LeNet: 在大的真实数据集上的表现并不尽如⼈意。
1.神经网络计算复杂。
2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。

机器学习的特征提取:手工定义的特征提取函数
神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。

AlexNet

首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状。
特征:

  1. 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
  2. 将sigmoid激活函数改成了更加简单的ReLU激活函数。
  3. 用Dropout来控制全连接层的模型复杂度。
  4. 引入数据增强,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。

mport time
import torch
from torch import nn, optim
import torchvision
import numpy as np
import sys
sys.path.append("/home/input/")
import d2lzh1981 as d2l
import os
import torch.nn.functional as Fdevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')class AlexNet(nn.Module):def __init__(self):super(AlexNet, self).__init__()self.conv = nn.Sequential(nn.Conv2d(1, 96, 11, 4), # in_channels, out_channels, kernel_size, stride, paddingnn.ReLU(),nn.MaxPool2d(3, 2), # kernel_size, stride# 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数nn.Conv2d(96, 256, 5, 1, 2),nn.ReLU(),nn.MaxPool2d(3, 2),# 连续3个卷积层,且使用更小的卷积窗口。除了最后的卷积层外,进一步增大了输出通道数。# 前两个卷积层后不使用池化层来减小输入的高和宽nn.Conv2d(256, 384, 3, 1, 1),nn.ReLU(),nn.Conv2d(384, 384, 3, 1, 1),nn.ReLU(),nn.Conv2d(384, 256, 3, 1, 1),nn.ReLU(),nn.MaxPool2d(3, 2))# 这里全连接层的输出个数比LeNet中的大数倍。使用丢弃层来缓解过拟合self.fc = nn.Sequential(nn.Linear(256*5*5, 4096),nn.ReLU(),nn.Dropout(0.5),#由于使用CPU镜像,精简网络,若为GPU镜像可添加该层#nn.Linear(4096, 4096),#nn.ReLU(),#nn.Dropout(0.5),# 输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000nn.Linear(4096, 10),)def forward(self, img):feature = self.conv(img)output = self.fc(feature.view(img.shape[0], -1))return output

载入数据集

# 本函数已保存在d2lzh_pytorch包中方便以后使用
def load_data_fashion_mnist(batch_size, resize=None, root='/home/kesci/input/FashionMNIST2065'):"""Download the fashion mnist dataset and then load into memory."""trans = []if resize:trans.append(torchvision.transforms.Resize(size=resize))trans.append(torchvision.transforms.ToTensor())transform = torchvision.transforms.Compose(trans)mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=2)test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=2)return train_iter, test_iter#batchsize=128
batch_size = 16
# 如出现“out of memory”的报错信息,可减小batch_size或resize
train_iter, test_iter = load_data_fashion_mnist(batch_size,224)
for X, Y in train_iter:print('X =', X.shape,'\nY =', Y.type(torch.int32))break

输出:X = torch.Size([16, 1, 224, 224])
Y = tensor([9, 0, 5, 5, 2, 8, 3, 5, 0, 7, 2, 3, 8, 6, 4, 5], dtype=torch.int32)

训练

lr, num_epochs = 0.001, 3
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

使用重复元素的网络(VGG)

VGG:通过重复使⽤简单的基础块来构建深度模型。
Block:数个相同的填充为1、窗口形状为3×33\times 33×3的卷积层,接上一个步幅为2、窗口形状为2×22\times 22×2的最大池化层。
卷积层保持输入的高和宽不变,而池化层则对其减半。

VGG11的简单实现

def vgg_block(num_convs, in_channels, out_channels): #卷积层个数,输入通道数,输出通道数blk = []for i in range(num_convs):if i == 0:blk.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))else:blk.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1))blk.append(nn.ReLU())blk.append(nn.MaxPool2d(kernel_size=2, stride=2)) # 这里会使宽高减半return nn.Sequential(*blk)
conv_arch = ((1, 1, 64), (1, 64, 128), (2, 128, 256), (2, 256, 512), (2, 512, 512))
# 经过5个vgg_block, 宽高会减半5次, 变成 224/32 = 7
fc_features = 512 * 7 * 7 # c * w * h
fc_hidden_units = 4096 # 任意
def vgg(conv_arch, fc_features, fc_hidden_units=4096):net = nn.Sequential()# 卷积层部分for i, (num_convs, in_channels, out_channels) in enumerate(conv_arch):# 每经过一个vgg_block都会使宽高减半net.add_module("vgg_block_" + str(i+1), vgg_block(num_convs, in_channels, out_channels))# 全连接层部分net.add_module("fc", nn.Sequential(d2l.FlattenLayer(),nn.Linear(fc_features, fc_hidden_units),nn.ReLU(),nn.Dropout(0.5),nn.Linear(fc_hidden_units, fc_hidden_units),nn.ReLU(),nn.Dropout(0.5),nn.Linear(fc_hidden_units, 10)))return netnet = vgg(conv_arch, fc_features, fc_hidden_units)
X = torch.rand(1, 1, 224, 224)# named_children获取一级子模块及其名字(named_modules会返回所有子模块,包括子模块的子模块)
for name, blk in net.named_children(): X = blk(X)print(name, 'output shape: ', X.shape)

