本文针对Linux内核下USB子系统进行分析,主要会涉及一下几个方面:

  • USB基础知识:介绍USB设备相关的基础知识

  • Linux USB子系统分析:分析USB系统框架,USB HCD/ROOT HUB注册过程,USB新设备枚举过程

  • USB设备驱动案例:介绍常用的USB相关设备驱动

  • USB电源管理

0、USB基础知识

USB,是英文Universal Serial Bus(通用串行总线)、支持设备的即插即用和热插拔功能。在1994年底由英特尔、IBM、Microsoft等公司联合提出的,在此之前PC的接口杂乱,扩展能力差,热拔插不支持等。USB正是为了解决速度,扩展能力,易用性等而出现。

USB各版本速率对比

USB版本 理论最大传输速率 速率称号 最大输出电流 推出时间
USB 1.0 1.5Mbps(192KB/s) 低速(Low-Speed) 5V/500mA 1996年1月
USB 1.1 12Mbps(1.5MB/s) 全速(Full-Speed) 5V/500mA 1998年9月
USB 2.0 480Mbps(60MB/s) 高速(High-Speed) 5V/500mA 2000年4月
USB 3.0 5Gbps(500MB/s) 超高速(Super-Speed) 5V/900mA 2008年11月
USB 3.1 10Gbps(1280MB/s) 超高速+(Super-speed+) 20V/5A 2013年12月
USB 4.0 40Gbps 协议(2019年9月)

  Linux 5.6将开始支持 USB 4 。

一个USB设备可能支持低速和全速,或者支持全速和高速,但是不会同时支持低速和高速。

0.1 USB主从结构:通信都是主机端先发起通信

从设备端没有主动通知USB主机端的能力,从机插入后,主机控制器根据协议,获取设备描述符及驱动匹配。

0.2 USB描述符

USB设备有一下几个主要组成,设备、配置、接口、端点。每个组成部分都有专有的描述符来描述信息。

定义路径:kernel\include\uapi\linux\usb\ch9.h

设备描述符

/* USB_DT_DEVICE: Device descriptor */
struct usb_device_descriptor {__u8  bLength; //本结构体大小__u8  bDescriptorType; //描述符类型__le16 bcdUSB; //usb版本号 200->USB2.0__u8  bDeviceClass; //设备类 __u8  bDeviceSubClass; //设备类子类__u8  bDeviceProtocol; //设备协议,以上三点都是USB官方定义__u8  bMaxPacketSize0; //端点0最大包大小__le16 idVendor; //厂家id__le16 idProduct; //产品id__le16 bcdDevice; //设备出厂编号__u8  iManufacturer; //设备厂商字符串索引__u8  iProduct; //产品描述__u8  iSerialNumber; //设备序列号字符串索引 __u8  bNumConfigurations; //配置的个数
} __attribute__ ((packed));

配置描述符

struct usb_config_descriptor {__u8  bLength; //自身长度__u8  bDescriptorType;//描述符类型(本结构体中固定为0x02)  __le16 wTotalLength; //该配置下,信息的总长度__u8  bNumInterfaces; //接口的个数__u8  bConfigurationValue; //Set_Configuration命令所需要的参数值__u8  iConfiguration; //描述该配置的字符串的索引值 __u8  bmAttributes;//供电模式的选择  __u8  bMaxPower;//设备从总线提取的最大电流
} __attribute__ ((packed));

接口描述符

struct usb_interface_descriptor {__u8  bLength;__u8  bDescriptorType;//接口描述符的类型编号(0x04)__u8  bInterfaceNumber;  //该接口的编号  __u8  bAlternateSetting; //备用的接口描述符编号  __u8  bNumEndpoints; //该接口使用的端点数,不包括端点0  __u8  bInterfaceClass; //接口类__u8  bInterfaceSubClass; //子类__u8  bInterfaceProtocol; //协议__u8  iInterface;//描述该接口的字符串索引值
} __attribute__ ((packed));

端点描述符

/* USB_DT_ENDPOINT: Endpoint descriptor */
struct usb_endpoint_descriptor {__u8  bLength;//端点描述符字节数大小(7个字节)__u8  bDescriptorType;//端点描述符类型编号(0x05) __u8  bEndpointAddress; //端点地址及输入输出属性 __u8  bmAttributes; //属性,包含端点的传输类型,控制,中断...__le16 wMaxPacketSize;  //端点收、发的最大包大小__u8  bInterval; //主机查询端点的时间间隔/* NOTE:  these two are _only_ in audio endpoints. *//* use USB_DT_ENDPOINT*_SIZE in bLength, not sizeof. */__u8  bRefresh;__u8  bSynchAddress;
} __attribute__ ((packed));

usb驱动开发18之设备生命线 - 科创园 - 博客园

USB主机是如何检测到设备的插入的呢? - 奔流聚海 - 博客园

USB 总线上电复位及枚举_michaelcao1980的博客-CSDN博客_usb复位信号

0.3 USB传输:四种类型

  • 控制传输:用于配置设备、获取设备信息、发送命令或者获取设备的状态报告,如:USB枚举阶段。
  • 批量传输:
  • 中断传输
  • 实时传输

0.4 USB传输对象:端点

  • 从端点接收和发送数据
  • 每个端点都只有一个传输类型:控制,批量...
  • 每个端点都只有一个传输方向:输入or输出 。端点0除外,端点0为双向(查询描述符,设置描述符)。
  • 传输方向基于主机端而言,数据由从到主,则该端点为输入端点

一、USB通信基础

1.1 常见通信方式

串口:

基于固定通信速率,波特率下的单线通信。双方规定好一个bit的时间。

I2C:

一个时钟,一个数据,在时钟边沿进行数据传输。

USB:

1.2 USB 插入与断开检测

1.2.1 低速设备插入

D-信号线在未插入的时候,主机在下拉的驱动下,呈现低电平,当插入后,在设备端内部D-上来的驱动下,D-呈现高电平,为设备插入。

1.2.2 高速设备插入

主机D+变高,插入。

1.3 信号状态定义

低俗和全速的D+ D-信号状态定义如下。

J状态,K状态

1.4 传输帧

SOF

SYNC

EOF

Data

信号不变为1,变化为0。通过 NRZI:Non Return Zero Inverted Code,反向不归零编码和位填充来进行数据传输。

没6个不变的插入一个0,保证时钟采用不错位

1.5 USB通信_传输_事务_包_域

USB通信基于传输,传输类型有:

一个传输由多个事务组成

一个事务由多个包组成

一个包由多个域构成

传输(transfer)>事务(transaction)>包(packet)>域()

传输

中断、批量、同步实时、控制传输

事务

in事务、out事务、setup事务

令牌包(Token)、数据包(data)、握手包(ack)、特殊包

同步域(sync)、标识域(pid)、地址域(addr)、端点域(endp)、帧号域(fram)、数据域(data)、校验域(crc)

1.6 传输要素

批量传输

中断传输

同步传输

控制传输

二、Linux USB子系统分析

Linux内核USB子系统,以总线(Bus)、设备(device)、驱动(device_driver)模型来完成设备驱动的绑定,实现USB业务逻辑。

本节在Linux USB驱动框架的基础上,分析USB子系统在内核中的整个初始化流程,以及内核对USB hub的监测及USB设备插入后的一系列初始化和驱动的匹配过程分析,从而分析USB业务实现的主要流程。

2.1 USB子系统框架

整个USB驱动模型可以总结为如上图,USB分为主机测设备侧。本文重点分析主机测一端的USB驱动。

从主机HOST测来看,其包含:

  • USB设备驱动(RNDIS,HID,Mass Storagr...)

  • USB核心(Core init,Core API...)

