iFS-RCNN: An Incremental Few-shot Instance Segmenter

Nguyễn, Đức Minh Khôi & Todorovic, Sinisa. (2022). iFS-RCNN: An Incremental Few-shot Instance Segmenter. 10.48550/arXiv.2205.15562.

This paper addresses incremental few-shot instance segmentation, where a few examples of new object classes arrive when access to training examples of old classes is not available anymore, and the goal is to perform well on both old and new classes. We make two contributions by extending the common Mask-RCNN framework in its second stage – namely, we specify a new object class classifier based on the probit function and a new uncertainty-guided bounding-box predictor. The former leverages Bayesian learning to address a paucity of training examples of new classes. The latter learns not only to predict object bounding boxes but also to estimate the uncertainty of the prediction as guidance for bounding box refinement. We also specify two new loss functions in terms of the estimated object-class distribution and bounding-box uncertainty. Our contributions produce significant performance gains on the COCO dataset over the state of the art – specifically, the gain of +6 on the new classes and +16 on the old classes in the AP instance segmentation metric. Furthermore, we are the first to evaluate the incremental few-shot setting on the more challenging LVIS dataset.



You Should Look at All Objects

Jin, Zhenchao & Yu, Dongdong & Song, Luchuan & Yuan, Zehuan & Yu, Lequan. (2022). You Should Look at All Objects. 10.48550/arXiv.2207.07889.

Feature pyramid network (FPN) is one of the key components for object detectors. However, there is a long-standing puzzle for researchers that the detection performance of large-scale objects are usually suppressed after introducing FPN. To this end, this paper first revisits FPN in the detection framework and reveals the nature of the success of FPN from the perspective of optimization. Then, we point out that the degraded performance of large-scale objects is due to the arising of improper back-propagation paths after integrating FPN. It makes each level of the backbone network only has the ability to look at the objects within a certain scale range. Based on these analysis, two feasible strategies are proposed to enable each level of the backbone to look at all objects in the FPN-based detection frameworks. Specifically, one is to introduce auxiliary objective functions to make each backbone level directly receive the back-propagation signals of various-scale objects during training. The other is to construct the feature pyramid in a more reasonable way to avoid the irrational back-propagation paths. Extensive experiments on the COCO benchmark validate the soundness of our analysis and the effectiveness of our methods. Without bells and whistles, we demonstrate that our method achieves solid improvements (more than 2%) on various detection frameworks: one-stage, two-stage, anchor-based, anchor-free and transformer-based detectors.

Should All Proposals be Treated Equally in Object Detection?

Li, Yunsheng & Chen, Yinpeng & Dai, Xiyang & Chen, Dongdong & Liu, Mengchen & Yu, Pei & Yin, Jing & Yuan, Lu & Liu, Zicheng & Vasconcelos, Nuno. (2022). Should All Proposals be Treated Equally in Object Detection?. 10.48550/arXiv.2207.03520.

The complexity-precision trade-off of an object detector is a critical problem for resource constrained vision tasks. Previous works have emphasized detectors implemented with efficient backbones. The impact on this trade-off of proposal processing by the detection head is investigated in this work. It is hypothesized that improved detection efficiency requires a paradigm shift, towards the unequal processing of proposals, assigning more computation to good proposals than poor ones. This results in better utilization of available computational budget, enabling higher accuracy for the same FLOPS. We formulate this as a learning problem where the goal is to assign operators to proposals, in the detection head, so that the total computational cost is constrained and the precision is maximized. The key finding is that such matching can be learned as a function that maps each proposal embedding into a one-hot code over operators. While this function induces a complex dynamic network routing mechanism, it can be implemented by a simple MLP and learned end-to-end with off-the-shelf object detectors. This ‘dynamic proposal processing’ (DPP) is shown to outperform state-of-the-art end-to-end object detectors (DETR, Sparse R-CNN) by a clear margin for a given computational complexity.

