树:


A 节点就是 B 节点的父节点,B 节点是 A 节点的子节点。B、C、D 这三个节点的父节点是同一个节点,所以它们之间互称为兄弟节点。我们把没有父节点的节点叫作根节点,也就是图中的节点 E。我们把没有子节点的节点叫作叶子节点或者叶节点,比如图中的 G、H、I、J、K、L 都是叶子节点。

二叉树(Binary Tree)

二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只有左子节点,有的节点只有右子节点。我画的这几个都是二叉树。以此类推,你可以想象一下四叉树、八叉树长什么样子。

满二叉树

编号 2 的二叉树中,叶子节点全都在最底层,除了叶子节点之外,每个节点都有左右两个子节点,这种二叉树就叫作满二叉树

完全二叉树

编号 3 的二叉树中,叶子节点都在最底下两层最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫作完全二叉树

如何表示(或者存储)一棵二叉树

链式

数组


如果某棵二叉树是一棵完全二叉树,那用数组存储无疑是最节省内存的一种方式。因为数组的存储方式并不需要像链式存储法那样,要存储额外的左右子节点的指针。这也是为什么完全二叉树会单独拎出来的原因,也是为什么完全二叉树要求最后一层的子节点都靠左的原因。

当我们讲到堆和堆排序的时候,你会发现,堆其实就是一种完全二叉树,最常用的存储方式就是数组。

二叉树的遍历

前序遍历、中序遍历和后序遍历
中间节点在哪里 就叫什么遍历

前序遍历是指,对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。

中序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它本身,最后打印它的右子树。

后序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印这个节点本身。

实际上,二叉树的前、中、后序遍历就是一个递归的过程。比如,前序遍历,其实就是先打印根节点,然后再递归地打印左子树,最后递归地打印右子树。

写递归代码的关键,就是看能不能写出递推公式,而写递推公式的关键就是,如果要解决问题 A,就假设子问题 B、C 已经解决,然后再来看如何利用 B、C 来解决 A。所以,我们可以把前、中、后序遍历的递推公式都写出来。

前序遍历的递推公式:
preOrder(r) = print r->preOrder(r->left)->preOrder(r->right)中序遍历的递推公式:
inOrder(r) = inOrder(r->left)->print r->inOrder(r->right)后序遍历的递推公式:
postOrder(r) = postOrder(r->left)->postOrder(r->right)->print r

有了递推公式,代码写起来就简单多了。这三种遍历方式的代码,我都写出来了,你可以看看。

void preOrder(Node* root) {if (root == null) return;print root // 此处为伪代码,表示打印 root 节点preOrder(root->left);preOrder(root->right);
}void inOrder(Node* root) {if (root == null) return;inOrder(root->left);print root // 此处为伪代码,表示打印 root 节点inOrder(root->right);
}void postOrder(Node* root) {if (root == null) return;postOrder(root->left);postOrder(root->right);print root // 此处为伪代码,表示打印 root 节点
}

遍历的时间复杂度是 O(n)

二叉查找树(Binary Search Tree)

二叉查找树是二叉树中最常用的一种类型,也叫二叉搜索树。顾名思义,二叉查找树是为了实现快速查找而生的。不过,它不仅仅支持快速查找一个数据,还支持快速插入、删除一个数据。

二叉查找树要求,在树中的任意一个节点,其左子树中的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值

左<中<右

1. 二叉查找树的查找操作

首先,我们看如何在二叉查找树中查找一个节点。我们先取根节点,如果它等于我们要查找的数据,那就返回。
如果要查找的数据比根节点的值小,那就在左子树中递归查找;如果要查找的数据比根节点的值大,那就在右子树中递归查找

public class BinarySearchTree {private Node tree;public Node find(int data) {Node p = tree;while (p != null) {if (data < p.data) p = p.left;else if (data > p.data) p = p.right;else return p;}return null;}public static class Node {private int data;private Node left;private Node right;public Node(int data) {this.data = data;}}
}

2. 二叉查找树的插入操作

二叉查找树的插入过程有点类似查找操作。

新插入的数据一般都是在叶子节点上,所以我们只需要从根节点开始,依次比较要插入的数据和节点的大小关系

如果要插入的数据比节点的数据大,并且节点的右子树为空,就将新数据直接插到右子节点的位置;如果不为空,就再递归遍历右子树,查找插入位置。

同理,如果要插入的数据比节点数值小,并且节点的左子树为空,就将新数据插入到左子节点的位置;如果不为空,就再递归遍历左子树,查找插入位置。

public void insert(int data) {if (tree == null) {tree = new Node(data);return;}Node p = tree;while (p != null) {if (data > p.data) {if (p.right == null) {p.right = new Node(data);return;}p = p.right;} else { // data < p.dataif (p.left == null) {p.left = new Node(data);return;}p = p.left;}}
}

3. 二叉查找树的删除操作

针对要删除节点的子节点个数的不同,我们需要分三种情况来处理。

第一种情况是,如果要删除的节点没有子节点,我们只需要直接将父节点中,指向要删除节点的指针置为 null。比如图中的删除节点 55。

第二种情况是,如果要删除的节点只有一个子节点(只有左子节点或者右子节点),我们只需要更新父节点中,指向要删除节点的指针,让它指向要删除节点的子节点就可以了。比如图中的删除节点 13。

第三种情况是,如果要删除的节点有两个子节点,这就比较复杂了。我们需要找到这个节点的右子树中的最小节点,把它替换到要删除的节点上。然后再删除掉这个最小节点因为最小节点肯定没有左子节点(如果有左子结点,那就不是最小节点了),所以,我们可以应用**上面两条规则来删除这个最小节点。**比如图中的删除节点 18。

public void delete(int data) {Node p = tree; // p 指向要删除的节点,初始化指向根节点Node pp = null; // pp 记录的是 p 的父节点while (p != null && p.data != data) {pp = p;if (data > p.data) p = p.right;else p = p.left;}if (p == null) return; // 没有找到// 要删除的节点有两个子节点if (p.left != null && p.right != null) { // 查找右子树中最小节点Node minP = p.right;Node minPP = p; // minPP 表示 minP 的父节点while (minP.left != null) {minPP = minP;minP = minP.left;}p.data = minP.data; // 将 minP 的数据替换到 p 中p = minP; // 下面就变成了删除 minP 了pp = minPP;}// 删除节点是叶子节点或者仅有一个子节点Node child; // p 的子节点if (p.left != null) child = p.left;else if (p.right != null) child = p.right;else child = null;if (pp == null) tree = child; // 删除的是根节点else if (pp.left == p) pp.left = child;else pp.right = child;
}