输出:vgg_block_1 output shape: torch.Size([1, 64, 112, 112])
vgg_block_2 output shape: torch.Size([1, 128, 56, 56])
vgg_block_3 output shape: torch.Size([1, 256, 28, 28])
vgg_block_4 output shape: torch.Size([1, 512, 14, 14])
vgg_block_5 output shape: torch.Size([1, 512, 7, 7])
fc output shape: torch.Size([1, 10])

ratio = 8
small_conv_arch = [(1, 1, 64//ratio), (1, 64//ratio, 128//ratio), (2, 128//ratio, 256//ratio), (2, 256//ratio, 512//ratio), (2, 512//ratio, 512//ratio)]
net = vgg(small_conv_arch, fc_features // ratio, fc_hidden_units // ratio)
print(net)


batchsize=16
#batch_size = 64
# 如出现“out of memory”的报错信息,可减小batch_size或resize
# train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

⽹络中的⽹络(NiN)

LeNet、AlexNet和VGG:先以由卷积层构成的模块充分抽取 空间特征,再以由全连接层构成的模块来输出分类结果。
NiN:串联多个由卷积层和“全连接”层构成的小⽹络来构建⼀个深层⽹络。
⽤了输出通道数等于标签类别数的NiN块,然后使⽤全局平均池化层对每个通道中所有元素求平均并直接⽤于分类。

1×1卷积核作用
1.放缩通道数:通过控制卷积核的数量达到通道数的放缩。
2.增加非线性。1×1卷积核的卷积过程相当于全连接层的计算过程,并且还加入了非线性激活函数,从而可以增加网络的非线性。
3.计算参数少

def nin_block(in_channels, out_channels, kernel_size, stride, padding):blk = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1),nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1),nn.ReLU())return blk
# 已保存在d2lzh_pytorch
class GlobalAvgPool2d(nn.Module):# 全局平均池化层可通过将池化窗口形状设置成输入的高和宽实现def __init__(self):super(GlobalAvgPool2d, self).__init__()def forward(self, x):return F.avg_pool2d(x, kernel_size=x.size()[2:])net = nn.Sequential(nin_block(1, 96, kernel_size=11, stride=4, padding=0),nn.MaxPool2d(kernel_size=3, stride=2),nin_block(96, 256, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(kernel_size=3, stride=2),nin_block(256, 384, kernel_size=3, stride=1, padding=1),nn.MaxPool2d(kernel_size=3, stride=2), nn.Dropout(0.5),# 标签类别数是10nin_block(384, 10, kernel_size=3, stride=1, padding=1),GlobalAvgPool2d(), # 将四维的输出转成二维的输出,其形状为(批量大小, 10)d2l.FlattenLayer())
X = torch.rand(1, 1, 224, 224)
for name, blk in net.named_children(): X = blk(X)print(name, 'output shape: ', X.shape)

batch_size = 128
# 如出现“out of memory”的报错信息,可减小batch_size或resize
#train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)lr, num_epochs = 0.002, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

NiN重复使⽤由卷积层和代替全连接层的1×1卷积层构成的NiN块来构建深层⽹络。
NiN去除了容易造成过拟合的全连接输出层,而是将其替换成输出通道数等于标签类别数 的NiN块和全局平均池化层。
NiN的以上设计思想影响了后⾯⼀系列卷积神经⽹络的设计。

GoogLeNet

  1. 由Inception基础块组成。
  2. Inception块相当于⼀个有4条线路的⼦⽹络。它通过不同窗口形状的卷积层和最⼤池化层来并⾏抽取信息,并使⽤1×1卷积层减少通道数从而降低模型复杂度。
  3. 可以⾃定义的超参数是每个层的输出通道数,我们以此来控制模型复杂度。

class Inception(nn.Module):# c1 - c4为每条线路里的层的输出通道数def __init__(self, in_c, c1, c2, c3, c4):super(Inception, self).__init__()# 线路1,单1 x 1卷积层self.p1_1 = nn.Conv2d(in_c, c1, kernel_size=1)# 线路2,1 x 1卷积层后接3 x 3卷积层self.p2_1 = nn.Conv2d(in_c, c2[0], kernel_size=1)self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)# 线路3,1 x 1卷积层后接5 x 5卷积层self.p3_1 = nn.Conv2d(in_c, c3[0], kernel_size=1)self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)# 线路4,3 x 3最大池化层后接1 x 1卷积层self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)self.p4_2 = nn.Conv2d(in_c, c4, kernel_size=1)def forward(self, x):p1 = F.relu(self.p1_1(x))p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))p4 = F.relu(self.p4_2(self.p4_1(x)))return torch.cat((p1, p2, p3, p4), dim=1)  # 在通道维上连结输出