k-means Mask Transformer

The rise of transformers in vision tasks not only advances network backbone designs, but also starts a brand-new page to achieve end-to-end image recognition (e.g., object detection and panoptic segmentation). Originated from Natural Language Processing (NLP), transformer architectures, consisting of self-attention and cross-attention, effectively learn long-range interactions between elements in a sequence. However, we observe that most existing transformer-based vision models simply borrow the idea from NLP, neglecting the crucial difference between languages and images, particularly the extremely large sequence length of spatially flattened pixel features. This subsequently impedes the learning in cross-attention between pixel features and object queries. In this paper, we rethink the relationship between pixels and object queries and propose to reformulate the cross-attention learning as a clustering process. Inspired by the traditional k-means clustering algorithm, we develop a k-means Mask Xformer (kMaX-DeepLab) for segmentation tasks, which not only improves the state-of-the-art, but also enjoys a simple and elegant design. As a result, our kMaX-DeepLab achieves a new state-of-the-art performance on COCO val set with 58.0% PQ, and Cityscapes val set with 68.4% PQ, 44.0% AP, and 83.5% mIoU without test-time augmentation or external dataset. We hope our work can shed some light on designing transformers tailored for vision tasks. Code and models are available at this https URL




ConvNeXt

[1] Liu Z , Mao H , Wu C Y , et al. A ConvNet for the 2020s[J]. arXiv e-prints, 2022.

The “Roaring 20s” of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually “modernize” a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets.

Note
ConvNet inductive biases ? 卷积slide window关注相邻像素

How do design decisions in Transformers impact ConvNets’ performance?

FLOPs :
注意s小写,是floating point operations的缩写(s表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。其计算公式如下:

相关博客

RINet (WSOD)

Xiaoxu Feng, Xiwen Yao, Gong Cheng, Junwei Han; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 14146-14155

Object rotation is among long-standing, yet still unexplored, hard issues encountered in the task of weakly supervised object detection (WSOD) from aerial images. Existing predominant WSOD approaches built on regular CNNs which are not inherently designed to tackle object rotations without corresponding constraints, thereby leading to rotation-sensitive object detector. Meanwhile, current solutions have been prone to fall into the issue with unstable detectors, as they ignore lower-scored instances and may regard them as backgrounds. To address these issues, in this paper, we construct a novel end-to-end weakly supervised Rotation-Invariant aerial object detection Network (RINet). It is implemented with a flexible multi-branch online detector refinement, to be naturally more rotation-perceptive against oriented objects. Specifically, RINet first performs label propagating from the predicted instances to their rotated ones in a progressive refinement manner. Meanwhile, we propose to couple the predicted instance labels among different rotation-perceptive branches for generating rotation-consistent supervision and meanwhile pursuing all possible instances. With the rotation-consistent supervisions, RINet enforces and encourages consistent yet complementary feature learning for WSOD without additional annotations and hyper-parameters. On the challenging NWPU VHR-10.v2 and DIOR datasets, extensive experiments clearly demonstrate that we significantly boost existing WSOD methods to a new state-of-the-art performance. The code will be available at: https://github.com/XiaoxFeng/RINet.

Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

P. Sun et al., “Sparse R-CNN: End-to-End Object Detection with Learnable Proposals,” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 14449-14458, doi: 10.1109/CVPR46437.2021.01422.

We present Sparse R-CNN, a purely sparse method for object detection in images. Existing works on object detection heavily rely on dense object candidates, such as k anchor boxes pre-defined on all grids of image feature map of size H × W. In our method, however, a fixed sparse set of learned object proposals, total length of N, are provided to object recognition head to perform classification and location. By eliminating HWk (up to hundreds of thousands) hand-designed object candidates to N (e.g. 100) learnable proposals, Sparse R-CNN completely avoids all efforts related to object candidates design and many-to-one label assignment. More importantly, final predictions are directly output without non-maximum suppression post-procedure. Sparse R-CNN demonstrates accuracy, run-time and training convergence performance on par with the well-established detector baselines on the challenging COCO dataset, e.g., achieving 45.0 AP in standard 3× training schedule and running at 22 fps using ResNet-50 FPN model. We hope our work could inspire re-thinking the convention of dense prior in object detectors. The code is available at: https://github.com/PeizeSun/SparseR-CNN.