  • USB主机控制器驱动HCD(Root Hub)

USB设备驱动:用于和枚举到的USB设备进行绑定,完成特定的功能。

USB Core:用于内核USB总线的初始化及USB相关API,为设备驱动和HCD的交互提供桥梁。

USB主机控制器HCD:完成主机控制器的初始化以及数据的传输,并监测外部设备插入,完成设备枚举。

接下来将从以上三个方面分析USB子系统在内核完成的初始化操作及USB业务实现的流程。

2.2 USB Core分析

Linux启动阶段,通过subsys_initcall会完成USB Core的加载,其代码位于kernel/drivers/usb/core/usb.c。

顺着驱动加载的入口函数,来分析USB被加载进内核的第一步。

2.2.1 入口函数usb_init分析

由于USB基于总线设备驱动模型来组织,其初始化阶段一个重点任务为完成USB总线的创建,usb_init代码如下:

static int __init usb_init(void)
{int retval;//通过command line传入nousb=1可禁止掉USB子模块的加载if (nousb) {pr_info("%s: USB support disabled\n", usbcore_name);return 0;}retval = usb_debugfs_init();if (retval)goto out;usb_acpi_register();//注册USB总线(*****)retval = bus_register(&usb_bus_type);if (retval)goto bus_register_failed;retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);if (retval)goto bus_notifier_failed;retval = usb_major_init();if (retval)goto major_init_failed;retval = usb_register(&usbfs_driver);if (retval)goto driver_register_failed;retval = usb_devio_init();if (retval)goto usb_devio_init_failed;//usb hub的初始化,完成驱动注册和内核线程创建retval = usb_hub_init();if (retval)goto hub_init_failed;//加载一个通用的usb_device_driver驱动retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);if (!retval)goto out;......
}

usb_init主要完成USB相关的初始化操作,其重点工作:

  • 通过bus_register注册USB总线usb_bus_type

struct bus_type usb_bus_type = {.name =        "usb",.match =   usb_device_match,.uevent = usb_uevent,
};

bus_register中创建了两个链表,一端为设备链表,一端为驱动链表。

klist_init(&priv->klist_devices, klist_devices_get, klist_devices_put);
klist_init(&priv->klist_drivers, NULL, NULL);

usb_bus_type提供了设备与驱动的匹配函数usb_device_match,这个函数很重要,后面用到的时候再详细分析。

  • 完成USB Hub的初始化usb_hub_init()

int usb_hub_init(void)
{if (usb_register(&hub_driver) < 0) {printk(KERN_ERR "%s: can't register hub driver\n",usbcore_name);return -1;}khubd_task = kthread_run(hub_thread, NULL, "khubd");if (!IS_ERR(khubd_task))return 0;/* Fall through if kernel_thread failed */usb_deregister(&hub_driver);printk(KERN_ERR "%s: can't start khubd\n", usbcore_name);return -1;
}

任务之1:是通过usb_register(&hub_driver),向USB总线添加一个hub驱动。指定了probe,disconnect,suspend,resume,id_table等相关函数。可以猜测,在root hub创建后,会执行此处的hub_probe函数。

任务之2:完成内核线程hub_thread的创建,该线程是检测USB端口插入设备后的处理函数,是完成USB设备识别到枚举的监控进程,十分重要。

static int hub_thread(void *__unused)
{/* khubd needs to be freezable to avoid intefering with USB-PERSIST* port handover.  Otherwise it might see that a full-speed device* was gone before the EHCI controller had handed its port over to* the companion full-speed controller.*/set_freezable();do {hub_events();wait_event_freezable(khubd_wait,!list_empty(&hub_event_list) ||kthread_should_stop());} while (!kthread_should_stop() || !list_empty(&hub_event_list));pr_debug("%s: khubd exiting\n", usbcore_name);return 0;
}

hub_events()是一个死循环,其任务是解析hub_event_list,来一个一个处理发生在hub上的事件,比如插入,拔出。当hub_event_list事件被处理完后,break跳出while,通过wait_event_freezable使进程进入休眠态。一旦hub_event_list上有新事件需要处理,此处khubd_wait会在事件中断中被唤醒,重新执行到此处的hub_events()来遍历执行事件,完成处理。

hub_events()十分庞大,且十分重要,后面分析到此处流程的时候再详细分析。

  • usb_register_device_driver完成一个usb_device_driver usb_generic_driver的注册

区别于usb_register函数,usb_register_device_driver完成一个device的注册,既然是一个device的驱动,那么在USB枚举之后,创建一个USB设备后,这个驱动就会被probe。

2.2.2 USB Core重点函数及数据结构

  • usb_register() 注册一个USB接口驱动

usb_register是一个宏,展开后:

#define usb_register(driver)  usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
/*** usb_register_driver - register a USB interface driver* @new_driver: USB operations for the interface driver** Registers a USB interface driver with the USB core.  The list of* unattached interfaces will be rescanned whenever a new driver is* added, allowing the new driver to attach to any recognized interfaces.* Returns a negative error code on failure and 0 on success.** NOTE: if you want your driver to use the USB major number, you must call* usb_register_dev() to enable that functionality.  This function no longer* takes care of that.*/
int usb_register_driver(struct usb_driver *new_driver, struct module *owner,const char *mod_name)
{...new_driver->drvwrap.for_devices = 0;new_driver->drvwrap.driver.name = (char *) new_driver->name;new_driver->drvwrap.driver.bus = &usb_bus_type;new_driver->drvwrap.driver.probe = usb_probe_interface;new_driver->drvwrap.driver.remove = usb_unbind_interface;...retval = driver_register(&new_driver->drvwrap.driver);retval = usb_create_newid_files(new_driver);pr_info("%s: registered new interface driver %s\n",usbcore_name, new_driver->name);
}
  • int usb_register_device_driver(struct usb_device_driver *new_udriver, struct module *owner):注册USB设备驱动

/*** usb_register_device_driver - register a USB device (not interface) driver* @new_udriver: USB operations for the device driver** Registers a USB device driver with the USB core.  The list of* unattached devices will be rescanned whenever a new driver is* added, allowing the new driver to attach to any recognized devices.* Returns a negative error code on failure and 0 on success.*/
int usb_register_device_driver(struct usb_device_driver *new_udriver,struct module *owner)
{...new_udriver->drvwrap.for_devices = 1;new_udriver->drvwrap.driver.name = (char *) new_udriver->name;new_udriver->drvwrap.driver.bus = &usb_bus_type;new_udriver->drvwrap.driver.probe = usb_probe_device;new_udriver->drvwrap.driver.remove = usb_unbind_device;retval = driver_register(&new_udriver->drvwrap.driver);if (!retval)pr_info("%s: registered new device driver %s\n",usbcore_name, new_udriver->name);...
}

对比两个驱动注册函数,一个为注册USB 接口驱动,一个为注册USB设备驱动,一个设备可以有多个接口,设备和接口的驱动在内核是有所区别的,他们都挂在usb_bus_type下,设备驱动的for_devices变量被置1,这个变量在总线的match函数usb_device_match的时候会用于判断是什么类型的驱动。且usb_device_match对接口和设备驱动进行了判断,走了不通的match分支。

由于总线的match函数通过for_devices进行匹配,可以猜测内核针对的USB设备驱动仅有usb_generic_driver一个,且USB枚举后产生的所有设备,都将被此驱动所probe。

  • struct usb_driver:USB接口驱动结构体

struct usb_driver {const char *name;int (*probe) (struct usb_interface *intf,const struct usb_device_id *id);void (*disconnect) (struct usb_interface *intf);int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,void *buf);int (*suspend) (struct usb_interface *intf, pm_message_t message);int (*resume) (struct usb_interface *intf);int (*reset_resume)(struct usb_interface *intf);int (*pre_reset)(struct usb_interface *intf);int (*post_reset)(struct usb_interface *intf);const struct usb_device_id *id_table;struct usb_dynids dynids;struct usbdrv_wrap drvwrap;unsigned int no_dynamic_id:1;unsigned int supports_autosuspend:1;unsigned int disable_hub_initiated_lpm:1;unsigned int soft_unbind:1;
};

USB分为:USB设备驱动,USB Core和HCD。在编写USB设备驱动的时候,一定也会向Core一样调用usb_register来向USB总线注册USB接口驱动。此时就需要实现一个usb_driver结构体,并填充里面重要的函数。

如上比较重要的成员,如probe匹配、id_table匹配的id表、supports_autosuspend休眠,对接设备驱动模型的drvwrap结构体等。

2.2.3 总结

可以将USB口的入口函数任务总结为如下:

  • 创建并初始化了USB总线,usb_bus_type,提供了总线的匹配函数

  • 向总线注册hub的驱动,并启动了内核线程hub_thread监控hub事件。

  • 向总线注册USB设备驱动usb_generic_driver,用于USB设备插入后的设备驱动枚举。

2.3 USB主机控制器驱动分析

分析主机控制器驱动前,首先来看一个USB2.0协议 5.2.3 Physical Bus Topology 内的USB物理总线拓扑图。

(译:如下图)USB上的设备通过分层星形拓扑物理连接到主机,如中所示图5-5。USB连接点由一种特殊的USB设备(称为集线器hub)提供。这个集线器提供的附加连接点称为端口port。主机包括一个名为根集线器。主机通过根集线器提供一个或多个连接点。

从协议中可以看到,控制器上绑定了一个特殊的USB设备,称为root hub,根集线器提供的连接点称为port。所以可以总结出HCD需要完成的任务:

  • 完成控制器硬件的初始化,使得USB PHY工作在主状态下。

  • 从软件上构造出控制器结构体,并提供控制器驱动的操作函数,用于数据交互等。

  • 既然root hub是一个USB设备,对于驱动中,一定需要创建一个USB设备来表示这个root hub

  • 外部设备插在root hub上,软件需要完成对root hub的监控,以及USB设备插入后的创建操作。

2.3.1 HCD入口函数分析

CPU一般在内部集成USB,可选的HCD也比较多,比如dwc2、dwc3、chipidea的等等,均在kernel/drivers/usb/目下可以找到其对应的目录。本文以dwc2为例,代码位置: kernel/drivers/usb/dwc2/core.c。

HCD控制器驱动一般以platform的形式将驱动注册进内核,本文HCD的入口函数中注册了两个platform_driver,并在板级代码中提供了platform_device。

本文将HCD控制器驱动可以从整体上分为两个大部分:

  1. 平台相关的硬件初始化

  2. 内核通用的USB HCD软件初始化流程

  • 平台硬件相关初始化

第一部分:平台相关的硬件初始化,主要完成硬件相关初始化,devm_clk_get/clk_enable申请并使能时钟,phy_init对USB PHY寄存器进行初始化设置,devm_request_threaded_irq申请id引脚中断等。是与硬件相关的初始化。在完成平台硬件的初始化后,在probe的末尾部分,调用了dwc2_host_init()函数。

将dwc2_host_init()看做HCD驱动第二部分,其主要完成HCD控制器的创建注册以及ROOT HUB的注册和HUB的监测。由于内核该部分调用关系比较多,本文将第二部分分为多个层次,从dwc2_host_init()开始。

  • 第一层:dwc2_host_init(dwc)

从最顶层名字上说明了整个代码最终是为了完成host控制器的初始化。在上面,我们知道主机控制器上绑定了一个ROOT HUB。

int dwc2_host_init(struct dwc2 *dwc) {struct usb_hcd *hcd;int ret;...hcd = usb_create_hcd(&dwc2_hc_driver, dwc->dev, dev_name(dwc->dev));dev_set_drvdata(dwc->dev, dwc);*(struct dwc2 **)(hcd->hcd_priv) = dwc;dwc->hcd = hcd;ret = usb_add_hcd(hcd, -1, 0);...
}

dwc2_host_init 主要调用了两个函数usb_create_hcd和usb_add_hcd

① usb_create_hcd(&dwc2_hc_driver, dwc->dev, dev_name(dwc->dev));

struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,struct device *dev, const char *bus_name)
{return usb_create_shared_hcd(driver, dev, bus_name, NULL);
}
/*** usb_create_shared_hcd - create and initialize an HCD structure* @driver: HC driver that will use this hcd* @dev: device for this HC, stored in hcd->self.controller* @bus_name: value to store in hcd->self.bus_name* @primary_hcd: a pointer to the usb_hcd structure that is sharing the*              PCI device.  Only allocate certain resources for the primary HCD* Context: !in_interrupt()** Allocate a struct usb_hcd, with extra space at the end for the* HC driver's private data.  Initialize the generic members of the* hcd structure.** If memory is unavailable, returns NULL.*/
struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,struct device *dev, const char *bus_name,struct usb_hcd *primary_hcd)
{struct usb_hcd *hcd;hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);...usb_bus_init(&hcd->self);hcd->self.controller = dev;hcd->self.bus_name = bus_name;hcd->self.uses_dma = (dev->dma_mask != NULL);init_timer(&hcd->rh_timer);hcd->rh_timer.function = rh_timer_func;hcd->rh_timer.data = (unsigned long) hcd;
#ifdef CONFIG_PM_RUNTIMEINIT_WORK(&hcd->wakeup_work, hcd_resume_work);
#endifhcd->driver = driver;...
}

根据注释该函数主要任务是创建并初始化一个HCD 结构体usb_hcd ,该函数主要实现:

  1. 完成usb_hcd内存申请

  2. usb_bus总线初始化,usb_bus_init(&hcd->self);

  3. 填充控制器驱动hc_driver。

usb_hcd的第一个成员是:struct usb_bus        self;        /* hcd is-a bus */。

一个主控制器对应一条usb总线,一个主控制器绑定着一个root hub,一个root hub对应于一个usb_device,然后注册此root  hub。

每个usb设备(usb_device)有一种或多种配置,每种配置有一个或多个接口,一个接口有一种或多种设置,一种设置有一个或多个端点。

hcd->driver = driver;中的driver=&dwc2_hc_driver(struct hc_driver)是主机控制器驱动函数,实现了通过主机控制器硬件向外通信的方法。类似于网卡设备驱动里面的net_device_ops结构体。后面用到再具体分析hc_driver。

② usb_add_hcd(hcd, -1, 0);

int usb_add_hcd(struct usb_hcd *hcd,unsigned int irqnum, unsigned long irqflags)
{int retval;struct usb_device *rhdev;if ((retval = usb_register_bus(&hcd->self)) < 0)goto err_register_bus;if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {dev_err(hcd->self.controller, "unable to allocate root hub\n");retval = -ENOMEM;goto err_allocate_root_hub;}hcd->self.root_hub = rhdev;if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {dev_err(hcd->self.controller, "can't setup\n");goto err_hcd_driver_setup;}hcd->state = HC_STATE_RUNNING;retval = hcd->driver->start(hcd);/* starting here, usbcore will pay attention to this root hub */retval = register_root_hub(hcd);
} 

将hcd添加到USB总线,该函数主要实现

  1. 注册usb_bus总线

  2. usb_alloc_dev申请一个usb_device,并赋给hcd->self.root_hub

  3. register_root_hub

上面我们根据协议知道主机控制器上会被绑定一个特殊的USB设备叫做root hub,在hcd注册完成后,为了实现正常的usb功能,此处应该还要实现一个root hub并绑定在hcd上。当完成usb_bus总线的注册后,此处调用usb_alloc_dev来创建一个USB设备,并将该设备指给了控制器的root hub,hcd->self.root_hub = rhdev;并调用register_root_hub注册到usb总线。

  • 第二层:register_root_hub()

/*** register_root_hub - called by usb_add_hcd() to register a root hub* @hcd: host controller for this root hub** This function registers the root hub with the USB subsystem.  It sets up* the device properly in the device tree and then calls usb_new_device()* to register the usb device.  It also assigns the root hub's USB address* (always 1).*/
static int register_root_hub(struct usb_hcd *hcd)
{struct device *parent_dev = hcd->self.controller;struct usb_device *usb_dev = hcd->self.root_hub;const int devnum = 1;int retval;usb_dev->devnum = devnum;usb_dev->bus->devnum_next = devnum + 1;usb_set_device_state(usb_dev, USB_STATE_ADDRESS);mutex_lock(&usb_bus_list_lock);retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);retval = usb_new_device (usb_dev);mutex_unlock(&usb_bus_list_lock);return retval;
}

usb_new_device创建一个usb设备并将其挂到usb_bus_type总线上,由于USB为总线设备驱动模型,在执行usb_new_device后,将执行总线的匹配函数如下。

usb_new_device->device_add->bus_probe_device->device_attach->bus_for_each_drv->__device_attach->driver_match_device->drv->bus->match(dev, drv)->usb_device_match