GoogLeNet模型

完整模型结构

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),nn.Conv2d(64, 192, kernel_size=3, padding=1),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),Inception(256, 128, (128, 192), (32, 96), 64),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),Inception(512, 160, (112, 224), (24, 64), 64),Inception(512, 128, (128, 256), (24, 64), 64),Inception(512, 112, (144, 288), (32, 64), 64),Inception(528, 256, (160, 320), (32, 128), 128),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),Inception(832, 384, (192, 384), (48, 128), 128),d2l.GlobalAvgPool2d())net = nn.Sequential(b1, b2, b3, b4, b5, d2l.FlattenLayer(), nn.Linear(1024, 10))net = nn.Sequential(b1, b2, b3, b4, b5, d2l.FlattenLayer(), nn.Linear(1024, 10))X = torch.rand(1, 1, 96, 96)for blk in net.children(): X = blk(X)print('output shape: ', X.shape)#batchsize=128
batch_size = 16
# 如出现“out of memory”的报错信息,可减小batch_size或resize
#train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
``

从零开始学Pytorch(八)之Modern CNN相关推荐

  1. 从零开始学Pytorch(零)之安装Pytorch

    本文首发于公众号"计算机视觉cv" Pytorch优势   聊聊为什么使用Pytorch,个人觉得Pytorch比Tensorflow对新手更为友善,而且现在Pytorch在学术界 ...

  2. 从零开始学Pytorch(第5天)

    从零开始学Pytorch(第5天) 前言 一.模块类的构建 1. nn.Module 2.构建一个线性回归类 二.计算图和自动求导机制 1.计算图 2.自动求导 总结 前言 今天主要了解和学习Pyto ...

  3. 从零开始学Pytorch(十八)之kaggle图像分类

    我们将运用在前面几节中学到的知识来参加Kaggle竞赛,该竞赛解决了CIFAR-10图像分类问题.比赛网址是https://www.kaggle.com/c/cifar-10. import nump ...

  4. mpandroidchart y轴从0开始_从零开始学Pytorch(十七)之目标检测基础

    目标检测和边界框 %matplotlib inline from PIL import Imageimport sys sys.path.append('/home/input/') #数据集路径 i ...

  5. 从零开始学Pytorch(十七)之目标检测基础

    目标检测和边界框 %matplotlib inline from PIL import Imageimport sys sys.path.append('/home/input/') #数据集路径 i ...

  6. 从零开始学Pytorch(五)之欠拟合和过拟合

    本文首发于微信公众号"计算机视觉cv" 模型选择.过拟合和欠拟合 训练误差和泛化误差 训练误差(training error)指模型在训练数据集上表现出的误差,泛化误差(gener ...

  7. 建议收藏!从零开始学PyTorch

    点击上方"小白学视觉",选择加"星标"或"置顶" 重磅干货,第一时间送达 本文转自:机器学习算法那些事 PyTorch 是一个深度学习框架, ...

  8. 从零开始学Pytorch(十六)之模型微调

    微调 在前面的一些章节中,我们介绍了如何在只有6万张图像的Fashion-MNIST训练数据集上训练模型.我们还描述了学术界当下使用最广泛的大规模图像数据集ImageNet,它有超过1,000万的图像 ...

  9. 从零开始学Pytorch(十)之循环神经网络基础

    本节介绍循环神经网络,下图展示了如何基于循环神经网络实现语言模型.我们的目的是基于当前的输入与过去的输入序列,预测序列的下一个字符.循环神经网络引入一个隐藏变量HHH,用HtH_{t}Ht​表示HHH ...

最新文章

  1. Camera初探(二)
  2. 十五道java开发常遇到的计算机网络协议高频面试题
  3. python时间序列动图_python中如何用matlibplot画时间序列图?
  4. python 函数参数_python之函数(二)——函数参数详解
  5. 分享:嵌入式Linux入门学习指导
  6. c语言分配多一个字符空间,关于C语言动态给字符串分配内存空间问题
  7. 【离散数学】实验 旅行路线规划问题
  8. 微信小程序,转盘抽奖
  9. 搭建svn,创建svn项目
  10. url-pattern配置技巧
  11. AcWing 891. Nim游戏(nim博弈)
  12. windows查看WIFI无线网络密码
  13. 常见分布 的 数学期望以及方差公式
  14. 透声投影幕布透声与画面效果可以媲美吗?
  15. 企业微信获取corpid,Secret,Agentid
  16. 有限元基础及ANSYS应用 - 第9节 - 2 平面应变问题的ANSYS分析
  17. html5 主标题副标题,word如何设置正副标题
  18. 麻将判断几步入听算法
  19. JavaWeb Ajax的使用
  20. 学计算机惠普和联想笔记本哪个好,笔记本做得好,未必只有惠普和联想

热门文章

  1. nodejs学习---1、命令行和环境变量
  2. HTML中文网页乱码问题
  3. SqlMap异常的处理
  4. 简明 Vim 练级攻略 (转)
  5. 离线安装silver light 2
  6. php 企业微信指令回调借款_php处理微信支付回调改变订单支付状态的代码
  7. 基础编程题目集 6-13 折半查找 (15 分)
  8. CCF201312-2 ISBN号码
  9. C语言课后习题(54)
  10. Tensorflow -mofan1