Swin Transformer

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. 2021

Abtract
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with \textbf{S}hifted \textbf{win}dows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures.

Oriented R-CNN

[1] Xie X , Cheng G , Wang J , et al. Oriented R-CNN for Object Detection[C]// 2021.

Current state-of-the-art two-stage detectors generate oriented proposals through time-consuming schemes. This diminishes the detectors’ speed, thereby becoming the computational bottleneck in advanced oriented object detection systems. This work proposes an effective and simple oriented object detection framework, termed Oriented R-CNN, which is a general two-stage oriented detector with promising accuracy and efficiency. To be specific, in the first stage, we propose an oriented Region Proposal Network (oriented RPN) that directly generates high-quality oriented proposals in a nearly cost-free manner. The second stage is oriented R-CNN head for refining oriented Regions of Interest (oriented RoIs) and recognizing them. Without tricks, oriented R-CNN with ResNet50 achieves state-of-the-art detection accuracy on two commonly-used datasets for oriented object detection including DOTA (75.87% mAP) and HRSC2016 (96.50% mAP), while having a speed of 15.1 FPS with the image size of 1024×1024 on a single RTX 2080Ti. We hope our work could inspire rethinking the design of oriented detectors and serve as a baseline for oriented object detection.
Note
代码过滤了无目标图片

DETR

[1] Carion N , Massa F , Synnaeve G , et al. End-to-End Object Detection with Transformers[C]// 2020.

We present a new method that views object detection as a direct set prediction problem. Our approach streamlines the detection pipeline, effectively removing the need for many hand-designed components like a non-maximum suppression procedure or anchor generation that explicitly encode our prior knowledge about the task. The main ingredients of the new framework, called DEtection TRansformer or DETR, are a set-based global loss that forces unique predictions via bipartite matching, and a transformer encoder-decoder architecture. Given a fixed small set of learned object queries, DETR reasons about the relations of the objects and the global image context to directly output the final set of predictions in parallel. The new model is conceptually simple and does not require a specialized library, unlike many other modern detectors. DETR demonstrates accuracy and run-time performance on par with the well-established and highly-optimized Faster RCNN baseline on the challenging COCO object detection dataset. Moreover, DETR can be easily generalized to produce panoptic segmentation in a unified manner. We show that it significantly outperforms competitive baselines


lower performances on small objects
requires extra-long training schedule
the main features of DETR are the conjunction of the bipartite matching loss and transformers with (non-autoregressive) parallel decoding

Attention Augmented Convolutional Networks

I. Bello, B. Zoph, Q. Le, A. Vaswani and J. Shlens, “Attention Augmented Convolutional Networks,” 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 3285-3294, doi: 10.1109/ICCV.2019.00338.

Convolutional networks have been the paradigm of choice in many computer vision applications. The convolution operation however has a significant weakness in that it only operates on a local neighborhood, thus missing global information. Self-attention, on the other hand, has emerged as a recent advance to capture long range interactions, but has mostly been applied to sequence modeling and generative modeling tasks. In this paper, we consider the use of self-attention for discriminative visual tasks as an alternative to convolutions. We introduce a novel two-dimensional relative self-attention mechanism that proves competitive in replacing convolutions as a stand-alone computational primitive for image classification. We find in control experiments that the best results are obtained when combining both convolutions and self-attention. We therefore propose to augment convolutional operators with this self-attention mechanism by concatenating convolutional feature maps with a set of feature maps produced via self-attention. Extensive experiments show that Attention Augmentation leads to consistent improvements in image classification on ImageNet and object detection on COCO across many different models and scales, including ResNets and a stateof-the art mobile constrained network, while keeping the number of parameters similar. In particular, our method achieves a 1.3% top-1 accuracy improvement on ImageNet classification over a ResNet50 baseline and outperforms other attention mechanisms for images such as Squeezeand-Excitation [17]. It also achieves an improvement of 1.4 mAP in COCO Object Detection on top of a RetinaNet baseline

N-RPN

[1] Cho M A , Chung T Y , Lee H , et al. N-RPN: Hard Example Learning For Region Proposal Networks[C]// 2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019.