实际上,关于二叉查找树的删除操作,还有个非常简单、取巧的方法,就是单纯将要删除的节点标记为“已删除”,但是并不真正从树中将这个节点去掉。这样原本删除的节点还需要存储在内存中,比较浪费内存空间,但是删除操作就变得简单了很多。而且,这种处理方法也并没有增加插入、查找操作代码实现的难度。

4. 二叉查找树的其他操作

快速地查找最大节点和最小节点、前驱节点和后继节点。

二叉查找树除了支持上面几个操作之外,还有一个重要的特性,就是中序遍历二叉查找树,可以输出有序的数据序列,时间复杂度是 O(n),非常高效。因此,二叉查找树也叫作二叉排序树。

支持重复数据的二叉查找树

存储的两个对象键值相同,这种情况该怎么处理呢?我这里有两种解决方法。

第一种方法比较容易。二叉查找树中每一个节点不仅会存储一个数据,因此我们通过链表和支持动态扩容的数组等数据结构,把值相同的数据都存储在同一个节点上。

第二种方法比较不好理解,不过更加优雅。
每个节点仍然只存储一个数据。在查找插入位置的过程中,如果碰到一个节点的值,与要插入数据的值相同,我们就将这个要插入的数据放到这个节点右子树,也就是说,把这个新插入的数据当作大于这个节点的值来处理


当要查找数据的时候,遇到值相同的节点,我们并不停止查找操作,而是继续在右子树中查找,直到遇到叶子节点,才停止。这样就可以把键值等于要查找值的所有节点都找出来。


对于删除操作,我们也需要先查找到每个要删除的节点,然后再按前面讲的删除操作的方法,依次删除。

二叉查找树的时间复杂度分析

在二叉查找树中,查找、插入、删除等很多操作的时间复杂度都跟树的高度成正比。两个极端情况的时间复杂度分别是 O(n) 和 O(logn),分别对应二叉树退化成链表的情况和完全二叉树。

为了避免时间复杂度的退化,针对二叉查找树,我们又设计了一种更加复杂的树,平衡二叉查找树,时间复杂度可以做到稳定的 O(logn)。

什么情况下用二叉查找树?而不是散列表

我们在散列表那节中讲过,散列表的插入、删除、查找操作的时间复杂度可以做到常量级的 O(1),非常高效。而二叉查找树在比较平衡的情况下,插入、删除、查找操作时间复杂度才是 O(logn),相对散列表,好像并没有什么优势,那我们为什么还要用二叉查找树呢?

我认为有下面几个原因:

第一,散列表中的数据是无序存储的,如果要输出有序的数据,需要先进行排序。而对于二叉查找树来说,我们只需要中序遍历,就可以在 O(n) 的时间复杂度内,输出有序的数据序列。

第二,散列表扩容耗时很多,而且当遇到散列冲突时,性能不稳定,尽管二叉查找树的性能不稳定,但是在工程中,我们最常用的平衡二叉查找树的性能非常稳定,时间复杂度稳定在 O(logn)。

第三,笼统地来说,尽管散列表的查找等操作的时间复杂度是常量级的,但因为哈希冲突的存在,这个常量不一定比 logn 小,所以实际的查找速度可能不一定比 O(logn) 快。加上哈希函数的耗时,也不一定就比平衡二叉查找树的效率高。

第四,散列表的构造比二叉查找树要复杂,需要考虑的东西很多。比如散列函数的设计、冲突解决办法、扩容、缩容等。平衡二叉查找树只需要考虑平衡性这一个问题,而且这个问题的解决方案比较成熟、固定。

最后,为了避免过多的散列冲突,散列表装载因子不能太大,特别是基于开放寻址法解决冲突的散列表,不然会浪费一定的存储空间。

综合这几点,平衡二叉查找树在某些方面还是优于散列表的,所以,这两者的存在并不冲突。我们在实际的开发过程中,需要结合具体的需求来选择使用哪一个。

平衡二叉查找树

二叉树中任意一个节点的左右子树的高度相差不能大于 1。

从这个定义来看,上一节我们讲的完全二叉树、满二叉树其实都是平衡二叉树,但是非完全二叉树也有可能是平衡二叉树。

平衡二叉查找树不仅满足上面平衡二叉树的定义,还满足二叉查找树的特点。最先被发明的平衡二叉查找树是AVL 树,它严格符合我刚讲到的平衡二叉查找树的定义,即任何节点的左右子树高度相差不超过 1,是一种高度平衡的二叉查找树。

但是很多平衡二叉查找树其实并没有严格符合上面的定义(树中任意一个节点的左右子树的高度相差不能大于 1),比如我们下面要讲的红黑树,它从根节点到各个叶子节点的最长路径,有可能会比最短路径大一倍。

发明平衡二叉查找树这类数据结构的初衷是,解决普通二叉查找树在频繁的插入、删除等动态更新的情况下,出现时间复杂度退化的问题。

平衡二叉查找树中“平衡”的意思,其实就是**让整棵树左右看起来比较“对称”、比较“平衡”,**不要出现左子树很高、右子树很矮的情况。这样就能让整棵树的高度相对来说低一些,相应的插入、删除、查找等操作的效率高一些。
平衡二叉查找树其实有很多,比如,Splay Tree(伸展树)、Treap(树堆)等。

平衡二叉查找树-红黑树

红黑树的英文是“Red-Black Tree”,简称 R-B Tree。它是一种不严格的平衡二叉查找树,我前面说了,它的定义是不严格符合平衡二叉查找树的定义的。那红黑树究竟是怎么定义的呢?

红黑树中的节点,一类被标记为黑色,一类被标记为红色。除此之外,一棵红黑树还需要满足这样几个要求:

  • 根节点是黑色的;

  • 每个叶子节点都是黑色的空节点(NIL),也就是说,叶子节点不存储数据;

  • 任何相邻的节点都不能同时为红色,也就是说,红色节点是被黑色节点隔开的;

  • 每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点;

在插入、删除节点的过程中,第三、第四点要求可能会被破坏,而我们今天要讲的“平衡调整”,实际上就是要把被破坏的第三、第四点恢复过来。

左旋(rotate left)、右旋(rotate right)。左旋全称其实是叫围绕某个节点的左旋,那右旋的全称估计你已经猜到了,就叫围绕某个节点的右旋。

插入操作的平衡调整

红黑树规定,插入的节点必须是红色的。而且,二叉查找树中新插入的节点都是放在叶子节点上。所以,关于插入操作的平衡调整,有这样两种特殊情况,但是也都非常好处理。

如果插入节点的父节点是黑色的,那我们什么都不用做,它仍然满足红黑树的定义。

如果插入的节点是根节点,那我们直接改变它的颜色,把它变成黑色就可以了。

除此之外,其他情况都会违背红黑树的定义,于是我们就需要进行调整,调整的过程包含两种基础的操作:左右旋转改变颜色
红黑树的平衡调整过程是一个迭代的过程。我们把正在处理的节点叫作关注节点。关注节点会随着不停地迭代处理,而不断发生变化。最开始的关注节点就是新插入的节点。

