• 二进制日志(binary log):记录了对MySQL数据库执行的更改操作,并且记录了语句的发生时间、执行时长;但是它不记录select、show等不修改数据库的SQL。主要用于数据库恢复和主从复制。

show variables like ‘%log_bin%’; //是否开启

show variables like ‘%binlog%’; //参数查看

show binary logs;//查看日志文件

  • 慢查询日志(Slow query log):记录所有执行时间超时的查询SQL,默认是10秒

show variables like ‘%slow_query%’; //是否开启

show variables like ‘%long_query_time%’; //时长

  • 配置文件

用于存储 MySQL 的所有配置信息文件,比如my.cnf、my.ini 等

  • 数据文件

  • db.opt 文件:记录这个库的默认使用的字符集和校验规则。

  • frm 文件:存储与表有关的元数据信息(meta),包括表结构的定义信息等,每张表都会有一个frm 文件。

  • MYD 文件:MyIsAM 存储引擎专用,存放MyISAM 表的数据,每张表都会有一个 .MYD 文件

  • MYI 文件:MyISAM 存储引擎专用,存放 MyISAM 表的索引相关信息,每一张 MyISAM 表对应一个 .MYI 文件。

  • ibd文件和 IBDATA 文件:存放 InnoDB 的数据文件(包括索引)。InnoDB 存储引擎有两种表空间方式:独享表空间和共享表空间。独享表空间使用 .ibd 文件来存放数据,且每一张InnoDB 表对应一个 .ibd 文件。共享表空间使用 .ibdata 文件,所有表共同使用一个(或多个,自行配置).ibdata 文件。

  • ibdata1 文件:系统表空间数据文件,存储表元数据、Undo日志等 。

  • ib_logfifile0、ib_logfifile1 文件:Redo log 日志文件。

  • pid 文件

pid 文件是 mysqlId 应用程序在 unix/linux 环境下的一个进程文件,和许多其他的unix/linux 服务端程序一样,它存放着自己的进程id 。

  • socket 文件

socket 文件也是在 unix/linux 环境下才有的,用户在linux 环境下客户端连接不可以通过 TCP/IP 网络而直接使用 Unix Socket 来连接 MySQL 。

MySQL 运行机制


  • ①建立连接(Connectors&Connection Pool),通过客户端/服务器通信协议与MySQL建立连接。MySQL 客户端与服务端的通信方式是 “ 半双工 ”。对于每一个 MySQL 的连接,时刻都有一个线程状态来标识这个连接正在做什么。

通讯机制:

  • 全双工:能同时发送和接收数据,例如平时打电话。

  • 半双工:指的某一时刻,要么发送数据,要么接收数据,不能同时。例如早期对讲机

  • 单工:只能发送数据或只能接收数据。例如单行道

线程状态:

show processlist; //查看用户正在运行的线程信息,root用户能查看所有线程,其他用户只能看自己的

  • id:线程ID,可以使用kill xx;

  • user:启动这个线程的用户

  • Host:发送请求的客户端的IP和端口号

  • db:当前命令在哪个库执行

  • Command:该线程正在执行的操作命令

  • Create DB:正在创建库操作

  • Drop DB:正在删除库操作

  • Execute:正在执行一个PreparedStatement

  • Close Stmt:正在关闭一个PreparedStatement

  • Query:正在执行一个语句

  • Sleep:正在等待客户端发送语句

  • Quit:正在退出

  • Shutdown:正在关闭服务器

  • Time:表示该线程处于当前状态的时间,单位是秒

  • State:线程状态

  • Updating:正在搜索匹配记录,进行修改

  • Sleeping:正在等待客户端发送新请求

  • Starting:正在执行请求处理

  • Checking table:正在检查数据表

  • Closing table : 正在将表中数据刷新到磁盘中

  • Locked:被其他查询锁住了记

  • Sending Data:正在处理Select查询,同时将结果发送给客户端

  • Info:一般记录线程执行的语句,默认显示前100个字符。想查看完整的使用show full processlist;

  • ②查询缓存(Cache&Buffffer),这是MySQL的一个可优化查询的地方,如果开启了查询缓存且在查询缓存过程中查询到完全相同的SQL语句,则将查询结果直接返回给客户端;如果没有开启查询缓存或者没有查询到完全相同的 SQL 语句则会由解析器进行语法语义解析,并生成“解析树”。

  • 缓存Select查询的结果和SQL语句

  • 执行Select查询时,先查询缓存,判断是否存在可用的记录集,要求是否完全相同(包括参数值),这样才会匹配缓存数据命中。

  • 即使开启查询缓存,以下SQL也不能缓存

  • 查询语句使用SQL_NO_CACHE

  • 查询的结果大于query_cache_limit设置

  • 查询中有一些不确定的参数,比如now()

  • show variables like ‘%query_cache%’; //查看查询缓存是否启用,空间大小,限制等

  • show status like ‘Qcache%’; //查看更详细的缓存参数,可用缓存空间,缓存块,缓存多少等

  • ③解析器(Parser)将客户端发送的SQL进行语法解析,生成"解析树"。预处理器根据一些MySQL规则进一步检查“解析树”是否合法,例如这里将检查数据表和数据列是否存在,还会解析名字和别名,看看它们是否有歧义,最后生成新的“解析树”。

  • ④查询优化器(Optimizer)根据“解析树”生成最优的执行计划。MySQL使用很多优化策略生成最优的执行计划,可以分为两类:静态优化(编译时优化)、动态优化(运行时优化)。