The region proposal task is to generate a set of candidate regions that contain an object. In this task, it is most important to propose as many candidates of ground-truth as possible in a fixed number of proposals. In a typical image, however, there are too few hard negative examples compared to the vast number of easy negatives, so region proposal networks struggle to train on hard negatives. Because of this problem, networks tend to propose hard negatives as candidates, while failing to propose ground-truth candidates, which leads to poor performance. In this paper, we propose a Negative Region Proposal Network(nRPN) to improve Region Proposal Network(RPN). The nRPN learns from the RPN’s false positives and provide hard negative examples to the RPN. Our proposed nRPN leads to a reduction in false positives and better RPN performance. An RPN trained with an nRPN achieves performance improvements on the PASCAL VOC 2007 dataset

ResNeXt

S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He, “Aggregated Residual Transformations for Deep Neural Networks,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5987-5995, doi: 10.1109/CVPR.2017.634.
Abstract
We present a simple, highly modularized network architecture for image classification. Our network is constructed by repeating a building block that aggregates a set of transformations with the same topology. Our simple design results in a homogeneous, multi-branch architecture that has only a few hyper-parameters to set. This strategy exposes a new dimension, which we call cardinality (the size of the set of transformations), as an essential factor in addition to the dimensions of depth and width. On the ImageNet-1K dataset, we empirically show that even under the restricted condition of maintaining complexity, increasing cardinality is able to improve classification accuracy. Moreover, increasing cardinality is more effective than going deeper or wider when we increase the capacity. Our models, named ResNeXt, are the foundations of our entry to the ILSVRC 2016 classification task in which we secured 2nd place. We further investigate ResNeXt on an ImageNet-5K set and the COCO detection set, also showing better results than its ResNet counterpart. The code and models are publicly available online.

FPN

[1] Lin T Y , Dollar P , Girshick R , et al. Feature Pyramid Networks for Object Detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2017.

Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But recent deep learning object detectors have avoided pyramid representations, in part because they are compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A top-down architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using FPN in a basic Faster R-CNN system, our method achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 5 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection

Mask R-CNN

[1] He K , Gkioxari G , P Dollár, et al. Mask R-CNN[C]// Computer Vision and Pattern Recognition. 2017.

We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without bells and whistles, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition.

DCN

J. Dai et al., “Deformable Convolutional Networks,” 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 764-773, doi: 10.1109/ICCV.2017.89.

Convolutional neural networks (CNNs) are inherently limited to model geometric transformations due to the fixed geometric structures in its building modules. In this work, we introduce two new modules to enhance the transformation modeling capacity of CNNs, namely, deformable convolution and deformable RoI pooling. Both are based on the idea of augmenting the spatial sampling locations in the modules with additional offsets and learning the offsets from target tasks, without additional supervision. The new modules can readily replace their plain counterparts in existing CNNs and can be easily trained end-to-end by standard back-propagation, giving rise to deformable convolutional networks. Extensive experiments validate the effectiveness of our approach on sophisticated vision tasks of object detection and semantic segmentation. The code would be released.

Faster R-CNN

Cite
[1] Ren S , He K , Girshick R , et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):1137-1149.
Abtract
State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [7] and Fast R-CNN [5] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully-convolutional network that simultaneously predicts object bounds and objectness scores at each position. RPNs are trained end-to-end to generate highquality region proposals, which are used by Fast R-CNN for detection. With a simple alternating optimization, RPN and Fast R-CNN can be trained to share convolutional features.