新节点插入之后,如果红黑树的平衡被打破,那一般会有下面三种情况。
为了简化描述,我把父节点的兄弟节点叫作叔叔节点,父节点的父节点叫作祖父节点。

CASE 1:如果关注节点是 a,它的叔叔节点 d 是红色

依次执行下面操作:

将关注节点 a 的父节点 b、叔叔节点 d 的颜色都设置成黑色;

将关注节点 a 的祖父节点 c 的颜色设置成红色;

关注节点变成 a 的祖父节点 c;

跳到 CASE 2 或者 CASE 3。

CASE 2:如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的右子节点

依次执行下面操作:

关注节点变成节点 a 的父节点 b;

围绕新的关注节点b 左旋;

跳到 CASE 3。

CASE 3:如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的左子节点

依次执行下面的操作:

围绕关注节点 a 的祖父节点 c 右旋;

将关注节点 a 的父节点 b、兄弟节点 c 的颜色互换。

调整结束。

删除操作的平衡调整

删除操作的平衡调整分为两步,
第一步是针对删除节点初步调整。初步调整只是保证整棵红黑树在一个节点删除之后,仍然满足最后一条定义的要求,也就是说,每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点;
第二步是针对关注节点进行二次调整,让它满足红黑树的第三条定义,即不存在相邻的两个红色节点

1. 针对删除节点初步调整

红黑树的定义中“只包含红色节点和黑色节点”,经过初步调整之后,为了保证满足红黑树定义的最后一条要求,有些节点会被标记成两种颜色,“红 - 黑”或者“黑 - 黑”。如果一个节点被标记为了“黑 - 黑”,那在计算黑色节点个数的时候,要算成两个黑色节点。

在下面的讲解中,如果一个节点既可以是红色,也可以是黑色,在画图的时候,我会用一半红色一半黑色来表示。如果一个节点是“红 - 黑”或者“黑 - 黑”,我会用左上角的一个小黑点来表示额外的黑色。

CASE 1:如果要删除的节点是 a,它只有一个子节点 b

删除节点 a,并且把节点 b 替换到节点 a 的位置,这一部分操作跟普通的二叉查找树的删除操作一样;

节点 a 只能是黑色,节点 b 也只能是红色,其他情况均不符合红黑树的定义。这种情况下,我们把节点 b 改为黑色;

调整结束,不需要进行二次调整。

CASE 2:如果要删除的节点 a 有两个非空子节点,并且它的后继节点就是节点 a 的右子节点 c

如果节点 a 的后继节点就是右子节点 c,那右子节点 c 肯定没有左子树。我们把节点 a 删除,并且将节点 c 替换到节点 a 的位置。这一部分操作跟普通的二叉查找树的删除操作无异;

然后把节点 c 的颜色设置为跟节点 a 相同的颜色;

如果节点 c 是黑色,为了不违反红黑树的最后一条定义,我们给节点 c 的右子节点 d 多加一个黑色,这个时候节点 d 就成了“红 - 黑”或者“黑 - 黑”;

这个时候,关注节点变成了节点 d,第二步的调整操作就会针对关注节点来做。

CASE 3:如果要删除的是节点 a,它有两个非空子节点,并且节点 a 的后继节点不是右子节点

找到后继节点 d,并将它删除,删除后继节点 d 的过程参照 CASE 1;

将节点 a 替换成后继节点 d;

把节点 d 的颜色设置为跟节点 a 相同的颜色;

如果节点 d 是黑色,为了不违反红黑树的最后一条定义,我们给节点 d 的右子节点 c 多加一个黑色,这个时候节点 c 就成了“红 - 黑”或者“黑 - 黑”;

这个时候,关注节点变成了节点 c,第二步的调整操作就会针对关注节点来做。

2. 针对关注节点进行二次调整

经过初步调整之后,关注节点变成了“红 - 黑”或者“黑 - 黑”节点。针对这个关注节点,我们再分四种情况来进行二次调整。二次调整是为了让红黑树中不存在相邻的红色节点。

CASE 1:如果关注节点是 a,它的兄弟节点 c 是红色的

围绕关注节点 a 的父节点 b 左旋;

关注节点 a 的父节点 b 和祖父节点 c 交换颜色;

关注节点不变;

继续从四种情况中选择适合的规则来调整。

CASE 2:如果关注节点是 a,它的兄弟节点 c 是黑色的,并且节点 c 的左右子节点 d、e 都是黑色的

将关注节点 a 的兄弟节点 c 的颜色变成红色;

从关注节点 a 中去掉一个黑色,这个时候节点 a 就是单纯的红色或者黑色;

给关注节点 a 的父节点 b 添加一个黑色,这个时候节点 b 就变成了“红 - 黑”或者“黑 - 黑”;

关注节点从 a 变成其父节点 b;

继续从四种情况中选择符合的规则来调整。

CASE 3:如果关注节点是 a,它的兄弟节点 c 是黑色,c 的左子节点 d 是红色,c 的右子节点 e 是黑色

围绕关注节点 a 的兄弟节点 c 右旋;

节点 c 和节点 d 交换颜色;

关注节点不变;

跳转到 CASE 4,继续调整。

CASE 4:如果关注节点 a 的兄弟节点 c 是黑色的,并且 c 的右子节点是红色的

围绕关注节点 a 的父节点 b 左旋;

将关注节点 a 的兄弟节点 c 的颜色,跟关注节点 a 的父节点 b 设置成相同的颜色;

将关注节点 a 的父节点 b 的颜色设置为黑色;

从关注节点 a 中去掉一个黑色,节点 a 就变成了单纯的红色或者黑色;

将关注节点 a 的叔叔节点 e 设置为黑色;

调整结束。

递归树

借助递归树来分析递归算法的时间复杂度。

递归树与时间复杂度分析

递归的思想就是,将大问题分解为小问题来求解,然后再将小问题分解为小小问题。这样一层一层地分解,直到问题的数据规模被分解得足够小,不用继续递归分解为止。

如果我们把这个一层一层的分解过程画成图,它其实就是一棵树。我们给这棵树起一个名字,叫作递归树。我这里画了一棵斐波那契数列的递归树,你可以看看。节点里的数字表示数据的规模,一个节点的求解可以分解为左右子节点两个问题的求解。

