三极管与MOS管工作状态图解分享

图说三极管的三个工作状态

电子元件基础—BJT管

三极管的工作状态:大家都知道三极管是电流控制型元件,三极管工作在放大状态下存在Ic=βIb的关系,怎么理解三极管的放大模型呢?这儿我们抛开三极管内部空穴和电子的运动,还是那句话只谈应用不谈原理,希望通过下面的“图解”让初学者对三极管有一个形象的认识。

三极管是一个以b(基极)电流Ib 来驱动流过ce 的电流Ic 的器件,它的工作原理很像一个可控制的阀门。

左边细管子里蓝色的小水流冲动杠杆使大水管的阀门开大,就可允许较大红色的水流通过这个阀门。当蓝色水流越大,也就使大管中红色的水流更大。

如果放大倍数是100,那么当蓝色小水流为1 千克/小时,那么就允许大管子流过100千克/小时的水。三极管的原理也跟这个一样,放大倍数为100 时,当Ib(基极电流)为1mA 时,就允许100mA 的电流通过Ice。

有了这个形象的解释之后,我们再来看一个单片机里常用的电路

来分析一下这个电路,如果它的放大倍数是100,基极电压我们不计。基极电流就是10V/10K=1mA,集电极电流就应该是100mA。根据欧姆定律,这样Rc上的电压就是0.1A×50Ω=5V。那么剩下的5V 就吃在了三极管的c、e 极上了。

现在我们假如让Rb 为1K,那么基极电流就10V/1K=10mA,这样按照放大倍数100算,Ic就是不是就为1000mA 也就是1A了呢?假如真的为1安,那么Rc上的电压为1A×50Ω=50V。50V!都超过电源电压了,三极管都成发电机了吗?其实不是这样的。见下图:

我们还是用水管内流水来比喻电流,当这个控制电流为10mA 时使主水管上的阀开大到能流过1A 的电流,但是不是就能有1A 的电流流过呢?

不是的,因为上面还有个电阻,它就相当于是个固定开度的阀门,它串在这个主水管的上面,当下面那个可控制的阀开度到大于上面那个固定电阻的开度时,水流就不会再增大而是等于通过上面那个固定阀开度的水流了,因此,下面的三极管再开大开度也没有用了。

因此我们可以计算出那个固定电阻的最大电流10V/50Ω=0.2A也就是200mA。就是说在电路中三极管基极电流增大集电极的电流也增大,当基极电流Ib 增大到2mA 时,集电极电流就增大到了200mA。

当基极电流再增大时,集电极电流已不会再增大,就在200mA 不动了。此时上面那个电阻也就是起限流作用了。

三极管的工作状态:上面讲的三极管是工作在放大状态,要想作为开关器件来应用呢?毫无疑问三极管必须进入饱和导通和截止状态。图4所示的电路中,我们从Q 的基极注入电流Ib,那么将会有电流流入集电极,大小关系为:Ic=βIb 。

而至于BJT 发射结电压Vbe,我们说这个并不重要,因为只要Ib 存在且为正值时,这个结电压便一定存在并且基本恒定(约0.5~1.2V,一般的管子取0.7V 左右),也就是我们所讲的发射结正偏。

既然Ube 是固定的,那么,如果BJT 基极驱动信号为电压信号时,就必须在基极串联一个限流电阻,如图5。此时,基极电流为Ib=(Ui-Ube)/Rb。一般情况省略Rb是不允许的,因为这样的话Ib 将会变得很大,造成前级电路或者是BJT的损坏。

接下来进入我们最关心的问题:Rb 如何选取。前面说到过Ic=βIb,为了使晶体管进入饱和,我们必须增加Ib,从而使Ic 增大,Rc 上的压降随之增大,直到Rc 上几乎承受了所有的电源电压。此时,Uce 变得很小,约0.2~0.3V(对于大功率BJT,这个值可能达到2~3V),也就是我们所说的饱和压降Uce(sat)。

如果达到饱和时,我们忽略Uce(sat),那么就有IcRL=βIbRL=Vcc。也就是只要保证Ib≥Ic/β或Ib≥Vcc/(βRL)时,晶体管就能进入饱和状态。我们看这样一组数据:Vcc=5V,β=200,RL=100Ω。

那么要求Ib≥5/(200×100)A=0.25mA。如果Ui=5V,那么取Rb≤(Ui-Ube)/Ib≈(5-0.7)/0.25kΩ=17.2kΩ就能满足要求了。但是,实际上,对于这种情况,如果取一个10kΩ以上的电阻都可能导致BJT 无法进入饱和状态。

这是为什么呢?因为我们的器件不是理想的,我们在来看下面一个图

这是我们常用的一款小信号BJT,型号为MMBT3904 的直流电压增益曲线。从图中可以看出,BJT 的共射极直流电压增益hfe(也就是通常意义下的β)不仅是温度的函数,而且与集电极电流有关。在一定的集电极电流范围内,hfe 基本为常数;当集电极电流大于一定值时,hfe 将急剧下降。