Note
在mmdetection中还没找到四步训练怎么实现

Fast R-CNN

[1] Girshick R . Fast R-CNN[J]. Computer Science, 2015.

SPPnet

[1] He K , Zhang X , Ren S , et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 37(9):1904-16.

Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g., 224 × 224) input image. This requirement is “artificial” and may reduce the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we equip the networks with another pooling strategy, “spatial pyramid pooling”, to eliminate the above requirement. The new network structure, called SPP-net, can generate a fixed-length representation regardless of image size/scale. Pyramid pooling is also robust to object deformations. With these advantages, SPP-net should in general improve all CNN-based image classification methods. On the ImageNet 2012 dataset, we demonstrate that SPP-net boosts the accuracy of a variety of CNN architectures despite their different designs. On the Pascal VOC 2007 and Caltech101 datasets, SPP-net achieves state-of-the-art classification results using a single full-image representation and no fine-tuning. The power of SPP-net is also significant in object detection. Using SPP-net, we compute the feature maps from the entire image only once, and then pool features in arbitrary regions (sub-images) to generate fixed-length representations for training the detectors. This method avoids repeatedly computing the convolutional features. In processing test images, our method is 24-102 × faster than the R-CNN method, while achieving better or comparable accuracy on Pascal VOC 2007. In ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014, our methods rank #2 in object detection and #3 in image classification among all 38 teams. This manuscript also introduces the improvement made for this competition.

ResNet

Cite
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016

Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers.
The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.


Note
(images are resized such that the shorter
side is in (224; 256; 384; 480; 640).

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles

[1] Noroozi M , Favaro P . Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles[C]// Springer, Cham. Springer, Cham, 2016.

We propose a novel unsupervised learning approach to build
features suitable for object detection and classification. The features are
pre-trained on a large dataset without human annotation and later transferred via fine-tuning on a different, smaller and labeled dataset. The
pre-training consists of solving jigsaw puzzles of natural images. To facilitate the transfer of features to other tasks, we introduce the context-free
network (CFN), a siamese-ennead convolutional neural network. The features correspond to the columns of the CFN and they process image tiles
independently (i.e., free of context). The later layers of the CFN then use
the features to identify their geometric arrangement. Our experimental
evaluations show that the learned features capture semantically relevant
content. We pre-train the CFN on the training set of the ILSVRC2012
dataset and transfer the features on the combined training and validation
set of Pascal VOC 2007 for object detection (via fast RCNN) and classification. These features outperform all current unsupervised features
with 51.8 % for detection and 68.6 % for classification, and reduce the
gap with supervised learning (56.5 % and 78.2 % respectively).

目标检测, 实例分割, 图像分类, panoptic segmentation文献相关推荐

  1. 【重磅】旷视提出MegDetV2:目标检测/实例分割新系统

    点击上方,选择星标或置顶,不定期资源大放送! 阅读大概需要15分钟 Follow小博主,每天更新前沿干货 编辑:Amusi 在COCO 2019/2020 挑战赛中获得最佳结果!该方案包含RPN++. ...

  2. 全景分割(Panoptic Segmentation)(CVPR 2019)

    全景分割(Panoptic Segmentation)(CVPR 2019) 摘要 1. 导言 2. 相关工作 3. 全景分割格式 4. 全景分割度量 4.1 片段匹配 4.2 PQ计算 4.3 与现 ...

  3. Mask R-CNN用于目标检测和分割代码实现

    Mask R-CNN用于目标检测和分割代码实现 Mask R-CNN for object detection and instance segmentation on Keras and Tenso ...

  4. 准确度判断 语义分割_Mask R-CNN(目标检测语义分割)测试

    Mask R-CNN(目标检测语义分割)测试 Mask R-CNN(目标检测,语义分割)测试 Kaiming He的大作Mask R-CNN(https://arxiv.org/pdf/1703.06 ...