如何用递归树来求解时间复杂度

归并排序的原理我就不详细介绍了,如果你忘记了,可以回看一下第 12 节的内容。归并排序每次会将数据规模一分为二。

因为每次分解都是一分为二,所以代价很低,我们把时间上的消耗记作常量 1。归并算法中比较耗时的是归并操作,也就是把两个子数组合并为大数组。从图中我们可以看出,每一层归并操作消耗的时间总和是一样的,跟要排序的数据规模有关。我们把每一层归并操作消耗的时间记作 n。

现在,我们只需要知道这棵树的高度 h,用高度 h 乘以每一层的时间消耗 n,就可以得到总的时间复杂度 O(n∗h)。

从归并排序的原理和递归树,可以看出来,归并排序递归树是一棵满二叉树。我们前两节中讲到,满二叉树的高度大约是 log2n,所以,归并排序递归实现的时间复杂度就是 O(nlogn)。我这里的时间复杂度都是估算的,对树的高度的计算也没有那么精确,但是这并不影响复杂度的计算结果。

利用递归树的时间复杂度分析方法并不难理解,关键还是在实战,所以,接下来我会通过三个实际的递归算法,带你实战一下递归的复杂度分析。学完这节课之后,你应该能真正掌握递归代码的复杂度分析。

实战一:分析快速排序的时间复杂度

用递归树来分析快速排序的平均情况时间复杂度,是不是比较简单呢?
我们还是取 k 等于 9,也就是说,每次分区都很不平均,一个分区是另一个分区的 9 倍。如果我们把递归分解的过程画成递归树,就是下面这个样子:

快速排序的过程中,每次分区都要遍历待分区区间的所有数据,所以,每一层分区操作所遍历的数据的个数之和就是 n。我们现在只要求出递归树的高度 h,这个快排过程遍历的数据个数就是 h∗n ,也就是说,时间复杂度就是 O(h∗n)。

因为每次分区并不是均匀地一分为二,所以递归树并不是满二叉树。这样一个递归树的高度是多少呢?

我们知道,快速排序结束的条件就是待排序的小区间,大小为 1,也就是说叶子节点里的数据规模是 1。从根节点 n 到叶子节点 1,递归树中最短的一个路径每次都乘以 110,最长的一个路径每次都乘以 910。通过计算,我们可以得到,从根节点到叶子节点的最短路径是 log10n,最长的路径是 log109n。


所以,遍历数据的个数总和就介于 nlog10n 和 nlog109n 之间。根据复杂度的大 O 表示法,对数复杂度的底数不管是多少,我们统一写成 logn,所以,当分区大小比例是 1:9 时,快速排序的时间复杂度仍然是 O(nlogn)。

刚刚我们假设 k=9,那如果 k=99,也就是说,每次分区极其不平均,两个区间大小是 1:99,这个时候的时间复杂度是多少呢?

我们可以类比上面 k=9 的分析过程。当 k=99 的时候,树的最短路径就是 log100n,最长路径是 log10099n,所以总遍历数据个数介于 nlog100n 和 nlog10099n 之间。尽管底数变了,但是时间复杂度也仍然是 O(nlogn)。

也就是说,对于 k 等于 9,99,甚至是 999,9999……,只要 k 的值不随 n 变化,是一个事先确定的常量,那快排的时间复杂度就是 O(nlogn)。所以,从概率论的角度来说,快排的平均时间复杂度就是 O(nlogn)。

实战二:分析斐波那契数列的时间复杂度

int f(int n) {if (n == 1) return 1;if (n == 2) return 2;return f(n-1) + f(n-2);
}

这棵递归树的高度是多少呢?

f(n) 分解为 f(n−1) 和 f(n−2),每次数据规模都是 −1 或者 −2,叶子节点的数据规模是 1 或者 2。所以,从根节点走到叶子节点,每条路径是长短不一的。如果每次都是 −1,那最长路径大约就是 n;如果每次都是 −2,那最短路径大约就是 n2。

每次分解之后的合并操作只需要一次加法运算,我们把这次加法运算的时间消耗记作 1。所以,从上往下,第一层的总时间消耗是 1,第二层的总时间消耗是 2,第三层的总时间消耗就是 22。依次类推,第 k 层的时间消耗就是 2k−1,那整个算法的总的时间消耗就是每一层时间消耗之和。

如果路径长度都为 n,那这个总和就是 2的n次−1。


如果路径长度都是 n2 ,那整个算法的总的时间消耗就是 2n2−1。

所以,这个算法的时间复杂度就介于 O(2n) 和 O(2n2) 之间。虽然这样得到的结果还不够精确,只是一个范围,但是我们也基本上知道了上面算法的时间复杂度是指数级的,非常高。

实战三:分析全排列的时间复杂度

1,2,3 这样 3 个数据,有下面这几种不同的排列:

1, 2, 3
1, 3, 2
2, 1, 3
2, 3, 1
3, 1, 2
3, 2, 1

果我们确定了最后一位数据,那就变成了求解剩下 n−1 个数据的排列问题。而最后一位数据可以是 n 个数据中的任意一个,因此它的取值就有 n 种情况。所以,“n 个数据的排列”问题,就可以分解成 n 个“n−1 个数据的排列”的子问题。
如果我们把它写成递推公式,就是下面这个样子:

假设数组中存储的是 1,2, 3...n。f(1,2,...n) = {最后一位是 1, f(n-1)} + {最后一位是 2, f(n-1)} +...+{最后一位是 n, f(n-1)}。

把递推公式改写成代码

// 调用方式:
// int[]a = a={1, 2, 3, 4}; printPermutations(a, 4, 4);
// k 表示要处理的子数组的数据个数
public void printPermutations(int[] data, int n, int k) {if (k == 1) {for (int i = 0; i < n; ++i) {System.out.print(data[i] + " ");}System.out.println();}for (int i = 0; i < k; ++i) {int tmp = data[i];data[i] = data[k-1];data[k-1] = tmp;printPermutations(data, n, k - 1);tmp = data[i];data[i] = data[k-1];data[k-1] = tmp;}
}


第一层分解有 n 次交换操作,第二层有 n 个节点,每个节点分解需要 n−1 次交换,所以第二层总的交换次数是 n∗(n−1)。第三层有 n∗(n−1) 个节点,每个节点分解需要 n−2 次交换,所以第三层总的交换次数是 n∗(n−1)∗(n−2)。

以此类推,第 k 层总的交换次数就是 n∗(n−1)∗(n−2)∗…∗(n−k+1)。最后一层的交换次数就是 n∗(n−1)∗(n−2)∗…∗2∗1。每一层的交换次数之和就是总的交换次数。

n + n*(n-1) + n*(n-1)*(n-2) +... + n*(n-1)*(n-2)*...*2*1

这个公式的求和比较复杂,我们看最后一个数,n∗(n−1)∗(n−2)∗…∗2∗1 等于 n!,而前面的 n−1 个数都小于最后一个数,所以,总和肯定小于 n∗n!,也就是说,全排列的递归算法的时间复杂度大于 O(n!),小于 O(n∗n!),虽然我们没法知道非常精确的时间复杂度,但是这样一个范围已经让我们知道,全排列的时间复杂度是非常高的。