回顾USB2.0协议,这里确实是实现了一个绑定在控制器上的usb设备,并将其挂在USB总线上作为root hub来维护。

  • 第三层:设备与驱动的匹配

USB总线的匹配函数usb_device_match这时就需要被调用到了,其代码如下:

static int usb_device_match(struct device *dev, struct device_driver *drv)
{/* devices and interfaces are handled separately */if (is_usb_device(dev)) {/* interface drivers never match devices */if (!is_usb_device_driver(drv))return 0;/* TODO: Add real matching code */return 1;} else if (is_usb_interface(dev)) {struct usb_interface *intf;struct usb_driver *usb_drv;const struct usb_device_id *id;/* device drivers never match interfaces */if (is_usb_device_driver(drv))return 0;intf = to_usb_interface(dev);usb_drv = to_usb_driver(drv);id = usb_match_id(intf, usb_drv->id_table);if (id)return 1;id = usb_match_dynamic_id(intf, usb_drv);if (id)return 1;}return 0;
}

2.2章节我们分析了usb_register来注册一个usb接口驱动,usb_register_device_driver来注册一个usb设备驱动。同样在match函数里面也针对usb接口和设备进行了区分,形成了if else两个分支。

① USB设备&USB设备驱动 

is_usb_device(dev)

static inline int is_usb_device(const struct device *dev)
{return dev->type == &usb_device_type;
}

usb_alloc_dev在创建usb hub的时候,其内部指定了dev->dev.type = &usb_device_type;

is_usb_device_driver(drv)

static inline int is_usb_device_driver(struct device_driver *drv)
{return container_of(drv, struct usbdrv_wrap, driver)->for_devices;
}

回顾分析usb core入口函数,当时注册了一个usb设备驱动usb_generic_driver,其for_devices为1.此时显然root hub设备与usb_generic_driver驱动匹配成功,因此usb_generic_driver的generic_probe函数被调用。

① USB接口&USB接口驱动 

我们继续分析usb root hub的注册,此时generic_probe被调用。

static int generic_probe(struct usb_device *udev)
{int err, c;/* Choose and set the configuration.  This registers the interfaces* with the driver core and lets interface drivers bind to them.*/c = usb_choose_configuration(udev);err = usb_set_configuration(udev, c);/* USB device state == configured ... usable */usb_notify_add_device(udev);return 0;
}

其主要函数2个:usb_choose_configuration和usb_set_configuration,选择配置并设置配置。

  • 第四层:usb配置选择和设置

USB驱动框架分析1_段小苏学习之路的博客-CSDN博客_usb驱动框架

Linux下的USB HUB驱动 第3页_Linux编程_Linux公社-Linux系统门户网站

在usb_set_configuration的尾部,会将每一个接口设备注册到内核中。

    for (i = 0; i < nintf; ++i) {struct usb_interface *intf = cp->interface[i];ret = device_add(&intf->dev);create_intf_ep_devs(intf);}

在执行device_add后导致总线的匹配函数usb_device_match再次被调用,这次由于是接口设备,设备类型为usb_if_device_type,那么匹配的一定是接口驱动,于是会执行usb_device_match的else分支,去匹配接口驱动。根据上面对usb_device_match的分析,此时在core注册的hub_driver的hub_probe函数被调用。

  • 第五层:hub_probe分析

static int hub_probe(struct usb_interface *intf, const struct usb_device_id *id)
{struct usb_host_interface *desc;struct usb_endpoint_descriptor *endpoint;struct usb_device *hdev;struct usb_hub *hub;...//分配usb_hub 结构体hub = kzalloc(sizeof(*hub), GFP_KERNEL);//填充结构体INIT_LIST_HEAD(&hub->event_list);hub->intfdev = &intf->dev;hub->hdev = hdev;usb_set_intfdata (intf, hub);intf->needs_remote_wakeup = 1;//配置hubif (hub_configure(hub, endpoint) >= 0)return 0;
}

申请usb_hub ,填充,调用hub_configure配置hub

static int hub_configure(struct usb_hub *hub,struct usb_endpoint_descriptor *endpoint)
{struct usb_hcd *hcd;struct usb_device *hdev = hub->hdev;struct device *hub_dev = hub->intfdev;u16 hubstatus, hubchange;hub->descriptor = kmalloc(sizeof(*hub->descriptor), GFP_KERNEL);//获取HUB的描述符ret = get_hub_descriptor(hdev, hub->descriptor);hub->ports = kzalloc(hdev->maxchild * sizeof(struct usb_port *),//填充urbhub->urb = usb_alloc_urb(0, GFP_KERNEL);//初始化一个中断urb,回调函数为hub_irqusb_fill_int_urb(hub->urb, hdev, pipe, *hub->buffer, maxp, hub_irq,hub, endpoint->bInterval);//激活hubhub_activate(hub, HUB_INIT);}
  1. 填充hub的相关描述符信息

  2. 初始化一个urb中断,其回调函数为hub_irq

  3. 并激活hub

在当hub上存在事件的时候时候会触发hub_irq调用,hub_irq调用kick_khubd完成对hub_thread的唤醒,去执行hub_events。

/* completion function, fires on port status changes and various faults */
static void hub_irq(struct urb *urb)
{struct usb_hub *hub = urb->context;int status = urb->status;unsigned i;unsigned long bits;switch (status) {case -ENOENT:       /* synchronous unlink */case -ECONNRESET:   /* async unlink */case -ESHUTDOWN:  /* hardware going away */return;default:        /* presumably an error *//* Cause a hub reset after 10 consecutive errors */dev_dbg (hub->intfdev, "transfer --> %d\n", status);if ((++hub->nerrors < 10) || hub->error)goto resubmit;hub->error = status;/* FALL THROUGH *//* let khubd handle things */case 0:         /* we got data:  port status changed */bits = 0;for (i = 0; i < urb->actual_length; ++i)bits |= ((unsigned long) ((*hub->buffer)[i]))<< (i*8);hub->event_bits[0] = bits;break;}hub->nerrors = 0;/* Something happened, let khubd figure it out */kick_khubd(hub);if ((status = usb_submit_urb (hub->urb, GFP_ATOMIC)) != 0&& status != -ENODEV && status != -EPERM)dev_err (hub->intfdev, "resubmit --> %d\n", status);
}
static void kick_khubd(struct usb_hub *hub)
{unsigned long  flags;spin_lock_irqsave(&hub_event_lock, flags);if (!hub->disconnected && list_empty(&hub->event_list)) {list_add_tail(&hub->event_list, &hub_event_list);/* Suppress autosuspend until khubd runs */usb_autopm_get_interface_no_resume(to_usb_interface(hub->intfdev));wake_up(&khubd_wait);}spin_unlock_irqrestore(&hub_event_lock, flags);
}

usb协议:11.12.3 Port Change Information Processing

  • 第六层 hub_events()事件处理

第五层,完成了root hub的初始化及相关hub监测的创建,当hub上存在新事件的时候,hub_events开始执行,进行hub事件处理。是hub功能最为核心的处理函数。

