先讲讲MOS/CMOS集成电路

MOS集成电路特点:

制造工艺比较简单、成品率较高、功耗低、组成的逻辑电路比较简单,集成度高、抗干扰能力强,特别适合于大规模集成电路。

MOS集成电路包括:

NMOS管组成的NMOS电路、PMOS管组成的PMOS电路及由NMOS和PMOS两种管子组成的互补MOS电路,即CMOS电路。

PMOS门电路与NMOS电路的原理完全相同,只是电源极性相反而已。

数字电路中MOS集成电路所使用的MOS管均为增强型管子,负载常用MOS管作为有源负载,这样不仅节省了硅片面积,而且简化了工艺利于大规模集成。常用的符号如

图1所示。

N沟MOS晶体管

金属-氧化物-半导体(Metal-Oxide-SemIConductor)结构的晶体管简称MOS晶体管,有P型MOS管和N型MOS管之分。MOS管构成的集成电路称为MOS集成电路,而PMOS管和NMOS管共同构成的互补型MOS集成电路即为CMOS集成电路。

由p型衬底和两个高浓度n扩散区构成的MOS管叫作n沟道MOS管,该管导通时在两个高浓度n扩散区间形成n型导电沟道。n沟道增强型MOS管必须在栅极上施加正向偏压,且只有栅源电压大于阈值电压时才有导电沟道产生的n沟道MOS管。n沟道耗尽型MOS管是指在不加栅压(栅源电压为零)时,就有导电沟道产生的n沟道MOS管。

NMOS集成电路是N沟道MOS电路,NMOS集成电路的输入阻抗很高,基本上不需要吸收电流,因此,CMOS与NMOS集成电路连接时不必考虑电流的负载问题。NMOS集成电路大多采用单组正电源供电,并且以5V为多。CMOS集成电路只要选用与NMOS集成电路相同的电源,就可与NMOS集成电路直接连接。不过,从NMOS到CMOS直接连接时,由于NMOS输出的高电平低于CMOS集成电路的输入高电平,因而需要使用一个(电位)上拉电阻R,R的取值一般选用2~100KΩ。

N沟道增强型MOS管的结构

在一块掺杂浓度较低的P型硅衬底上,制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作漏极d和源极s。

然后在半导体表面覆盖一层很薄的二氧化硅(SiO2)绝缘层,在漏——源极间的绝缘层上再装上一个铝电极,作为栅极g。

在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。

它的栅极与其它电极间是绝缘的。

图(a)、(b)分别是它的结构示意图和代表符号。代表符号中的箭头方向表示由P(衬底)指向N(沟道)。P沟道增强型MOS管的箭头方向与上述相反,如图(c)所示。

N沟道增强型MOS管的工作原理

(1)vGS对iD及沟道的控制作用

① vGS=0 的情况

从图1(a)可以看出,增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。当栅——源电压vGS=0时,即使加上漏——源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏——源极间没有导电沟道,所以这时漏极电流iD≈0。

② vGS>0 的情况

若vGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个电场。电场方向垂直于半导体表面的由栅极指向衬底的电场。这个电场能排斥空穴而吸引电子。

排斥空穴:使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层。吸引电子:将 P型衬底中的电子(少子)被吸引到衬底表面。

(2)导电沟道的形成:

当vGS数值较小,吸引电子的能力不强时,漏——源极之间仍无导电沟道出现,如图1(b)所示。vGS增加时,吸引到P衬底表面层的电子就增多,当vGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层,且与两个N+区相连通,在漏——源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层,如图1(c)所示。vGS越大,作用于半导体表面的电场就越强,吸引到P衬底表面的电子就越多,导电沟道越厚,沟道电阻越小。

开始形成沟道时的栅——源极电压称为开启电压,用VT表示。

上面讨论的N沟道MOS管在vGS<VT时,不能形成导电沟道,管子处于截止状态。只有当vGS≥VT时,才有沟道形成。这种必须在vGS≥VT时才能形成导电沟道的MOS管称为增强型MOS管。沟道形成以后,在漏——源极间加上正向电压vDS,就有漏极电流产生。

vDS对iD的影响

如图(a)所示,当vGS>VT且为一确定值时,漏——源电压vDS对导电沟道及电流iD的影响与结型场效应管相似。

漏极电流iD沿沟道产生的电压降使沟道内各点与栅极间的电压不再相等,靠近源极一端的电压最大,这里沟道最厚,而漏极一端电压最小,其值为VGD=vGS-vDS,因而这里沟道最薄。但当vDS较小(vDS<vGS–VT)时,它对沟道的影响不大,这时只要vGS一定,沟道电阻几乎也是一定的,所以iD随vDS近似呈线性变化。