这里我稍微说下,掌握分析的方法很重要,思路是重点,不要纠结于精确的时间复杂度到底是多少。

堆是一种特殊的树。
什么样的树才是堆。我罗列了两点要求,只要满足这两点,它就是一个堆。
堆是一个完全二叉树;
堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。

第一点,堆必须是一个完全二叉树。还记得我们之前讲的完全二叉树的定义吗?完全二叉树要求,除了最后一层,其他层的节点个数都是满的,最后一层的节点都靠左排列。

第二点,堆中的每个节点的值必须大于等于(或者小于等于)其子树中每个节点的值。实际上,我们还可以换一种说法,堆中每个节点的值都大于等于(或者小于等于)其左右子节点的值。这两种表述是等价的。

对于每个节点的值都大于等于子树中每个节点值的堆,我们叫作“大顶堆”。对于每个节点的值都小于等于子树中每个节点值的堆,我们叫作“小顶堆”。


其中第 1 个和第 2 个是大顶堆,第 3 个是小顶堆,第 4 个不是堆。除此之外,从图中还可以看出来,对于同一组数据,我们可以构建多种不同形态的堆。

如何存储一个堆

完全二叉树比较适合用数组来存储。

用数组来存储完全二叉树是非常节省存储空间的。因为我们不需要存储左右子节点的指针,单纯地通过数组的下标,就可以找到一个节点的左右子节点和父节点。


从图中我们可以看到,数组中下标为 i 的节点的左子节点,就是下标为 i∗2 的节点,右子节点就是下标为 i∗2+1 的节点,父节点就是下标为 i2 的节点。

堆都支持哪些操作

堆上的操作有哪些呢?我罗列了几个非常核心的操作,分别是往堆中插入一个元素和删除堆顶元素。(如果没有特殊说明,我下面都是拿大顶堆来讲解)。

1. 往堆中插入一个元素

往堆中插入一个元素后,我们需要继续满足堆的两个特性。

如果我们把新插入的元素放到堆的最后,你可以看我画的这个图,是不是不符合堆的特性了?于是,我们就需要进行调整,让其重新满足堆的特性,这个过程我们起了一个名字,就叫作堆化(heapify)。

堆化实际上有两种,从下往上和从上往下。这里我先讲从下往上的堆化方法。


堆化非常简单,就是顺着节点所在的路径,向上或者向下,对比,然后交换
让新插入的节点与父节点对比大小。如果不满足子节点小于等于父节点的大小关系,我们就互换两个节点。一直重复这个过程,直到父子节点之间满足刚说的那种大小关系。

public class Heap {private int[] a; // 数组,从下标 1 开始存储数据private int n;  // 堆可以存储的最大数据个数private int count; // 堆中已经存储的数据个数public Heap(int capacity) {a = new int[capacity + 1];n = capacity;count = 0;}public void insert(int data) {if (count >= n) return; // 堆满了++count;a[count] = data;int i = count;while (i/2 > 0 && a[i] > a[i/2]) { // 自下往上堆化swap(a, i, i/2); // swap() 函数作用:交换下标为 i 和 i/2 的两个元素i = i/2;}}}

2. 删除堆顶元素

从堆的定义的第二条中,任何节点的值都大于等于(或小于等于)子树节点的值,我们可以发现,堆顶元素存储的就是堆中数据的最大值或者最小值。

把最后一个节点放到堆顶,然后利用同样的父子节点对比方法。对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。这就是从上往下的堆化方法。

因为我们移除的是数组中的最后一个元素,而在堆化的过程中,都是交换操作,不会出现数组中的“空洞”,所以这种方法堆化之后的结果,肯定满足完全二叉树的特性。

public void removeMax() {if (count == 0) return -1; // 堆中没有数据a[1] = a[count];--count;heapify(a, count, 1);
}private void heapify(int[] a, int n, int i) { // 自上往下堆化while (true) {int maxPos = i;if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;if (maxPos == i) break;swap(a, i, maxPos);i = maxPos;}
}

我们知道,一个包含 n 个节点的完全二叉树,树的高度不会超过 log2n。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是 O(logn)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度都是 O(logn)。

如何基于堆实现排序?

前面我们讲过好几种排序算法,我们再来回忆一下,有时间复杂度是 O(n2) 的冒泡排序、插入排序、选择排序,有时间复杂度是 O(nlogn) 的归并排序、快速排序,还有线性排序。

这里我们借助于堆这种数据结构实现的排序算法,就叫作堆排序。这种排序方法的时间复杂度非常稳定,是 O(nlogn),并且它还是原地排序算法。如此优秀,它是怎么做到的呢?

我们可以把堆排序的过程大致分解成两个大的步骤,建堆排序

1. 建堆

我们首先将数组原地建成一个堆。所谓“原地”就是,不借助另一个数组,就在原数组上操作。建堆的过程,有两种思路。

第一种是借助我们前面讲的,在堆中插入一个元素的思路。尽管数组中包含 n 个数据,但是我们可以假设,起初堆中只包含一个数据,就是下标为 1 的数据。然后,我们调用前面讲的插入操作,将下标从 2 到 n 的数据依次插入到堆中。这样我们就将包含 n 个数据的数组,组织成了堆。

第二种实现思路,跟第一种截然相反,也是我这里要详细讲的。第一种建堆思路的处理过程是从前往后处理数组数据,并且每个数据插入堆中时,都是从下往上堆化。而第二种实现思路,是从后往前处理数组,并且每个数据都是从上往下堆化

我举了一个例子,并且画了一个第二种实现思路的建堆分解步骤图,你可以看下。因为叶子节点往下堆化只能自己跟自己比较,所以我们直接从第一个非叶子节点开始,依次堆化就行了。

第二种思路

private static void buildHeap(int[] a, int n) {for (int i = n/2; i >= 1; --i) {heapify(a, n, i);}
}private static void heapify(int[] a, int n, int i) {while (true) {int maxPos = i;if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;if (maxPos == i) break;swap(a, i, maxPos);i = maxPos;}
}

2. 排序

建堆结束之后,数组中的数据已经是按照大顶堆的特性来组织的。数组中的第一个元素就是堆顶,也就是最大的元素。我们把它跟最后一个元素交换,那最大元素就放到了下标为 n 的位置。