static void hub_events(void)
{struct list_head *tmp;struct usb_device *hdev;struct usb_interface *intf;struct usb_hub *hub;struct device *hub_dev;u16 hubstatus;u16 hubchange;u16 portstatus;u16 portchange;int i, ret;int connect_change, wakeup_change;/**  We restart the list every time to avoid a deadlock with* deleting hubs downstream from this one. This should be* safe since we delete the hub from the event list.* Not the most efficient, but avoids deadlocks.*/while (1) {/* Grab the first entry at the beginning of the list */spin_lock_irq(&hub_event_lock);if (list_empty(&hub_event_list)) {spin_unlock_irq(&hub_event_lock);break;}tmp = hub_event_list.next;list_del_init(tmp);hub = list_entry(tmp, struct usb_hub, event_list);kref_get(&hub->kref);spin_unlock_irq(&hub_event_lock);hdev = hub->hdev;hub_dev = hub->intfdev;intf = to_usb_interface(hub_dev);dev_dbg(hub_dev, "state %d ports %d chg %04x evt %04x\n",hdev->state, hub->descriptor? hub->descriptor->bNbrPorts: 0,/* NOTE: expects max 15 ports... */(u16) hub->change_bits[0],(u16) hub->event_bits[0]);/* Lock the device, then check to see if we were* disconnected while waiting for the lock to succeed. */usb_lock_device(hdev);if (unlikely(hub->disconnected))goto loop_disconnected;/* If the hub has died, clean up after it */if (hdev->state == USB_STATE_NOTATTACHED) {hub->error = -ENODEV;hub_quiesce(hub, HUB_DISCONNECT);goto loop;}/* Autoresume */ret = usb_autopm_get_interface(intf);if (ret) {dev_dbg(hub_dev, "Can't autoresume: %d\n", ret);goto loop;}/* If this is an inactive hub, do nothing */if (hub->quiescing)goto loop_autopm;if (hub->error) {dev_dbg (hub_dev, "resetting for error %d\n",hub->error);ret = usb_reset_device(hdev);if (ret) {dev_dbg (hub_dev,"error resetting hub: %d\n", ret);goto loop_autopm;}hub->nerrors = 0;hub->error = 0;}/* deal with port status changes */for (i = 1; i <= hub->descriptor->bNbrPorts; i++) {if (test_bit(i, hub->busy_bits))continue;connect_change = test_bit(i, hub->change_bits);wakeup_change = test_and_clear_bit(i, hub->wakeup_bits);if (!test_and_clear_bit(i, hub->event_bits) &&!connect_change && !wakeup_change)continue;ret = hub_port_status(hub, i,&portstatus, &portchange);if (ret < 0)continue;if (portchange & USB_PORT_STAT_C_CONNECTION) {usb_clear_port_feature(hdev, i,USB_PORT_FEAT_C_CONNECTION);connect_change = 1;}if (portchange & USB_PORT_STAT_C_ENABLE) {if (!connect_change)dev_dbg (hub_dev,"port %d enable change, ""status %08x\n",i, portstatus);usb_clear_port_feature(hdev, i,USB_PORT_FEAT_C_ENABLE);/** EM interference sometimes causes badly* shielded USB devices to be shutdown by* the hub, this hack enables them again.* Works at least with mouse driver. */if (!(portstatus & USB_PORT_STAT_ENABLE)&& !connect_change&& hub->ports[i - 1]->child) {dev_err (hub_dev,"port %i ""disabled by hub (EMI?), ""re-enabling...\n",i);connect_change = 1;}}if (hub_handle_remote_wakeup(hub, i,portstatus, portchange))connect_change = 1;if (portchange & USB_PORT_STAT_C_OVERCURRENT) {u16 status = 0;u16 unused;dev_dbg(hub_dev, "over-current change on port ""%d\n", i);usb_clear_port_feature(hdev, i,USB_PORT_FEAT_C_OVER_CURRENT);msleep(100); /* Cool down */hub_power_on(hub, true);hub_port_status(hub, i, &status, &unused);if (status & USB_PORT_STAT_OVERCURRENT)dev_err(hub_dev, "over-current ""condition on port %d\n", i);}if (portchange & USB_PORT_STAT_C_RESET) {dev_dbg (hub_dev,"reset change on port %d\n",i);usb_clear_port_feature(hdev, i,USB_PORT_FEAT_C_RESET);}if ((portchange & USB_PORT_STAT_C_BH_RESET) &&hub_is_superspeed(hub->hdev)) {dev_dbg(hub_dev,"warm reset change on port %d\n",i);usb_clear_port_feature(hdev, i,USB_PORT_FEAT_C_BH_PORT_RESET);}if (portchange & USB_PORT_STAT_C_LINK_STATE) {usb_clear_port_feature(hub->hdev, i,USB_PORT_FEAT_C_PORT_LINK_STATE);}if (portchange & USB_PORT_STAT_C_CONFIG_ERROR) {dev_warn(hub_dev,"config error on port %d\n",i);usb_clear_port_feature(hub->hdev, i,USB_PORT_FEAT_C_PORT_CONFIG_ERROR);}/* Warm reset a USB3 protocol port if it's in* SS.Inactive state.*/if (hub_port_warm_reset_required(hub, portstatus)) {int status;struct usb_device *udev =hub->ports[i - 1]->child;dev_dbg(hub_dev, "warm reset port %d\n", i);if (!udev || !(portstatus &USB_PORT_STAT_CONNECTION)) {status = hub_port_reset(hub, i,NULL, HUB_BH_RESET_TIME,true);if (status < 0)hub_port_disable(hub, i, 1);} else {usb_lock_device(udev);status = usb_reset_device(udev);usb_unlock_device(udev);connect_change = 0;}}if (connect_change)hub_port_connect_change(hub, i,portstatus, portchange);} /* end for i *//* deal with hub status changes */if (test_and_clear_bit(0, hub->event_bits) == 0);  /* do nothing */else if (hub_hub_status(hub, &hubstatus, &hubchange) < 0)dev_err (hub_dev, "get_hub_status failed\n");else {if (hubchange & HUB_CHANGE_LOCAL_POWER) {dev_dbg (hub_dev, "power change\n");clear_hub_feature(hdev, C_HUB_LOCAL_POWER);if (hubstatus & HUB_STATUS_LOCAL_POWER)/* FIXME: Is this always true? */hub->limited_power = 1;elsehub->limited_power = 0;}if (hubchange & HUB_CHANGE_OVERCURRENT) {u16 status = 0;u16 unused;dev_dbg(hub_dev, "over-current change\n");clear_hub_feature(hdev, C_HUB_OVER_CURRENT);msleep(500);  /* Cool down */hub_power_on(hub, true);hub_hub_status(hub, &status, &unused);if (status & HUB_STATUS_OVERCURRENT)dev_err(hub_dev, "over-current ""condition\n");}}loop_autopm:/* Balance the usb_autopm_get_interface() above */usb_autopm_put_interface_no_suspend(intf);loop:/* Balance the usb_autopm_get_interface_no_resume() in* kick_khubd() and allow autosuspend.*/usb_autopm_put_interface(intf);loop_disconnected:usb_unlock_device(hdev);kref_put(&hub->kref, hub_release);} /* end while (1) */
}

hub_events主要任务:

  1. 调用hub_port_status获取hub上发生的时间

  2. 调用hub_port_connect_change去处理事件

/* Handle physical or logical connection change events.* This routine is called when:*   a port connection-change occurs;*   a port enable-change occurs (often caused by EMI);* usb_reset_and_verify_device() encounters changed descriptors (as from*      a firmware download)* caller already locked the hub*/
static void hub_port_connect_change(struct usb_hub *hub, int port1,u16 portstatus, u16 portchange)
{struct usb_device *hdev = hub->hdev;struct device *hub_dev = hub->intfdev;struct usb_hcd *hcd = bus_to_hcd(hdev->bus);unsigned wHubCharacteristics =le16_to_cpu(hub->descriptor->wHubCharacteristics);struct usb_device *udev;int status, i;unsigned unit_load;dev_dbg (hub_dev,"port %d, status %04x, change %04x, %s\n",port1, portstatus, portchange, portspeed(hub, portstatus));if (hub->has_indicators) {set_port_led(hub, port1, HUB_LED_AUTO);hub->indicator[port1-1] = INDICATOR_AUTO;}#ifdef CONFIG_USB_OTG/* during HNP, don't repeat the debounce */if (hdev->bus->is_b_host)portchange &= ~(USB_PORT_STAT_C_CONNECTION |USB_PORT_STAT_C_ENABLE);
#endif/* Try to resuscitate an existing device */udev = hub->ports[port1 - 1]->child;if ((portstatus & USB_PORT_STAT_CONNECTION) && udev &&udev->state != USB_STATE_NOTATTACHED) {usb_lock_device(udev);if (portstatus & USB_PORT_STAT_ENABLE) {status = 0;     /* Nothing to do */#ifdef CONFIG_PM_RUNTIME} else if (udev->state == USB_STATE_SUSPENDED &&udev->persist_enabled) {/* For a suspended device, treat this as a* remote wakeup event.*/status = usb_remote_wakeup(udev);
#endif} else {status = -ENODEV;    /* Don't resuscitate */}usb_unlock_device(udev);if (status == 0) {clear_bit(port1, hub->change_bits);return;}}/* Disconnect any existing devices under this port */if (udev) {if (hcd->phy && !hdev->parent &&!(portstatus & USB_PORT_STAT_CONNECTION))usb_phy_notify_disconnect(hcd->phy, udev->speed);usb_disconnect(&hub->ports[port1 - 1]->child);}clear_bit(port1, hub->change_bits);/* We can forget about a "removed" device when there's a physical* disconnect or the connect status changes.*/if (!(portstatus & USB_PORT_STAT_CONNECTION) ||(portchange & USB_PORT_STAT_C_CONNECTION))clear_bit(port1, hub->removed_bits);if (portchange & (USB_PORT_STAT_C_CONNECTION |USB_PORT_STAT_C_ENABLE)) {status = hub_port_debounce_be_stable(hub, port1);if (status < 0) {if (status != -ENODEV && printk_ratelimit())dev_err(hub_dev, "connect-debounce failed, ""port %d disabled\n", port1);portstatus &= ~USB_PORT_STAT_CONNECTION;} else {portstatus = status;}}/* Return now if debouncing failed or nothing is connected or* the device was "removed".*/if (!(portstatus & USB_PORT_STAT_CONNECTION) ||test_bit(port1, hub->removed_bits)) {/* maybe switch power back on (e.g. root hub was reset) */if ((wHubCharacteristics & HUB_CHAR_LPSM) < 2&& !port_is_power_on(hub, portstatus))set_port_feature(hdev, port1, USB_PORT_FEAT_POWER);if (portstatus & USB_PORT_STAT_ENABLE)goto done;return;}if (hub_is_superspeed(hub->hdev))unit_load = 150;elseunit_load = 100;status = 0;for (i = 0; i < SET_CONFIG_TRIES; i++) {/* reallocate for each attempt, since references* to the previous one can escape in various ways*/udev = usb_alloc_dev(hdev, hdev->bus, port1);if (!udev) {dev_err (hub_dev,"couldn't allocate port %d usb_device\n",port1);goto done;}usb_set_device_state(udev, USB_STATE_POWERED);udev->bus_mA = hub->mA_per_port;udev->level = hdev->level + 1;udev->wusb = hub_is_wusb(hub);/* Only USB 3.0 devices are connected to SuperSpeed hubs. */if (hub_is_superspeed(hub->hdev))udev->speed = USB_SPEED_SUPER;elseudev->speed = USB_SPEED_UNKNOWN;//选择设备号0.1.2...choose_devnum(udev);if (udev->devnum <= 0) {status = -ENOTCONN; /* Don't retry */goto loop;}/* reset (non-USB 3.0 devices) and get descriptor */status = hub_port_init(hub, udev, port1, i);if (status < 0)goto loop;usb_detect_quirks(udev);if (udev->quirks & USB_QUIRK_DELAY_INIT)msleep(1000);/* consecutive bus-powered hubs aren't reliable; they can* violate the voltage drop budget.  if the new child has* a "powered" LED, users should notice we didn't enable it* (without reading syslog), even without per-port LEDs* on the parent.*/if (udev->descriptor.bDeviceClass == USB_CLASS_HUB&& udev->bus_mA <= unit_load) {u16   devstat;status = usb_get_status(udev, USB_RECIP_DEVICE, 0,&devstat);if (status < 2) {dev_dbg(&udev->dev, "get status %d ?\n", status);goto loop_disable;}le16_to_cpus(&devstat);if ((devstat & (1 << USB_DEVICE_SELF_POWERED)) == 0) {dev_err(&udev->dev,"can't connect bus-powered hub ""to this port\n");if (hub->has_indicators) {hub->indicator[port1-1] =INDICATOR_AMBER_BLINK;schedule_delayed_work (&hub->leds, 0);}status = -ENOTCONN;  /* Don't retry */goto loop_disable;}}/* check for devices running slower than they could */if (le16_to_cpu(udev->descriptor.bcdUSB) >= 0x0200&& udev->speed == USB_SPEED_FULL&& highspeed_hubs != 0)check_highspeed (hub, udev, port1);/* Store the parent's children[] pointer.  At this point* udev becomes globally accessible, although presumably* no one will look at it until hdev is unlocked.*/status = 0;/* We mustn't add new devices if the parent hub has* been disconnected; we would race with the* recursively_mark_NOTATTACHED() routine.*/spin_lock_irq(&device_state_lock);if (hdev->state == USB_STATE_NOTATTACHED)status = -ENOTCONN;elsehub->ports[port1 - 1]->child = udev;spin_unlock_irq(&device_state_lock);/* Run it through the hoops (find a driver, etc) */if (!status) {status = usb_new_device(udev);if (status) {spin_lock_irq(&device_state_lock);hub->ports[port1 - 1]->child = NULL;spin_unlock_irq(&device_state_lock);}}if (status)goto loop_disable;status = hub_power_remaining(hub);if (status)dev_dbg(hub_dev, "%dmA power budget left\n", status);return;loop_disable:hub_port_disable(hub, port1, 1);
loop:usb_ep0_reinit(udev);release_devnum(udev);hub_free_dev(udev);usb_put_dev(udev);if ((status == -ENOTCONN) || (status == -ENOTSUPP))break;}if (hub->hdev->parent ||!hcd->driver->port_handed_over ||!(hcd->driver->port_handed_over)(hcd, port1)) {if (status != -ENOTCONN && status != -ENODEV)dev_err(hub_dev, "unable to enumerate USB device on port %d\n",port1);}done:hub_port_disable(hub, port1, 1);if (hcd->driver->relinquish_port && !hub->hdev->parent)hcd->driver->relinquish_port(hcd, port1);
}

hub_port_connect_change主要任务

  1. 判断发生的事件的类型

  2. 若有新设备插入,则创建一个usb设备,并完成设备的信息获取和初始化。

USB协议 9.1 USB设备状态

usb_alloc_devdev->state = USB_STATE_ATTACHED;

