交叉验证return dataset_split
  • 训练数据集随机化
# Create a random subsample from the dataset with replacement
def subsample(dataset, ratio):   # 创建数据集的随机子样本"""random_forest(评估算法性能,返回模型得分)

    Args:
        dataset         训练数据集
        ratio           训练数据集的样本比例
    Returns:
        sample          随机抽样的训练样本
    """sample = list()# 训练样本的按比例抽样。# round() 方法返回浮点数x的四舍五入值。n_sample = round(len(dataset) * ratio)while len(sample) < n_sample:# 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性index = randrange(len(dataset))sample.append(dataset[index])return sample
  • 特征随机化
# 找出分割数据集的最优特征,得到最优的特征 index,特征值 row[index],以及分割完的数据 groups(left, right)
def get_split(dataset, n_features):class_values = list(set(row[-1] for row in dataset))  # class_values =[0, 1]b_index, b_value, b_score, b_groups = 999, 999, 999, Nonefeatures = list()while len(features) < n_features:index = randrange(len(dataset[0])-1)  # 往 features 添加 n_features 个特征( n_feature 等于特征数的根号),特征索引从 dataset 中随机取if index not in features:features.append(index)for index in features:                    # 在 n_features 个特征中选出最优的特征索引,并没有遍历所有特征,从而保证了每课决策树的差异性for row in dataset:groups = test_split(index, row[index], dataset)  # groups=(left, right), row[index] 遍历每一行 index 索引下的特征值作为分类值 value, 找出最优的分类特征和特征值gini = gini_index(groups, class_values)# 左右两边的数量越一样,说明数据区分度不高,gini系数越大if gini < b_score:b_index, b_value, b_score, b_groups = index, row[index], gini, groups  # 最后得到最优的分类特征 b_index,分类特征值 b_value,分类结果 b_groups。b_value 为分错的代价成本# print b_scorereturn {'index': b_index, 'value': b_value, 'groups': b_groups}
  • 随机森林
# Random Forest Algorithm
def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):"""random_forest(评估算法性能,返回模型得分)

    Args:
        train           训练数据集
        test            测试数据集
        max_depth       决策树深度不能太深,不然容易导致过拟合
        min_size        叶子节点的大小
        sample_size     训练数据集的样本比例
        n_trees         决策树的个数
        n_features      选取的特征的个数
    Returns:
        predictions     每一行的预测结果,bagging 预测最后的分类结果
    """trees = list()# n_trees 表示决策树的数量for i in range(n_trees):# 随机抽样的训练样本, 随机采样保证了每棵决策树训练集的差异性sample = subsample(train, sample_size)# 创建一个决策树tree = build_tree(sample, max_depth, min_size, n_features)trees.append(tree)# 每一行的预测结果,bagging 预测最后的分类结果predictions = [bagging_predict(trees, row) for row in test]return predictions

测试算法:在采用自定义 n_folds 份随机重抽样 进行测试评估,得出综合的预测评分。

  • 计算随机森林的预测结果的正确率
# 评估算法性能,返回模型得分
def evaluate_algorithm(dataset, algorithm, n_folds, *args):"""evaluate_algorithm(评估算法性能,返回模型得分)