这个过程有点类似上面讲的“删除堆顶元素”的操作,当堆顶元素移除之后,我们把下标为 n 的元素放到堆顶,然后再通过堆化的方法,将剩下的 n−1 个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是 n−1 的位置,一直重复这个过程,直到最后堆中只剩下标为 1 的一个元素,排序工作就完成了。

// n 表示数据的个数,数组 a 中的数据从下标 1 到 n 的位置。
public static void sort(int[] a, int n) {buildHeap(a, n);int k = n;while (k > 1) {swap(a, 1, k);--k;heapify(a, k, 1);}
}

堆的应用

堆的应用一:优先级队列

首先,我们来看第一个应用场景:优先级队列。

优先级队列,顾名思义,它首先应该是一个队列。我们前面讲过,队列最大的特性就是先进先出。不过,在优先级队列中,数据的出队顺序不是先进先出,而是按照优先级来,优先级最高的,最先出队。

如何实现一个优先级队列呢?方法有很多,但是用堆来实现是最直接、最高效的。这是因为,堆和优先级队列非常相似。一个堆就可以看作一个优先级队列。很多时候,它们只是概念上的区分而已。往优先级队列中插入一个元素,就相当于往堆中插入一个元素;从优先级队列中取出优先级最高的元素,就相当于取出堆顶元素。

你可别小看这个优先级队列,它的应用场景非常多。我们后面要讲的很多数据结构和算法都要依赖它。比如,赫夫曼编码、图的最短路径、最小生成树算法等等。不仅如此,很多语言中,都提供了优先级队列的实现,比如,Java 的 PriorityQueue,C++ 的 priority_queue 等。

只讲这些应用场景比较空泛,现在,我举两个具体的例子,让你感受一下优先级队列具体是怎么用的。

1. 合并有序小文件

假设我们有 100 个小文件,每个文件的大小是 100MB,每个文件中存储的都是有序的字符串。我们希望将这些 100 个小文件合并成一个有序的大文件。这里就会用到优先级队列。

整体思路有点像归并排序中的合并函数。我们从这 100 个文件中,各取第一个字符串,放入数组中,然后比较大小,把最小的那个字符串放入合并后的大文件中,并从数组中删除。

假设,这个最小的字符串来自于 13.txt 这个小文件,我们就再从这个小文件取下一个字符串,并且放到数组中,重新比较大小,并且选择最小的放入合并后的大文件,并且将它从数组中删除。依次类推,直到所有的文件中的数据都放入到大文件为止。

这里我们用数组这种数据结构,来存储从小文件中取出来的字符串。每次从数组中取最小字符串,都需要循环遍历整个数组,显然,这不是很高效。有没有更加高效方法呢?

这里就可以用到优先级队列,也可以说是堆。我们将从小文件中取出来的字符串放入到小顶堆中,那堆顶的元素,也就是优先级队列队首的元素,就是最小的字符串。我们将这个字符串放入到大文件中,并将其从堆中删除。然后再从小文件中取出下一个字符串,放入到堆中。循环这个过程,就可以将 100 个小文件中的数据依次放入到大文件中。

我们知道,删除堆顶数据和往堆中插入数据的时间复杂度都是 O(logn),n 表示堆中的数据个数,这里就是 100。是不是比原来数组存储的方式高效了很多呢?

2. 高性能定时器

假设我们有一个定时器,定时器中维护了很多定时任务,每个任务都设定了一个要触发执行的时间点。定时器每过一个很小的单位时间(比如 1 秒),就扫描一遍任务,看是否有任务到达设定的执行时间。如果到达了,就拿出来执行。

这样每过 1 秒就扫描一遍任务列表的做法比较低效,主要原因有两点:第一,任务的约定执行时间离当前时间可能还有很久,这样前面很多次扫描其实都是徒劳的;第二,每次都要扫描整个任务列表,如果任务列表很大的话,势必会比较耗时。

针对这些问题,我们就可以用优先级队列来解决。我们按照任务设定的执行时间,将这些任务存储在优先级队列中,队列首部(也就是小顶堆的堆顶)存储的是最先执行的任务。

这样,定时器就不需要每隔 1 秒就扫描一遍任务列表了。它拿队首任务的执行时间点,与当前时间点相减,得到一个时间间隔 T。

这个时间间隔 T 就是,从当前时间开始,需要等待多久,才会有第一个任务需要被执行。这样,定时器就可以设定在 T 秒之后,再来执行任务。从当前时间点到(T-1)秒这段时间里,定时器都不需要做任何事情。

当 T 秒时间过去之后,定时器取优先级队列中队首的任务执行。然后再计算新的队首任务的执行时间点与当前时间点的差值,把这个值作为定时器执行下一个任务需要等待的时间。

这样,定时器既不用间隔 1 秒就轮询一次,也不用遍历整个任务列表,性能也就提高了。

堆的应用二:利用堆求 Top K

topK 应该先要填满堆,后面插入的时候再做删除操作

我把这种求 Top K 的问题抽象成两类。一类是针对静态数据集合,也就是说数据集合事先确定,不会再变。另一类是针对动态数据集合,也就是说数据集合事先并不确定,有数据动态地加入到集合中。

针对静态数据,如何在一个包含 n 个数据的数组中,查找前 K 大数据呢?我们可以维护一个大小为 K 的小顶堆,顺序遍历数组,从数组中取出取数据与堆顶元素比较。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理,继续遍历数组。这样等数组中的数据都遍历完之后,堆中的数据就是前 K 大数据了。

遍历数组需要 O(n) 的时间复杂度,一次堆化操作需要 O(logK) 的时间复杂度,所以最坏情况下,n 个元素都入堆一次,所以时间复杂度就是 O(nlogK)。

针对动态数据求得 Top K 就是实时 Top K。怎么理解呢?我举一个例子。一个数据集合中有两个操作,一个是添加数据,另一个询问当前的前 K 大数据。

如果每次询问前 K 大数据,我们都基于当前的数据重新计算的话,那时间复杂度就是 O(nlogK),n 表示当前的数据的大小。实际上,我们可以一直都维护一个 K 大小的小顶堆,当有数据被添加到集合中时,我们就拿它与堆顶的元素对比。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理。这样,无论任何时候需要查询当前的前 K 大数据,我们都可以里立刻返回给他。

堆的应用三:利用堆求中位数

中位数,顾名思义,就是处在中间位置的那个数。如果数据的个数是奇数,把数据从小到大排列,那第 n/2+1 个数据就是中位数;如果数据的个数是偶数的话,那处于中间位置的数据有两个,第 n/2 个和第 n/2+1 个数据,这个时候,我们可以随意取一个作为中位数,比如取两个数中靠前的那个,就是第 n/2 个数据。

对于一组静态数据,中位数是固定的,我们可以先排序,第 n2 个数据就是中位数。每次询问中位数的时候,我们直接返回这个固定的值就好了。所以,尽管排序的代价比较大,但是边际成本会很小。但是,如果我们面对的是动态数据集合,中位数在不停地变动,如果再用先排序的方法,每次询问中位数的时候,都要先进行排序,那效率就不高了。

借助堆这种数据结构,我们不用排序,就可以非常高效地实现求中位数操作。我们来看看,它是如何做到的?