第七层 USB设备与驱动的枚举

2.3.2 HCD重点函数及结构体

/*-------------------------------------------------------------------------*//** USB Host Controller Driver (usb_hcd) framework** Since "struct usb_bus" is so thin, you can't share much code in it.* This framework is a layer over that, and should be more sharable.** @authorized_default: Specifies if new devices are authorized to*                      connect by default or they require explicit*                      user space authorization; this bit is settable*                      through /sys/class/usb_host/X/authorized_default.*                      For the rest is RO, so we don't lock to r/w it.*//*-------------------------------------------------------------------------*/struct usb_hcd {/** housekeeping*/struct usb_bus      self;       /* hcd is-a bus */struct kref       kref;       /* reference counter */const char       *product_desc;  /* product/vendor string */int          speed;      /* Speed for this roothub.* May be different from* hcd->driver->flags & HCD_MASK*/char            irq_descr[24];  /* driver + bus # */struct timer_list  rh_timer;   /* drives root-hub polling */struct urb     *status_urb;    /* the current status urb */
#ifdef CONFIG_PM_RUNTIMEstruct work_struct  wakeup_work;    /* for remote wakeup */
#endif/** hardware info/state*/const struct hc_driver   *driver;    /* hw-specific hooks *//** OTG and some Host controllers need software interaction with phys;* other external phys should be software-transparent*/struct usb_phy   *phy;/* Flags that need to be manipulated atomically because they can* change while the host controller is running.  Always use* set_bit() or clear_bit() to change their values.*/unsigned long        flags;
#define HCD_FLAG_HW_ACCESSIBLE      0   /* at full power */
#define HCD_FLAG_POLL_RH        2   /* poll for rh status? */
#define HCD_FLAG_POLL_PENDING       3   /* status has changed? */
#define HCD_FLAG_WAKEUP_PENDING     4   /* root hub is resuming? */
#define HCD_FLAG_RH_RUNNING     5   /* root hub is running? */
#define HCD_FLAG_DEAD           6   /* controller has died? *//* The flags can be tested using these macros; they are likely to* be slightly faster than test_bit().*/
#define HCD_HW_ACCESSIBLE(hcd)  ((hcd)->flags & (1U << HCD_FLAG_HW_ACCESSIBLE))
#define HCD_POLL_RH(hcd)    ((hcd)->flags & (1U << HCD_FLAG_POLL_RH))
#define HCD_POLL_PENDING(hcd)   ((hcd)->flags & (1U << HCD_FLAG_POLL_PENDING))
#define HCD_WAKEUP_PENDING(hcd) ((hcd)->flags & (1U << HCD_FLAG_WAKEUP_PENDING))
#define HCD_RH_RUNNING(hcd) ((hcd)->flags & (1U << HCD_FLAG_RH_RUNNING))
#define HCD_DEAD(hcd)       ((hcd)->flags & (1U << HCD_FLAG_DEAD))/* Flags that get set only during HCD registration or removal. */unsigned        rh_registered:1;/* is root hub registered? */unsigned       rh_pollable:1;  /* may we poll the root hub? */unsigned     msix_enabled:1; /* driver has MSI-X enabled? *//* The next flag is a stopgap, to be removed when all the HCDs* support the new root-hub polling mechanism. */unsigned       uses_new_polling:1;unsigned     wireless:1; /* Wireless USB HCD */unsigned      authorized_default:1;unsigned       has_tt:1;   /* Integrated TT in root hub */unsigned int     irq;        /* irq allocated */void __iomem     *regs;      /* device memory/io */resource_size_t       rsrc_start; /* memory/io resource start */resource_size_t       rsrc_len;   /* memory/io resource length */unsigned     power_budget;   /* in mA, 0 = no limit *//* bandwidth_mutex should be taken before adding or removing* any new bus bandwidth constraints:*   1. Before adding a configuration for a new device.*   2. Before removing the configuration to put the device into*      the addressed state.*   3. Before selecting a different configuration.*   4. Before selecting an alternate interface setting.** bandwidth_mutex should be dropped after a successful control message* to the device, or resetting the bandwidth after a failed attempt.*/struct mutex     *bandwidth_mutex;struct usb_hcd     *shared_hcd;struct usb_hcd      *primary_hcd;#define HCD_BUFFER_POOLS   4struct dma_pool        *pool[HCD_BUFFER_POOLS];int         state;
#   define  __ACTIVE        0x01
#   define  __SUSPEND       0x04
#   define  __TRANSIENT     0x80#   define  HC_STATE_HALT       0
#   define  HC_STATE_RUNNING    (__ACTIVE)
#   define  HC_STATE_QUIESCING  (__SUSPEND|__TRANSIENT|__ACTIVE)
#   define  HC_STATE_RESUMING   (__SUSPEND|__TRANSIENT)
#   define  HC_STATE_SUSPENDED  (__SUSPEND)#define  HC_IS_RUNNING(state) ((state) & __ACTIVE)
#define HC_IS_SUSPENDED(state) ((state) & __SUSPEND)/* more shared queuing code would be good; it should support* smarter scheduling, handle transaction translators, etc;* input size of periodic table to an interrupt scheduler.* (ohci 32, uhci 1024, ehci 256/512/1024).*//* The HC driver's private data is stored at the end of* this structure.*/unsigned long hcd_priv[0]__attribute__ ((aligned(sizeof(s64))));
};

2.3.3 总结

三、USB驱动分析

根据以上对内核USB子系统分析,此时可以来分析USB驱动的案例,加强对USB的理解。

分析HCD的过程中,在控制器上绑定的root hub就是一个usb device,HCD初始化过程完成了对这个USB设备的一系列初始化,并使用usb_fill_int_urb初始化了一个中断urb,使用usb_submit_urb 进行提交。

首先分析一个usb鼠标驱动,其和root hub的过程相似,也是中断传输。

3.1 Usb Mouse驱动

代码位置:kernel\drivers\hid\usbhid\usbmouse.c

Linux USB驱动学习总结(三)---- USB鼠标的加载、初始化和通信过程 - 图灵之梦 - 博客园

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/usb/input.h>
#include <linux/hid.h>/* for apple IDs */
#ifdef CONFIG_USB_HID_MODULE
#include "../hid-ids.h"
#endif/** Version Information*/
#define DRIVER_VERSION "v1.6"
#define DRIVER_AUTHOR "Vojtech Pavlik <vojtech@ucw.cz>"
#define DRIVER_DESC "USB HID Boot Protocol mouse driver"
#define DRIVER_LICENSE "GPL"MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE(DRIVER_LICENSE);struct usb_mouse {char name[128];char phys[64];struct usb_device *usbdev;struct input_dev *dev;struct urb *irq;signed char *data;dma_addr_t data_dma;
};static void usb_mouse_irq(struct urb *urb)
{struct usb_mouse *mouse = urb->context;signed char *data = mouse->data;struct input_dev *dev = mouse->dev;int status;switch (urb->status) {case 0:          /* success */break;case -ECONNRESET:    /* unlink */case -ENOENT:case -ESHUTDOWN:return;/* -EPIPE:  should clear the halt */default:        /* error */goto resubmit;}input_report_key(dev, BTN_LEFT,   data[0] & 0x01);input_report_key(dev, BTN_RIGHT,  data[0] & 0x02);input_report_key(dev, BTN_MIDDLE, data[0] & 0x04);input_report_key(dev, BTN_SIDE,   data[0] & 0x08);input_report_key(dev, BTN_EXTRA,  data[0] & 0x10);input_report_rel(dev, REL_X,     data[1]);input_report_rel(dev, REL_Y,     data[2]);input_report_rel(dev, REL_WHEEL, data[3]);input_sync(dev);
resubmit:status = usb_submit_urb (urb, GFP_ATOMIC);if (status)dev_err(&mouse->usbdev->dev,"can't resubmit intr, %s-%s/input0, status %d\n",mouse->usbdev->bus->bus_name,mouse->usbdev->devpath, status);
}static int usb_mouse_open(struct input_dev *dev)
{struct usb_mouse *mouse = input_get_drvdata(dev);mouse->irq->dev = mouse->usbdev;if (usb_submit_urb(mouse->irq, GFP_KERNEL))return -EIO;return 0;
}static void usb_mouse_close(struct input_dev *dev)
{struct usb_mouse *mouse = input_get_drvdata(dev);usb_kill_urb(mouse->irq);
}static int usb_mouse_probe(struct usb_interface *intf, const struct usb_device_id *id)
{struct usb_device *dev = interface_to_usbdev(intf);struct usb_host_interface *interface;struct usb_endpoint_descriptor *endpoint;struct usb_mouse *mouse;struct input_dev *input_dev;int pipe, maxp;int error = -ENOMEM;interface = intf->cur_altsetting;if (interface->desc.bNumEndpoints != 1)return -ENODEV;endpoint = &interface->endpoint[0].desc;if (!usb_endpoint_is_int_in(endpoint))return -ENODEV;pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));mouse = kzalloc(sizeof(struct usb_mouse), GFP_KERNEL);input_dev = input_allocate_device();if (!mouse || !input_dev)goto fail1;mouse->data = usb_alloc_coherent(dev, 8, GFP_ATOMIC, &mouse->data_dma);if (!mouse->data)goto fail1;mouse->irq = usb_alloc_urb(0, GFP_KERNEL);if (!mouse->irq)goto fail2;mouse->usbdev = dev;mouse->dev = input_dev;if (dev->manufacturer)strlcpy(mouse->name, dev->manufacturer, sizeof(mouse->name));if (dev->product) {if (dev->manufacturer)strlcat(mouse->name, " ", sizeof(mouse->name));strlcat(mouse->name, dev->product, sizeof(mouse->name));}if (!strlen(mouse->name))snprintf(mouse->name, sizeof(mouse->name),"USB HIDBP Mouse %04x:%04x",le16_to_cpu(dev->descriptor.idVendor),le16_to_cpu(dev->descriptor.idProduct));usb_make_path(dev, mouse->phys, sizeof(mouse->phys));strlcat(mouse->phys, "/input0", sizeof(mouse->phys));input_dev->name = mouse->name;input_dev->phys = mouse->phys;usb_to_input_id(dev, &input_dev->id);input_dev->dev.parent = &intf->dev;input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL);input_dev->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) |BIT_MASK(BTN_RIGHT) | BIT_MASK(BTN_MIDDLE);input_dev->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y);input_dev->keybit[BIT_WORD(BTN_MOUSE)] |= BIT_MASK(BTN_SIDE) |BIT_MASK(BTN_EXTRA);input_dev->relbit[0] |= BIT_MASK(REL_WHEEL);input_set_drvdata(input_dev, mouse);input_dev->open = usb_mouse_open;input_dev->close = usb_mouse_close;usb_fill_int_urb(mouse->irq, dev, pipe, mouse->data,(maxp > 8 ? 8 : maxp),usb_mouse_irq, mouse, endpoint->bInterval);mouse->irq->transfer_dma = mouse->data_dma;mouse->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;error = input_register_device(mouse->dev);if (error)goto fail3;usb_set_intfdata(intf, mouse);return 0;fail3: usb_free_urb(mouse->irq);
fail2:  usb_free_coherent(dev, 8, mouse->data, mouse->data_dma);
fail1:  input_free_device(input_dev);kfree(mouse);return error;
}static void usb_mouse_disconnect(struct usb_interface *intf)
{struct usb_mouse *mouse = usb_get_intfdata (intf);usb_set_intfdata(intf, NULL);if (mouse) {usb_kill_urb(mouse->irq);input_unregister_device(mouse->dev);usb_free_urb(mouse->irq);usb_free_coherent(interface_to_usbdev(intf), 8, mouse->data, mouse->data_dma);kfree(mouse);}
}//用于驱动的匹配:
//match_flags 匹配哪些项,USB_DEVICE_ID_MATCH_INT_INFO:接口信息
//bInterfaceClass 、bInterfaceSubClass 、bInterfaceProtocol 所属的类,子类,及设备协议是否匹配
//#define USB_INTERFACE_INFO(cl, sc, pr) \.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \.bInterfaceClass = (cl), \.bInterfaceSubClass = (sc), \.bInterfaceProtocol = (pr)
static struct usb_device_id usb_mouse_id_table [] = {{ USB_INTERFACE_INFO(USB_INTERFACE_CLASS_HID, USB_INTERFACE_SUBCLASS_BOOT,USB_INTERFACE_PROTOCOL_MOUSE) },{ } /* Terminating entry */
};MODULE_DEVICE_TABLE (usb, usb_mouse_id_table);static struct usb_driver usb_mouse_driver = {.name     = "usbmouse",.probe      = usb_mouse_probe,.disconnect  = usb_mouse_disconnect,.id_table   = usb_mouse_id_table,
};module_usb_driver(usb_mouse_driver);