    Args:
        dataset     原始数据集
        algorithm   使用的算法
        n_folds     数据的份数
        *args       其他的参数
    Returns:
        scores      模型得分
    """# 将数据集进行随机抽样,分成 n_folds 份,数据无重复的抽取folds = cross_validation_split(dataset, n_folds)scores = list()# 每次循环从 folds 从取出一个 fold 作为测试集,其余作为训练集,遍历整个 folds ,实现交叉验证for fold in folds:train_set = list(folds)train_set.remove(fold)# 将多个 fold 列表组合成一个 train_set 列表, 类似 union all"""
        In [20]: l1=[[1, 2, 'a'], [11, 22, 'b']]
        In [21]: l2=[[3, 4, 'c'], [33, 44, 'd']]
        In [22]: l=[]
        In [23]: l.append(l1)
        In [24]: l.append(l2)
        In [25]: l
        Out[25]: [[[1, 2, 'a'], [11, 22, 'b']], [[3, 4, 'c'], [33, 44, 'd']]]
        In [26]: sum(l, [])
        Out[26]: [[1, 2, 'a'], [11, 22, 'b'], [3, 4, 'c'], [33, 44, 'd']]
        """train_set = sum(train_set, [])test_set = list()# fold 表示从原始数据集 dataset 提取出来的测试集for row in fold:row_copy = list(row)row_copy[-1] = None test_set.append(row_copy)predicted = algorithm(train_set, test_set, *args)actual = [row[-1] for row in fold]# 计算随机森林的预测结果的正确率accuracy = accuracy_metric(actual, predicted)scores.append(accuracy)return scores

使用算法:若你感兴趣可以构建完整的应用程序,从案例进行封装,也可以参考我们的代码

完整代码地址: https://github.com/apachecn/MachineLearning/blob/master/src/python/7.RandomForest/randomForest.py

AdaBoost

AdaBoost (adaptive boosting: 自适应 boosting) 概述

能否使用弱分类器和多个实例来构建一个强分类器? 这是一个非常有趣的理论问题。

AdaBoost 原理

AdaBoost 工作原理

AdaBoost 开发流程

收集数据:可以使用任意方法
准备数据:依赖于所使用的弱分类器类型,本章使用的是单层决策树,这种分类器可以处理任何数据类型。当然也可以使用任意分类器作为弱分类器,第2章到第6章中的任一分类器都可以充当弱分类器。作为弱分类器,简单分类器的效果更好。
分析数据:可以使用任意方法。
训练算法:AdaBoost 的大部分时间都用在训练上,分类器将多次在同一数据集上训练弱分类器。
测试算法:计算分类的错误率。
使用算法:通SVM一样,AdaBoost 预测两个类别中的一个。如果想把它应用到多个类别的场景,那么就要像多类 SVM 中的做法一样对 AdaBoost 进行修改。

AdaBoost 算法特点

* 优点:泛化(由具体的、个别的扩大为一般的)错误率低,易编码,可以应用在大部分分类器上,无参数调节。
* 缺点:对离群点敏感。
* 适用数据类型:数值型和标称型数据。

项目案例: 马疝病的预测

项目流程图

基于单层决策树构建弱分类器

  • 单层决策树(decision stump, 也称决策树桩)是一种简单的决策树。

项目概述

预测患有疝气病的马的存活问题,这里的数据包括368个样本和28个特征,疝气病是描述马胃肠痛的术语,然而,这种病并不一定源自马的胃肠问题,其他问题也可能引发疝气病,该数据集中包含了医院检测马疝气病的一些指标,有的指标比较主观,有的指标难以测量,例如马的疼痛级别。另外,除了部分指标主观和难以测量之外,该数据还存在一个问题,数据集中有30%的值是缺失的。

开发流程

收集数据:提供的文本文件
准备数据:确保类别标签是+1和-1,而非1和0
分析数据:统计分析
训练算法:在数据上,利用 adaBoostTrainDS() 函数训练出一系列的分类器
测试算法:我们拥有两个数据集。在不采用随机抽样的方法下,我们就会对 AdaBoost 和 Logistic 回归的结果进行完全对等的比较
使用算法:观察该例子上的错误率。不过,也可以构建一个 Web 网站,让驯马师输入马的症状然后预测马是否会死去