  5. HALCON 21.11:深度学习笔记---对象检测, 实例分割(11)

    HALCON 21.11:深度学习笔记---对象检测, 实例分割(11) HALCON 21.11.0.0中,实现了深度学习方法. 本章介绍了如何使用基于深度学习的对象检测. 通过对象检测,我们希望在 ...

  6. 实例分割总结 Instance Segmentation Summary(Center Mask、Mask-RCNN、PANNet、Deep Mask和Sharp Mask)

    实例分割总结 Instance Segmentation Summary 实例分割常用网络总结 Mask-RCNN网络 PANnet Deep Mask和Sharp Mask CenterMask 二 ...

  7. 目标检测和分割中Backbone技术总结

    目标检测和分割中Backbone技术总结 VGG (2014) ResNet系列 ResNet (2015) ResNeXt ResNeSt Inception系列 Inception v1 Ince ...

  8. 【Pytorch神经网络理论篇】 33 基于图片内容处理的机器视觉:目标检测+图片分割+非极大值抑制+Mask R-CNN模型

    基于图片内容的处理任务,主要包括目标检测.图片分割两大任务. 1 目标检测 目标检测任务的精度相对较高,主要是以检测框的方式,找出图片中目标物体所在的位置.目标检测任务的模型运算量相对较小,速度相对较 ...

  9. CVPR2019| 最新CVPR2019论文:含目标检测、分割、深度学习、GAN等领域

    点上方蓝字计算机视觉联盟获取更多干货 在右上方 ··· 设为星标 ★,与你不见不散 推荐几篇CPRR2019最新论文,含目标检测.分割.深度表示.GAN等领域 [1]Strong-Weak Distr ...

最新文章

  1. python导入opencv失败_mac下安装opencv python中导入错误
  2. 【Graph4NLP】阿尔伯塔大学博士毕业论文:基于图结构的自然语言处理
  3. Lesson 8.5 SOFTMAX回归
  4. 使用友盟进行apk的自动更新
  5. mysql系统搭建互备DB(双主)记录
  6. Caffe学习:pycaffe接口配置
  7. 淘宝运营到底是做什么的?
  8. 关于学习的认知方法 | 九七的奇思妙想
  9. 【数学建模】2022数维杯国际赛C题 如何利用脑结构特征和认知行为特征诊断阿尔茨海默病(How to Diagnose Alzheimer‘s Disease)
  10. 8-14:HTML学习#30
  11. 非对称加密RSA算法原理及实际应用场景
  12. 判断扫码的是支付宝 还是 微信(亲测有效)
  13. java 迷宫游戏_Java小项目之迷宫游戏的实现方法
  14. [原创]ACPI.sys,从Windows到Bios的桥梁(2):Windows应用程序响应主板上GPIO(SCI)设备中断 软件篇
  15. springboot打印出sql语句【伸手党福利】
  16. 嵌入方法在推荐系统中的应用
  17. 微信支付服务商API 证书(权威CA颁发)是做什么用的?
  18. gradle 指定导出包的名字和路径
  19. HaaS Python + AI 隆重登场 使用 ESP32 + 摄像头 机器视觉实现水果识别
  20. 最新模型-SUMBT【slot-utterance matching belief tracker】

热门文章

  1. 支付宝app支付功能-服务端的实现-python3版
  2. word打开出现乱码要如何解决呢?
  3. 2033-人见人爱A+B(java)
  4. 美国互联网影视的盈利模式 —— Netflix模式
  5. 大一微积分笔记整理_大一高数如何做笔记?
  6. num_workers
  7. 玫琳凯携手联合国机构推出女性创业加速器计划
  8. 在Debian系统下使用自带的Fcitx配置中文输入法
  9. PDPS软件:导出Web浏览器文件功能及其操作方法
  10. scrapy 抓取豆瓣Top250书籍信息