3.2 USB网卡

USB设备信息

设备电源管理信息

参数1:autosuspend & autosuspend_delay_ms

运行时期休眠的超时时间,即但总线挂起设备后,多久之后设备开始进入休眠。

参数2:runtime_enabled &

runtime_enabled :是否允许运行时期的休眠,状态有4中:disabled、forbidden、disabled & forbidden、enabled

disabled:dev->power.disable_depth

forbidden:dev->power.runtime_auto

runtime_status:当前状态

参数3:runtime_status

当前设备状态有四种:suspended、suspending、resuming、active。见上图。

参数:runtime_usage:&dev->power.usage_count

参数:runtime_suspended_time & runtime_active_time

设备活跃时间和挂起的时间

USB枚举过程_木木总裁的博客-CSDN博客_usb挂起

【linux驱动】USB子系统分析相关推荐

  1. linux input输入子系统分析《三》:S3C2440的触摸屏驱动实例

    1.1    本节阅读前提 本节的说明建立在前两节的基础之上,需要先阅读如下两篇章: linux input输入子系统分析<一>:初识input输入子系统 linux input输入子系统 ...

  2. 12.Linux之输入子系统分析(详解)

    在此节之前,我们学的都是简单的字符驱动,涉及的内容有字符驱动的框架.自动创建设备节点.linux中断.poll机制.异步通知.同步互斥/非阻塞.定时器去抖动. 其中驱动框架如下: 1)写file_op ...

  3. Linux Power supply子系统分析之二

    1.概述 在上一篇博文中参考窝窝科技的文章分析了linux Power Supply子系统的框架.这篇我们以一个实际的例子来看一下PSY driver的编程方式,比便于更深刻理解power suppl ...

  4. linux input输入子系统分析《一》:初识input输入子系统

    主要讲述本人在学习Linux内核input子系统的全部过程,如有分析不当,多谢指正.以下交流方式,文章欢迎转载,保留联系信息,以便交流. 邮箱:eabi010@gmail.com 主页:www.iel ...

  5. Linux 驱动 | SPI子系统

    SPI子系统 这些驱动的共同点: 主机端驱动和外设端驱动分离 通过一个核心层将某种总线协议进行抽象 外设端驱动通过核心层API间接调用主机驱动提供的传输函数进行收发数据 IIC.SPI等不支持热拔插的 ...

  6. linux input输入子系统分析《二》:s3c2440的ADC简单驱动实例分析

    1      mini2440的ADC驱动实例 这节与输入子系统无关,出现在这里是因为后面的章节会讲到触摸屏输入子系统驱动,由于触摸屏也使用ADC,因此本节是为了说明ADC通过驱动代码是如何控制的. ...

  7. Linux Power supply子系统分析

    1.概述 对于便携式设备,如手机或者pad来说,battery都是必不可少的一个组成部分.kernel中为了方便对battery的管理,专门提供了power supply framework. bat ...

  8. linux input输入子系统分析《四》:input子系统整体流程全面分析

    1      input输入子系统整体流程 本节分析input子系统在内核中的实现,包括输入子系统(Input Core),事件处理层(Event Handler)和设备驱动层.由于上节代码讲解了设备 ...

  9. usb子系统分析2(usb设备识别过程)

    问题一:USB总线驱动是USB控制器的驱动程序,那控制器是如何识别usb设备?识别后,如何为该设备匹配驱动?匹配驱动后,app是如何访问该usb设备的? 识别USB设备 1.1 USB设备插入时,D+ ...

最新文章

  1. 前端try catch是如何捕获异常的_一文告诉你如何优雅处理前端异常?
  2. Chrome开始集成图形识别 API(Shape Detection API)
  3. 一文读懂文本处理中的对抗训练
  4. Mahout实战---运行第一个推荐引擎
  5. 会按摩的充气颈枕,只占行李箱一个角,却能让你的脖子爽到爆
  6. axios 中文文档、使用说明
  7. adb最新版本是多少_新版本更新有问题?别慌,来这里找答案!
  8. jQuery——入门(一)JQuery的简介与基本选择器的使用
  9. 精品软件 推荐 卡巴斯基安全软件 本人使用过的效果最好的杀毒软件之一哟...
  10. 为底层元素注册监听器
  11. html返回底部代码,返回页面顶部及去页面底部的js实现代码
  12. PCB中常见的单位换算
  13. java is alphabetic_java中的java.lang.Character类 – 方法| 2 - Break易站
  14. 快消品图像识别丨无人店背后的商品识别技术
  15. php大文件读取excel分割,如何用phpspreadsheet来切割excel大文件(附代码)
  16. C语言基础教程 之 如何定义变量!
  17. matlab如何仿真递推型dft算法,递推dft算法
  18. 聊聊WEB项目中的图片
  19. 【英语词组】恋恋不忘Day 1-3
  20. dirty pipe漏洞,解决办法

热门文章

  1. Scheduler-Framework中的Permit使用和注意事项
  2. 网易2017笔试题-日记的颜色
  3. NandFlash和iNand
  4. 美貌智慧不可兼得?超模琳赛 斯科特变身程序员
  5. fuzzy c-means 与 k-means实验对比
  6. 二十五条励志金句,让你迅速提升自己的价值!
  7. 托尔斯泰《战争与和平》主要人物
  8. 鸿蒙os商用版,鸿蒙OS再次官宣最快今年9月商用,可以一夜之间代替安卓系统
  9. python怎么调字体_python怎么改字体
  10. C/C++ 时间知识总结