我们在使用BJT 作为开关时,大多数情况下用于驱动外部负载,如LED、继电器等,这些负载的电流一般较大,此时hFe 已经下降到远小于我们计算时使用的那个值。

如前面的例子,如果这个BJT 为MMbT3904,集电极电流达到近50mA,此时的β(或hFe)已经下降到只要100 左右了,计算基极电阻时使用的β也应该取100 而不是200。

而实际应用中,Ib 并不是越大越好,因为Ib 对外电路来说是没有实质作用的,它仅仅是维持BJT 可靠导通的必要条件。Ib 越大,驱动部分的损耗也就越大,从而降低了电路的效率。而且Ib越大还会影响三极管的开关速率。

电子元件基础—MOS管

MOS管识别

我们知道MOS管有P沟道和N沟道之分,给出一个MOS的电路符号,你是怎么判断它是N沟道,还是P沟道?下面我们就来看下图这颗MOS管电路符号。

MOS三个极怎么判断?

它们是N沟道还是P沟道?

寄生二极管

在图1我们看到D极和S极之间存在着一个二极管,这个二极管叫寄生二极管。MOS的寄生二极管怎么来的呢?它是由生产工艺造成的,大功率MOS管漏极从硅片底部引出,就会有这个寄生二极管。

小功率MOS管例如集成芯片中的MOS管是平面结构,漏极引出方向是从硅片的上面也就是与源极等同一方向,没有这个二极管。模拟电路书里讲得就是小功率MOS管的结构,所以没有这个二极管。但D极和衬底之间都存在寄生二极管,如果是单个晶体管,衬底当然接S极,因此自然在DS之间有二极管。

如果在Ic里面,N—MOS衬底接最低的电压,P—MOS衬底接最高电压,不一定和S极相连,所以DS之间不一定有寄生二极管。那么寄生二极管起什么作用呢?当电路中产生很大的瞬间反向电流时,可以通过这个二极管导出来,不至于击穿这个MOS管。(起到保护MOS管的作用)

寄生二极管方向判定

MOS管的应用

1、开关作用

我们笔记本主板上用得最多的电子器件便是MOS管,可见MOS管在低功耗方面应用得非常广泛,MOS管都有哪些应用呢?先来看下面的原理图

相信你从图5可以看出MOS管在电路中的作用了吧,以上的MOS开关实现的是信号切换(高低电平的切换),那么MOS在电路中要实现开关作用应该满足什么条件呢?还有前面提过MOS管接入电路哪个极接输入哪个极接输出(提示:寄生二极管是关键)?我们先看MOS管做开关时在电路的接法。

为什么是这样接呢?反过来接行不行?那是不行的。就拿NMOS管来说S极做输入D极做输出,由于寄生二极管直接导通,因此S极电压可以无条件到D极,MOS管就失去了开关的作用,同理PMOS管反过来接同样失去了开关作用。

接下来谈谈MOS管的开关条件,我们可以这么记,不论是P沟道还是N沟道,G极电压都是与S极电压做比较:

N沟道: UG>US时导通。 (简单认为)UG=US时截止。

P沟道: UG

但UG比US大(或小)多少伏时MOS管才会饱和导通呢?这要看具体的MOS管,不同的MOS管要求的压差不同。比如笔记本上用于信号切换的MOS管:N7002,2N7002e,2N7002K,2N7002D,FDV301N等。UG比US大3V---5V即可。

2、隔离作用

如果我们想实现线路上电流的单向流通,比如只让电流由A->b,阻止由b->A,请问该怎么做?

但这样的做法有一个缺点,二极管上会产生一个压降,损失一些电压信号。而使用MOS管做隔离,在正向导通时,在控制极加合适的电压,可以让MOS管饱和导通,这样通过电流时几乎不产生压降。下面我们来看一个防电源反接电路。

这个电路当电源反接时NMOS管截止,保护了负载。电源正接时由于NMOS管导通压降比较小,几乎不损失电压,比在电源端加保险管再在负载并联一个二极管的方案好一些。

烜芯微专业制造二极管,三极管,MOS管,桥堆等20年,工厂直销省20%,4000家电路电器生产企业选用,专业的工程师帮您稳定好每一批产品,如果您有遇到什么需要帮助解决的,可以点击右边的工程师,或者点击销售经理给您精准的报价以及产品介绍

mos管 rl_三极管与MOS管工作状态图解分享相关推荐

  1. 三极管和MOS管工作状态图解+实例

    图说三极管的三个工作状态 本文引用地址:http://www.eepw.com.cn/article/201603/287845.htm 电子元件基础-BJT管 大家都知道三极管是电流控制型元件,三极 ...