我们需要维护两个堆,一个大顶堆,一个小顶堆。大顶堆中存储前半部分数据,小顶堆中存储后半部分数据,且小顶堆中的数据都大于大顶堆中的数据。

也就是说,如果有 n 个数据,n 是偶数,我们从小到大排序,那前 n/2 个数据存储在大顶堆中,后 n/2 个数据存储在小顶堆中。这样,大顶堆中的堆顶元素就是我们要找的中位数。如果 n 是奇数,情况是类似的,大顶堆就存储 n/2+1 个数据,小顶堆中就存储 n/2 个数据。

我们前面也提到,数据是动态变化的,当新添加一个数据的时候,我们如何调整两个堆,让大顶堆中的堆顶元素继续是中位数呢?

如果新加入的数据小于等于大顶堆的堆顶元素,我们就将这个新数据插入到大顶堆;如果新加入的数据大于等于小顶堆的堆顶元素,我们就将这个新数据插入到小顶堆。

这个时候就有可能出现,两个堆中的数据个数不符合前面约定的情况:如果 n 是偶数,两个堆中的数据个数都是 n/2;如果 n 是奇数,大顶堆有 n/2+1 个数据,小顶堆有 n/2 个数据。这个时候,我们可以从一个堆中不停地将堆顶元素移动到另一个堆,通过这样的调整,来让两个堆中的数据满足上面的约定。


于是,我们就可以利用两个堆,一个大顶堆、一个小顶堆,实现在动态数据集合中求中位数的操作。插入数据因为需要涉及堆化,所以时间复杂度变成了 O(logn),但是求中位数我们只需要返回大顶堆的堆顶元素就可以了,所以时间复杂度就是 O(1)。

实际上,利用两个堆不仅可以快速求出中位数,还可以快速求其他百分位的数据,原理是类似的。还记得我们在“为什么要学习数据结构与算法”里的这个问题吗?“如何快速求接口的 99% 响应时间?”我们现在就来看下,利用两个堆如何来实现。

在开始这个问题的讲解之前,我先解释一下,什么是“99% 响应时间”。

中位数的概念就是将数据从小到大排列,处于中间位置,就叫中位数,这个数据会大于等于前面 50% 的数据。99 百分位数的概念可以类比中位数,如果将一组数据从小到大排列,这个 99 百分位数就是大于前面 99% 数据的那个数据。

如果你还是不太理解,我再举个例子。假设有 100 个数据,分别是 1,2,3,……,100,那 99 百分位数就是 99,因为小于等于 99 的数占总个数的 99%。

弄懂了这个概念,我们再来看 99% 响应时间。如果有 100 个接口访问请求,每个接口请求的响应时间都不同,比如 55 毫秒、100 毫秒、23 毫秒等,我们把这 100 个接口的响应时间按照从小到大排列,排在第 99 的那个数据就是 99% 响应时间,也叫 99 百分位响应时间。

我们总结一下,如果有 n 个数据,将数据从小到大排列之后,99 百分位数大约就是第 n99% 个数据,同类,80 百分位数大约就是第 n80% 个数据。

弄懂了这些,我们再来看如何求 99% 响应时间。

我们维护两个堆,一个大顶堆,一个小顶堆。假设当前总数据的个数是 n,大顶堆中保存 n99% 个数据,小顶堆中保存 n1% 个数据。大顶堆堆顶的数据就是我们要找的 99% 响应时间。

每次插入一个数据的时候,我们要判断这个数据跟大顶堆和小顶堆堆顶数据的大小关系,然后决定插入到哪个堆中。如果这个新插入的数据比大顶堆的堆顶数据小,那就插入大顶堆;如果这个新插入的数据比小顶堆的堆顶数据大,那就插入小顶堆。

但是,为了保持大顶堆中的数据占 99%,小顶堆中的数据占 1%,在每次新插入数据之后,我们都要重新计算,这个时候大顶堆和小顶堆中的数据个数,是否还符合 99:1 这个比例。如果不符合,我们就将一个堆中的数据移动到另一个堆,直到满足这个比例。移动的方法类似前面求中位数的方法,这里我就不啰嗦了。

通过这样的方法,每次插入数据,可能会涉及几个数据的堆化操作,所以时间复杂度是 O(logn)。每次求 99% 响应时间的时候,直接返回大顶堆中的堆顶数据即可,时间复杂度是 O(1)。

假设现在我们有一个包含 10 亿个搜索关键词的日志文件,如何能快速获取到热门榜 Top 10 的搜索关键词呢?

假设现在我们有一个包含 10 亿个搜索关键词的日志文件,如何快速获取到 Top 10 最热门的搜索关键词呢?

处理这个问题,有很多高级的解决方法,比如使用 MapReduce 等。但是,如果我们将处理的场景限定为单机,可以使用的内存为 1GB。那这个问题该如何解决呢?

因为用户搜索的关键词,有很多可能都是重复的,所以我们首先要统计每个搜索关键词出现的频率。我们可以通过散列表、平衡二叉查找树或者其他一些支持快速查找、插入的数据结构,来记录关键词及其出现的次数。

假设我们选用散列表。我们就顺序扫描这 10 亿个搜索关键词。当扫描到某个关键词时,我们去散列表中查询。如果存在,我们就将对应的次数加一;如果不存在,我们就将它插入到散列表,并记录次数为 1。以此类推,等遍历完这 10 亿个搜索关键词之后,散列表中就存储了不重复的搜索关键词以及出现的次数。

然后,我们再根据前面讲的用堆求 Top K 的方法,建立一个大小为 10 的小顶堆,遍历散列表,依次取出每个搜索关键词及对应出现的次数,然后与堆顶的搜索关键词对比。如果出现次数比堆顶搜索关键词的次数多,那就删除堆顶的关键词,将这个出现次数更多的关键词加入到堆中。

以此类推,当遍历完整个散列表中的搜索关键词之后,堆中的搜索关键词就是出现次数最多的 Top 10 搜索关键词了。

不知道你发现了没有,上面的解决思路其实存在漏洞。10 亿的关键词还是很多的。我们假设 10 亿条搜索关键词中不重复的有 1 亿条,如果每个搜索关键词的平均长度是 50 个字节,那存储 1 亿个关键词起码需要 5GB 的内存空间,而散列表因为要避免频繁冲突,不会选择太大的装载因子,所以消耗的内存空间就更多了。而我们的机器只有 1GB 的可用内存空间,所以我们无法一次性将所有的搜索关键词加入到内存中。这个时候该怎么办呢?