随着vDS的增大,靠近漏极的沟道越来越薄,当vDS增加到使VGD=vGS-vDS=VT(或vDS=vGS-VT)时,沟道在漏极一端出现预夹断,如图2(b)所示。再继续增大vDS,夹断点将向源极方向移动,如图2(c)所示。由于vDS的增加部分几乎全部降落在夹断区,故iD几乎不随vDS增大而增加,管子进入饱和区,iD几乎仅由vGS决定。

N沟道增强型MOS管的特性曲线、电流方程及参数

(1)特性曲线和电流方程

1)输出特性曲线

N沟道增强型MOS管的输出特性曲线如图1(a)所示。与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止区和击穿区几部分。

2)转移特性曲线

转移特性曲线如图1(b)所示,由于场效应管作放大器件使用时是工作在饱和区(恒流区),此时iD几乎不随vDS而变化,即不同的vDS所对应的转移特性曲线几乎是重合的,所以可用vDS大于某一数值(vDS>vGS-VT)后的一条转移特性曲线代替饱和区的所有转移特性曲线。

3)iD与vGS的近似关系

与结型场效应管相类似。在饱和区内,iD与vGS的近似关系式为

式中IDO是vGS=2VT时的漏极电流iD。

(2)参数

MOS管的主要参数与结型场效应管基本相同,只是增强型MOS管中不用夹断电压VP ,而用开启电压VT表征管子的特性。

N沟道耗尽型MOS管的基本结构

(1)结构:

N沟道耗尽型MOS管与N沟道增强型MOS管基本相似。

(2)区别:

耗尽型MOS管在vGS=0时,漏——源极间已有导电沟道产生,而增强型MOS管要在vGS≥VT时才出现导电沟道。

(3)原因:

制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),如图1(a)所示,因此即使vGS=0时,在这些正离子产生的电场作用下,漏——源极间的P型衬底表面也能感应生成N沟道(称为初始沟道),只要加上正向电压vDS,就有电流iD。

如果加上正的vGS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,iD增大。反之vGS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,iD减小。当vGS负向增加到某一数值时,导电沟道消失,iD趋于零,管子截止,故称为耗尽型。沟道消失时的栅-源电压称为夹断电压,仍用VP表示。与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压VP也为负值,但是,前者只能在vGS<0的情况下工作。而后者在vGS=0,vGS>0,VP<vGS<0的情况下均能实现对iD的控制,而且仍能保持栅——源极间有很大的绝缘电阻,使栅极电流为零。这是耗尽型MOS管的一个重要特点。图(b)、(c)分别是N沟道和P沟道耗尽型MOS管的代表符号。

(4)电流方程:

在饱和区内,耗尽型MOS管的电流方程与结型场效应管的电流方程相同,即:

各种场效应管特性比较

P沟MOS晶体管

金属氧化物半导体场效应(MOS)晶体管可分为N沟道与P沟道两大类,P沟道硅MOS场效应晶体管在N型硅衬底上有两个P+区,分别叫做源极和漏极,两极之间不通导,柵极上加有足够的正电压(源极接地)时,柵极下的N型硅表面呈现P型反型层,成为连接源极和漏极的沟道。改变栅压可以改变沟道中的电子密度,从而改变沟道的电阻。这种MOS场效应晶体管称为P沟道增强型场效应晶体管。如果N型硅衬底表面不加栅压就已存在P型反型层沟道,加上适当的偏压,可使沟道的电阻增大或减小。这样的MOS场效应晶体管称为P沟道耗尽型场效应晶体管。统称为PMOS晶体管。

P沟道MOS晶体管的空穴迁移率低,因而在MOS晶体管的几何尺寸和工作电压绝对值相等的情况下,PMOS晶体管的跨导小于N沟道MOS晶体管。此外,P沟道MOS晶体管阈值电压的绝对值一般偏高,要求有较高的工作电压。它的供电电源的电压大小和极性,与双极型晶体管——晶体管逻辑电路不兼容。PMOS因逻辑摆幅大,充电放电过程长,加之器件跨导小,所以工作速度更低,在NMOS电路(见N沟道金属—氧化物—半导体集成电路)出现之后,多数已为NMOS电路所取代。只是,因PMOS电路工艺简单,价格便宜,有些中规模和小规模数字控制电路仍采用PMOS电路技术。

PMOS集成电路是一种适合在低速、低频领域内应用的器件。PMOS集成电路采用-24V电压供电。如图5所示的CMOS-PMOS接口电路采用两种电源供电。采用直接接口方式,一般CMOS的电源电压选择在10~12V就能满足PMOS对输入电平的要求。

MOS场效应晶体管具有很高的输入阻抗,在电路中便于直接耦合,容易制成规模大的集成电路。

各种场效应管特性比较

N沟道MOS管和P沟道MOS管相关推荐

  1. mos管的rc吸收电路计算_MOS/CMOS集成电路简介及N沟道MOS管和P沟道MOS管

    主题:MOS/CMOS集成电路简介及 N沟道 MOS管和 P沟道 MOS管 mos管,分为N沟道和P沟道两种 由于NMOS的导通电阻小,而且易于制造.根据MOS管原理图可MOS管中导通性NMOS的特性 ...