  2. mos管 rl_三极管与mos管(场效应管)及可控硅区别

    三极管与mos管(场效应管)及可控硅区别 MOS管的特性.工作原理,与真空电子管类似:栅极没有电流,即没有输入电流,具有高输入阻抗:漏极电流由栅极电压控制,是电压控制器件-- 半导体三极管是两个P-N ...

  3. 硬件基础:MOS管工作区间及开通过程分析——以N沟道增强型MOS为例

    N沟道增强型MOS管的结构如图1所示,P型衬底上制作两个高掺杂的N区,引出作为漏极D和源极S,衬底上再制作一块绝缘层,绝缘层上在制作一层金属电极,引出作为栅极G,即构成了常见的N沟道增强型MOS管.一 ...

  4. 三极管和MOS管工作原理详解

    PN结的形成 PN结是三极管以及场效应管中最基本的组成部分,要想彻底搞明白三极管以及场效应管的工作原理,必须先搞清楚PN结形成的原理和工作特性. 本征半导体以及空穴对 本征半导体(intrinsic ...

  5. p沟道大电流mos管贴片_一文读懂MOS管工作原理

    MOS管作为半导体行业最基本的元器件之一,在电子线路中,MOS管一般被用以功率放大电路或开关电源电路而被广泛运用.下面冠华伟业就有关于MOS管工作原理为您详细解读,来进行MOSFET内部结构分析. 何 ...

  6. MOS管工作动画原理图详解

    MOS管工作动画原理图详解 绝缘型场效应管的栅极与源极.栅极和漏极之间均采用SiO2绝缘层隔离,因此而得名.又因栅极为金属铝,故又称为MOS管.它的栅极-源极之间的电阻比结型场效应管大得多,可达101 ...

  7. MOS管工作原理的应用驱动电路详解

    MOS管应用电路 MOS管最显著的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动,也有照明调光. 现在的MOS驱动,有几个特别的应用 1.低压应用 当使用5V电源, ...

  8. MOS管工作原理,就是这么简单

    1. MOS管工作原理--MOS管简介 MOS管,即在集成电路中绝缘性场效应管.MOS英文全称为Metal-Oxide-Semiconductor即金属-氧化物-半导体,确切的说,这个名字描述了集成电 ...

  9. mos管工作原理动画图讲解_MOS管工作原理电路图简述【通俗易懂】

    mos管工作原理动画图讲解_MOS管工作原理电路图简述[通俗易懂] 发布时间:2020-01-18 09:06人气:461 很多朋友对mos管原理都不是太了解,今天小编就给各位普及一下关于MOS管工作 ...

最新文章

  1. as3.0中如何阻止事件冒泡?
  2. C# 实现简单打印(二)-打印一个文本文档,打印的内容是多行的
  3. Makefile 使用总结【转】
  4. 《地狱之刃:塞娜的献祭》如何通过人物情感营造恐怖氛围?
  5. pyinstaller打包执行exe出现“ModuleNotFoundError: No module named ‘scipy.spatial.transform._rotation_group”
  6. plot函数_激活函数-双曲正切函数tanh函数
  7. 智慧工厂管理系统全面提升智能化水平
  8. 马成荣版计算机应用基础 教案,课改理念在中职《计算机应用基础》教学中的应用...
  9. Python爬取NBA虎扑球员数据
  10. windows 8 .1全家桶(很详细)
  11. 蓝牙核心技术了解(蓝牙协议、架构、硬件和软件笔记)
  12. 如何旋转树莓派的显示屏幕
  13. js 截取指定字符后面/前面的所有字符串
  14. MS开始提供Windows Vista beta2下载
  15. 设计模式-工厂模式(详细)
  16. DVWA 之 CSP Bypass
  17. 用计算机获取机读卡是通过什么实现的,一种基于图像识别技术的答题卡及考试系统的制作方法...
  18. 数字信号处理二:离散时间信号的运算
  19. PHP,mysql会话列表获取聊天记录最后一条以及未读消息条数
  20. 精简centos7.7内核版本升级

热门文章

  1. js获取PC设备信息,js获取手机设备信息,最全
  2. pannel加载form
  3. java web实现拨打电话_Android实现打电话功能
  4. CSDN富文本编辑器去除空行
  5. Python数据结构:哈希表
  6. PPT文件不能编辑怎么回事?
  7. PTA 剥洋葱(超级好理解)
  8. Python爬虫QQ音乐数据采取,公开数据获取案例之一(1),腾讯Python开发面试记录
  9. PHP interface 接口继承(一丶单接口继承)
  10. Vue.js父与子组件之间传参 父向子组件传参   例子:App.vue为父,引入componetA组件之后,则可以在template中使用标签(注意驼峰写法要改成componet-a写法,因为ht