我们在哈希算法那一节讲过,相同数据经过哈希算法得到的哈希值是一样的。我们可以哈希算法的这个特点,将 10 亿条搜索关键词先通过哈希算法分片到 10 个文件中。

具体可以这样做:我们创建 10 个空文件 00,01,02,……,09。我们遍历这 10 亿个关键词,并且通过某个哈希算法对其求哈希值,然后哈希值同 10 取模,得到的结果就是这个搜索关键词应该被分到的文件编号。

对这 10 亿个关键词分片之后,每个文件都只有 1 亿的关键词,去除掉重复的,可能就只有 1000 万个,每个关键词平均 50 个字节,所以总的大小就是 500MB。1GB 的内存完全可以放得下。

我们针对每个包含 1 亿条搜索关键词的文件,利用散列表和堆,分别求出 Top 10,然后把这个 10 个 Top 10 放在一块,然后取这 100 个关键词中,出现次数最多的 10 个关键词,这就是这 10 亿数据中的 Top 10 最频繁的搜索关键词了。

数据结构与算法之美笔记——基础篇(中):树,二叉树,二叉查找树,平衡二叉查找树,红黑树,递归树,堆相关推荐

  1. 数据结构与算法之美笔记——基础篇(下):图、字符串匹配算法(BF 算法和 RK 算法、BM 算法和 KMP 算法 、Trie 树和 AC 自动机)

    图 如何存储微博.微信等社交网络中的好友关系?图.实际上,涉及图的算法有很多,也非常复杂,比如图的搜索.最短路径.最小生成树.二分图等等.我们今天聚焦在图存储这一方面,后面会分好几节来依次讲解图相关的 ...

  2. 【数据结构与算法图文动画详解】终于可以彻底弄懂:红黑树、B-树、B+树、B*树、满二叉树、完全二叉树、平衡二叉树、二叉搜索树...

    1.树简介 1.1基本概念 树是由结点或顶点和边组成的(可能是非线性的)且不存在着任何环的一种数据结构.没有结点的树称为空(null或empty)树.一棵非空的树包括一个根结点,还(很可能)有多个附加 ...

  3. 数据结构与算法之美笔记(十四)B+树

    先抛出问题:数据库索引是如何实现的呢?底层使用的是什么数据结构和算法呢? 思考过程: 1.在执行效率方面,我们希望通过索引,查询数据的效率尽可能的高:在存储空间方面,我们希望索引不要消耗太多的内存空间 ...

  4. 数据结构与算法之美笔记-链表(Linked list)

    链表(Linked list) 缓存: CPU 缓存 数据库缓存 浏览器缓存 - 缓存的大小有限,当缓存被用满时,哪些数据应该被清理出去,哪些数据应该被保留? 缓存淘汰策略: 先进先出策略 FIFO( ...

  5. 数据结构与算法之美笔记(三)排序

    排序 如何分析一个"排序算法"? 排序算法的执行效率 1.1 最好情况.最坏情况.平均情况时间复杂度 1.2 时间复杂度的系数.常数 .低阶 1.3 比较次数和交换(或移动)次数 ...

  6. 王争数据结构与算法之美开篇问题整理

    数据结构与算法之美笔记整理 为什么大多数编程语言中数组从 0 而不是从 1 开始编号? 从数组存储的内存模型上来看,"下标"最确切的定义应该是"偏移(offset)&qu ...

  7. 《数据结构与算法之美》学习汇总

    此篇文章是对自己学习这门课程的一个总结和课后的一些练习,做一个汇总,希望对大家有帮助.本人是半路程序员,2018年2月开始学习C++的,下面的代码基本都是C++11版本的,代码有错误的地方请不吝留言赐 ...

  8. 数据结构与算法之美(一):概论

    最近在极客时间上面学习王争老师的课程<数据结构与算法之美>,以前虽然学过一些皮毛,但是不够精,作为程序员的基本内功,还是要继续学习.至此通过总结的方式,把这门课的要点记录下来,供自己思考回 ...

  9. 极客时间 自我提升第二天 数据结构与算法之美 应该掌握 / 趣谈网络原理 / 深入浅出计算机组成原理 思维导图

    菜鸟今天又来完成所说的诺言,也希望大家督促,在今天的学习中,菜鸟有了新的认知,我会将上一篇中理解不完善的一些地方进行补充,学习本就是不断打破自己的认知,如果思考都不做,何来的知识的积累 文章目录 数据 ...

最新文章

  1. 基于OHCI的USB主机 —— 结束语
  2. 使用 XML 时尽量避免使用的技术
  3. 华为机试第九题python
  4. python中的序列类型和序列号_python~序列类型及操作
  5. Matlab图像处理创新实践-实验1【图像滤波基础(1)】
  6. 并行执行 Job - 每天5分钟玩转 Docker 容器技术(134)
  7. 程序员面试金典 - 面试题 04.12. 求和路径(二叉树递归)
  8. 异步 Action 的定义
  9. python中argsparse_Python中argparse库的基本使用(示例)
  10. 大数据笔试面试题(转载)
  11. Python笔记-16QAM的编程实现
  12. MongoDB下载安装教程(Windows)
  13. 国外3个设计师插画等必备PNG免扣素材网站分享
  14. RaiDrive添加坚果云
  15. FileNotFoundError: Could not find module xxx libbanded5x.UGR6EUQPIWHQH7SL62IWIXB5545VDNQZ.gfortran-w
  16. 调用后台接口返回报错前端隐藏提示_腾讯社交联盟广告
  17. TI飞控出现联系方式,Ti飞控芯片锁了解决办法
  18. 显示651_没有太阳,白天黑夜怎么区分?腕表昼夜显示功能
  19. (gMLP)Pay Attention to MLPs
  20. Scala中下划线“_“的应用场景

热门文章

  1. 从初级工程师发展到高级工程师,需要跨越的鸿沟
  2. 取之盈:html网页音乐代码大全
  3. 电脑运行慢?更频繁地使用它
  4. C/C++ 学习笔记:结构体中最后一个成员为[0]或[1]长度数组(柔性数组成员)的用法
  5. 五天搞定英语语法系列汇总
  6. arthas的监控java性能
  7. apple tv设置_如何设置Apple TV以自动安装iPhone的应用程序
  8. 前端、框架和其他(155题)
  9. html圈c转义符,C 实用教程
  10. final finally finalize三者有什么区别