  2. 详解,N沟道MOS管和P沟道MOS管

    出处:P沟道mos管作为开关的条件(GS >GS(TH)) 1.P沟道mos管作为开关,栅源的阀值为-0.4V,当栅源的电压差为-0.4V就会使DS导通,如果S为2.8V,G为1.8V,那么GS ...

  3. 详解 P沟道mos管与N沟道mos管

    出处:P沟道mos管作为开关的条件(GS >GS(TH)) 1.P沟道mos管作为开关,栅源的阀值为-0.4V,当栅源的电压差为-0.4V就会使DS导通,如果S为2.8V,G为1.8V,那么GS ...

  4. 分析N沟道MOS管和P沟道MOS管在电路中的详细应用

    MOS管集成电路特点: 制造工艺比较简单.成品率较高.功耗低.组成的逻辑电路比较简单,集成度高.抗干扰能力强,特别适合于大规模集成电路. MOS管集成电路包括: NMOS管组成的NMOS管电路.PMO ...

  5. 【N沟道MOS管和P沟道MOS管】经典全详解

    PN结的形成 PN结是三极管以及场效应管中最基本的组成部分,要想彻底搞明白三极管以及场效应管的工作原理,必须先搞清楚PN结形成的原理和工作特性. 本征半导体以及空穴对 本征半导体(intrinsic ...

  6. MOS/CMOS集成电路简介及N沟道MOS管和P沟道MOS管

    出处:MOS/CMOS集成电路简介及 N沟道 MOS管和 P沟道 MOS管 mos管,分为N沟道和P沟道两种 由于NMOS的导通电阻小,而且易于制造.根据MOS管原理图可MOS管中导通性NMOS的特性 ...

  7. mos管 rl_三极管与MOS管工作状态图解分享

    三极管与MOS管工作状态图解分享 图说三极管的三个工作状态 电子元件基础-BJT管 三极管的工作状态:大家都知道三极管是电流控制型元件,三极管工作在放大状态下存在Ic=βIb的关系,怎么理解三极管的放 ...

  8. MOS管开关电路应用及MOS管原理、选型

    目录 硬件基础-MOS管原理.使用.开关电路应用 0.写在前面: 1.MOS管基本原理及分类 1.1.MOS管分类 1.2.MOS管导通原理 1.3.MOS管输出特性曲线 1.4.MOS管的转移特性 ...

  9. 分析如何区分MOS管是N沟道还是P沟道-KIA MOS管

    1.MOS的三个极怎么判定 MOS管符号上的三个脚的辨认要抓住关键地方. G极,不用说比较好认.S极,不论是P沟道还是N沟道,两根线相交的就是.D极,不论是P沟道还是N沟道,是单独引线的那边. 2.如 ...

最新文章

  1. onWindowFocusChanged重要作用(得到/失去焦点call) 、
  2. jmeter(十一)JDBC Request之Query Type
  3. python ip动态代理_Scrapy 配置动态代理IP的实现
  4. Linux维护笔记四
  5. 【翻译】在Ext JS和Sencha Touch中创建自己定义布局
  6. 一个有趣的问题,讨论讨论
  7. PostgreSQL 最佳实践 - 水平分库(基于plproxy)
  8. React Native项目自动化打包发布
  9. 前端学习(2891):vue工程化配置
  10. 构建meteor应用程序_我构建了一个渐进式Web应用程序并将其发布在3个应用程序商店中。 这是我学到的。...
  11. 在 Mac 上如何使用鼠标键来控制指针?
  12. c语言编程电影院票务系统,C++课程设计----电影院售票系统
  13. ryujinx模拟器linux安装教学,怪物猎人崛起 - ryujinx模拟器使用教程搬运,无机党的春天,MHR尝尝鲜 - 踩蘑菇社区...
  14. PlayStation@4功能介绍及测试应用
  15. [docker]dockerfile简介与应用
  16. 51单片机的nop延时延时函数
  17. 圆形标定板_自己改的,圆形标定板,opencv标定代码
  18. 键盘输入不正确不对应原来是这么回事
  19. JAVA导入Oracle包_将java的jar包导入oracle,通过oracle调用java方法
  20. Qt 多线程中地信号与槽

热门文章

  1. RabbitMQ入门时出现的可笑异常..............
  2. matplotlib多个参数指标可视化----雷达图/蜘蛛网图
  3. CF1622C Set or Decrease
  4. Zeng Liangzhao的经典论文之一 Quality driven web services composition (WWW03)
  5. DT720-CS改桥接
  6. js 去除字符串首尾指定字符
  7. 术捷盈库简介一些视频制作和剪辑方法和细节方面的知识
  8. Binding的原理简单介绍
  9. 华三交换机ping大包命令_如何Ping大包命令_Ping大包命令格式详解-win10铺
  10. 阅读笔记--TAPE--NIPS2019