收集数据:提供的文本文件

训练数据:horseColicTraining.txt
测试数据:horseColicTest.txt

2.000000 1.000000    38.500000   66.000000   28.000000   3.000000    3.000000    0.000000    2.000000    5.000000    4.000000    4.000000    0.000000    0.000000    0.000000    3.000000    5.000000    45.000000   8.400000    0.000000    0.000000    -1.000000
1.000000    1.000000    39.200000   88.000000   20.000000   0.000000    0.000000    4.000000    1.000000    3.000000    4.000000    2.000000    0.000000    0.000000    0.000000    4.000000    2.000000    50.000000   85.000000   2.000000    2.000000    -1.000000
2.000000    1.000000    38.300000   40.000000   24.000000   1.000000    1.000000    3.000000    1.000000    3.000000    3.000000    1.000000    0.000000    0.000000    0.000000    1.000000    1.000000    33.000000   6.700000    0.000000    0.000000    1.000000

准备数据:确保类别标签是+1和-1,而非1和0

def loadDataSet(fileName):# 获取 feature 的数量, 便于获取numFeat = len(open(fileName).readline().split('\t'))dataArr = []labelArr = []fr = open(fileName)for line in fr.readlines():lineArr = []curLine = line.strip().split('\t')for i in range(numFeat-1):lineArr.append(float(curLine[i]))dataArr.append(lineArr)labelArr.append(float(curLine[-1]))return dataArr, labelArr

分析数据:统计分析

过拟合(overfitting, 也称为过学习)

  • 发现测试错误率在达到一个最小值之后有开始上升,这种现象称为过拟合。

  • 通俗来说:就是把一些噪音数据也拟合进去的,如下图。

训练算法:在数据上,利用 adaBoostTrainDS() 函数训练出一系列的分类器

def adaBoostTrainDS(dataArr, labelArr, numIt=40):"""adaBoostTrainDS(adaBoost训练过程放大)
    Args:
        dataArr   特征标签集合
        labelArr  分类标签集合
        numIt     实例数
    Returns:
        weakClassArr  弱分类器的集合
        aggClassEst   预测的分类结果值
    """weakClassArr = []m = shape(dataArr)[0]# 初始化 D,设置每个样本的权重值,平均分为m份D = mat(ones((m, 1))/m)aggClassEst = mat(zeros((m, 1)))for i in range(numIt):# 得到决策树的模型bestStump, error, classEst = buildStump(dataArr, labelArr, D)# alpha目的主要是计算每一个分类器实例的权重(组合就是分类结果)# 计算每个分类器的alpha权重值alpha = float(0.5*log((1.0-error)/max(error, 1e-16)))bestStump['alpha'] = alpha# store Stump Params in ArrayweakClassArr.append(bestStump)print "alpha=%s, classEst=%s, bestStump=%s, error=%s " % (alpha, classEst.T, bestStump, error)# 分类正确:乘积为1,不会影响结果,-1主要是下面求e的-alpha次方# 分类错误:乘积为 -1,结果会受影响,所以也乘以 -1expon = multiply(-1*alpha*mat(labelArr).T, classEst)print '(-1取反)预测值expon=', expon.T# 计算e的expon次方,然后计算得到一个综合的概率的值# 结果发现: 判断错误的样本,D对于的样本权重值会变大。D = multiply(D, exp(expon))D = D/D.sum()# 预测的分类结果值,在上一轮结果的基础上,进行加和操作print '当前的分类结果:', alpha*classEst.TaggClassEst += alpha*classEstprint "叠加后的分类结果aggClassEst: ", aggClassEst.T# sign 判断正为1, 0为0, 负为-1,通过最终加和的权重值,判断符号。# 结果为:错误的样本标签集合,因为是 !=,那么结果就是0 正, 1 负aggErrors = multiply(sign(aggClassEst) != mat(labelArr).T, ones((m, 1)))errorRate = aggErrors.sum()/m# print "total error=%s " % (errorRate)if errorRate == 0.0:breakreturn weakClassArr, aggClassEst
发现:
alpha (模型权重)目的主要是计算每一个分类器实例的权重(加和就是分类结果)分类的权重值:最大的值= alpha 的加和,最小值=-最大值
D (样本权重)的目的是为了计算错误概率: weightedError = D.T*errArr,求最佳分类器样本的权重值:如果一个值误判的几率越小,那么 D 的样本权重越小

测试算法:我们拥有两个数据集。在不采用随机抽样的方法下,我们就会对 AdaBoost 和 Logistic 回归的结果进行完全对等的比较。

def adaClassify(datToClass, classifierArr):"""adaClassify(ada分类测试)
    Args:
        datToClass     多个待分类的样例
        classifierArr  弱分类器的集合
    Returns:
        sign(aggClassEst) 分类结果
    """# do stuff similar to last aggClassEst in adaBoostTrainDSdataMat = mat(datToClass)m = shape(dataMat)[0]aggClassEst = mat(zeros((m, 1)))# 循环 多个分类器for i in range(len(classifierArr)):# 前提: 我们已经知道了最佳的分类器的实例# 通过分类器来核算每一次的分类结果,然后通过alpha*每一次的结果 得到最后的权重加和的值。classEst = stumpClassify(dataMat, classifierArr[i]['dim'], classifierArr[i]['thresh'], classifierArr[i]['ineq'])aggClassEst += classifierArr[i]['alpha']*classEstreturn sign(aggClassEst)

使用算法:观察该例子上的错误率。不过,也可以构建一个 Web 网站,让驯马师输入马的症状然后预测马是否会死去。

# 马疝病数据集
# 训练集合
dataArr, labelArr = loadDataSet("input/7.AdaBoost/horseColicTraining2.txt")
weakClassArr, aggClassEst = adaBoostTrainDS(dataArr, labelArr, 40)
print weakClassArr, '\n-----\n', aggClassEst.T
# 计算ROC下面的AUC的面积大小
plotROC(aggClassEst.T, labelArr)
# 测试集合
dataArrTest, labelArrTest = loadDataSet("input/7.AdaBoost/horseColicTest2.txt")
m = shape(dataArrTest)[0]
predicting10 = adaClassify(dataArrTest, weakClassArr)
errArr = mat(ones((m, 1)))
# 测试:计算总样本数,错误样本数,错误率
print m, errArr[predicting10 != mat(labelArrTest).T].sum(), errArr[predicting10 != mat(labelArrTest).T].sum()/m

完整代码地址: https://github.com/apachecn/MachineLearning/blob/master/src/python/7.AdaBoost/adaboost.py

要点补充

非均衡现象:

在分类器训练时,正例数目和反例数目不相等(相差很大)

  • 判断马是否能继续生存(不可误杀)
  • 过滤垃圾邮件(不可漏判)
  • 不能放过传染病的人
  • 不能随便认为别人犯罪

ROC 评估方法

  • ROC 曲线: 最佳的分类器应该尽可能地处于左上角

  • 对不同的 ROC 曲线进行比较的一个指标是曲线下的面积(Area Unser the Curve, AUC).
  • AUC 给出的是分类器的平均性能值,当然它并不能完全代替对整条曲线的观察。
  • 一个完美分类器的 AUC 为1,而随机猜测的 AUC 则为0.5。

代价函数

  • 基于代价函数的分类器决策控制:TP*(-5)+FN*1+FP*50+TN*0

抽样

  • 欠抽样(undersampling)或者过抽样(oversampling)

    • 欠抽样: 意味着删除样例
    • 过抽样: 意味着复制样例(重复使用)

  • 作者:片刻
  • GitHub地址: https://github.com/apachecn/MachineLearning
  • 版权声明:欢迎转载学习 => 请标注信息来源于 ApacheCN

集成方法-随机森林和AdaBoost相关推荐

  1. 第七章 集成方法-随机森林和AdaBoost

    集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个 ...

  2. 【机器学习实战】第7章 集成方法 随机森林(RandomForest)和 Adaboost

    第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重 ...

  3. 机器学习实践之集成方法(随机森林和AdaBoost元算法提高分类性能)

       本文根据最近学习机器学习书籍网络文章的情况,特将一些学习思路做了归纳整理,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. (未添加文章标签,特此补上,2018.1.14记.) 一.概述 ...

  4. python决策树 value_直播案例 | 决策树、随机森林和 AdaBoost 的 Python 实现

    获取案例链接.直播课件.数据集在本公众号内发送"机器学习". 本案例使用 Python 逐步实现了三种基于树的模型:分类回归决策树(CART).随机森林和 AdaBoost .在实 ...

  5. 集成算法-随机森林与案例实战-泰坦尼克获救预测

    集成算法-随机森林 Ensemble learning 目的:让机器学习效果更好,单个不行,群殴走起 Bagging:训练多个分类器取平均 f ( x ) = 1 / M ∑ m = 1 M f m ...

  6. 【机器学习实战】第7章 集成方法(随机森林和 AdaBoost)

    第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重 ...

  7. 机器学习-集成之随机森林算法原理及实战

    Bagging和随机森林 前言 集成学习是目前机器学习的一大热门方向.简单来说,集成学习就是组合许多弱模型以得到一个预测结果比较好的强模型.对于常见的分类问题就是指采用多个分类器对数据集进行预测,把这 ...

  8. 集成学习—随机森林原理(理解与论文研读)

    如果只想大致理解下随机森林的原理请看第一部分,第二部分是对原论文的研读(灰色引用标记的为证明或自己的理解),这部分可能需要花的时间比较长,不需要的可以忽略. 此外,文末列出来的参考视频,如果读论文还是 ...

  9. 机器学习之路:python 集成分类器 随机森林分类RandomForestClassifier 梯度提升决策树分类GradientBoostingClassifier 预测泰坦尼克号幸存者...

    python3 学习使用随机森林分类器 梯度提升决策树分类 的api,并将他们和单一决策树预测结果做出对比 附上我的git,欢迎大家来参考我其他分类器的代码: https://github.com/l ...

最新文章

  1. memcached简介(转)
  2. Android Fragment add/replace以及backstack
  3. QT的QFileOpenEvent类的使用
  4. Spring Boot 中使用 Swagger2 构建强大的 RESTful API 文档
  5. 摘: cmd环境 使用一点知识
  6. qtp连接mysql 无驱动_QTP连接MySQL
  7. 实例37:python
  8. java数据结构 -链表 -获取有效节点个数,单链表中倒数k个节点
  9. activeMQ入门安装
  10. 曾经以为20岁很遥远_曾经以为30岁很遥远,却发现18岁是很久之前的事了。
  11. android面试 源码,Android面试题-onCreate源码都没看过,怎好意思说自己做android-Go语言中文社区...
  12. 06 php 单例模式
  13. sqlmap tamper mysql_Sqlmap过waf命令tamper各脚本的适用环境
  14. Python之pygame安装教程
  15. 一套完整仿拉勾网HTML静态网页模板(含38个独立HTML)
  16. Spring 创建切面
  17. 知云文献翻译打不开_【小虎聊干货】八大翻译软件大揭秘,告诉你科研翻译的正确打开方式...
  18. win10便签常驻桌面_Win 10最好用的10个功能,第一个你就不知道!
  19. PotPlayer播放DST音频的mkv电影解码错误
  20. [ MySQL ] 使用Navicat进行MySQL数据库备份 / 还原(Part 2:备份.sql文件方式)

热门文章

  1. 行人重识别-姿态检测
  2. 【华为机试Python3题解】HJ21简单密码
  3. 机器学习笔记-投票法(Voting)理论与实现
  4. 微信公众号第三方平台投票
  5. “飞象”已露国家级工业互联网平台之像
  6. 算法日记(十三)之动态规划
  7. CSS样式:渐变色圆角边框
  8. mmdetection 环境配置与简单测试(mmrotate同理)
  9. Android Studio在编译时出现SSL peer shut down incorrectly问题
  10. 关于干货集中营的一个开源App