  • 等价变换策略。基于联合索引,调整条件位置等。

  • 优化count、min、max等函数。InnoDB引擎m

《一线大厂Java面试题解析+后端开发学习笔记+最新架构讲解视频+实战项目源码讲义》

【docs.qq.com/doc/DSmxTbFJ1cmN1R2dB】 完整内容开源分享

in函数只需要找索引最左边

  • 提前终止查询。使用了limit查询,获取limit所需的数据,就不在继续遍历后面数据

  • 提前终止查询。MySQL对in查询,会先进行排序,再采用二分法查找数据。比如where id in (2,1,3),变成 in (1,2,3)

  • ⑤查询执行引擎负责执行 SQL 语句,此时查询执行引擎会根据 SQL 语句中表的存储引擎类型,以及对应的API接口与底层存储引擎缓存或者物理文件的交互,得到查询结果并返回给客户端。若开启用查询缓存,这时会将SQL 语句和结果完整地保存到查询缓存(Cache&Buffffer)中,以后若有相同的 SQL 语句执行则直接返回结果。

  • 如果开启了查询缓存,先将查询结果做缓存操作

  • 返回结果过多,采用增量模式返回

MySQL 存储引擎


存储引擎在MySQL的体系架构中位于第三层,负责MySQL中的数据的存储和提取,是与文件打交道的子系统,它是根据MySQL提供的文件访问层抽象接口定制的一种文件访问机制,这种机制就叫作存储引擎。

使用下面命令,就可以查看当前数据库支持的引擎信息。

show engines;

在5.5版本之前默认采用MyISAM存储引擎,从5.5开始采用InnoDB存储引擎。

  • InnoDB:支持事务,具有提交,回滚和崩溃恢复能力,事务安全

  • MyISAM:不支持事务和外键,访问速度快

  • Memory:利用内存创建表,访问速度非常快,因为数据在内存,而且默认使用Hash索引,但是一旦关闭,数据就会丢失

  • Archive:归档类型引擎,仅能支持insert和select语句

  • Csv:以CSV文件进行数据存储,由于文件限制,所有列必须强制指定not null,另外CSV引擎也不支持索引和分区,适合做数据交换的中间表

  • BlackHole: 黑洞,只进不出,进来消失,所有插入数据都不会保存

  • Federated:可以访问远端MySQL数据库中的表。一个本地表,不保存数据,访问远程表内容。

  • MRG_MyISAM:一组MyISAM表的组合,这些MyISAM表必须结构相同,Merge表本身没有数据,对Merge操作可以对一组MyISAM表进行操作。

InnoDB 和 MyISAM 对比

InnoDB 和 MyISAM 是使用 MySQL 时最常用的两种引擎类型,我们重点来看下两者区别。

  • 事务和外键

InnoDB支持事务和外键,具有安全性和完整性,适合大量 insert 或 update 操作

MyISAM 不支持事务和外键,它提供高速存储和检索,适合大量的 select 查询操作

  • 锁机制

InnoDB支持行级锁,锁定指定记录。基于索引来加锁实现。

MyISAM支持表级锁,锁定整张表。

  • 索引结构

InnoDB使用聚集索引(聚簇索引),索引和记录在一起存储,既缓存索引,也缓存记录。

MyISAM使用非聚集索引(非聚簇索引),索引和记录分开。

  • 并发处理能力

MyISAM使用表锁,会导致写操作并发率低,读之间并不阻塞,读写阻塞。

InnoDB读写阻塞可以与隔离级别有关,可以采用多版本并发控制(MVCC)来支持高并发

  • 存储文件

InnoDB表对应两个文件,一个.frm表结构文件,一个.ibd数据文件。InnoDB表最大支持64TB;

MyISAM表对应三个文件,一个.frm表结构文件,一个MYD表数据文件,一个.MYI索引文件。从MySQL5.0开始默认限制是256TB。

  • 适用场景

MyISAM:

  • 不需要事务支持(不支持)

  • 并发相对较低(锁定机制问题)

  • 数据修改相对较少,以读为主

  • 数据一致性要求不高

InnoDB:

  • 需要事务支持(具有较好的事务特性)

  • 行级锁定对高并发有很好的适应能力

  • 数据更新较为频繁的场景

  • 数据一致性要求较高

  • 硬件设备内存较大,可以利用InnoDB较好的缓存能力来提高内存利用率,减少磁盘IO

两种引擎该如何选择?

  • 是否需要事务?有,InnoDB

  • 是否存在并发修改?有,InnoDB

  • 是否追求快速查询,且数据修改少?是,MyISAM

  • 在绝大多数情况下,推荐使用InnoDB

InnoDB 存储结构

从MySQL 5.5版本开始默认使用InnoDB作为引擎,它擅长处理事务,具有自动崩溃恢复的特性,在日常开发中使用非常广泛。下面是官方的InnoDB引擎架构图,主要分为内存结构和磁盘结构两大部分。

内存结构主要包括 Buffffer Pool、Change Buffer、Adaptive Hash Index和Log Buffer四大组件。

  • Buffer Pool:缓冲池,简称BP。BP以Page页为单位,默认大小16K,BP的底层采用链表数据结构管理Page。在InnoDB访问表记录和索引时会在Page页中缓存,以后使用可以减少磁盘IO操作,提升效率。

  • Page管理机制 Page根据状态可以分为三种类型:

  • free page : 空闲page,未被使用

  • clean page:被使用page,数据没有被修改过

  • dirty page:脏页,被使用page,数据被修改过,页中数据和磁盘的数据产生了不一致

  • 针对上述三种page类型,InnoDB通过三种链表结构来维护和管理

  • free list :表示空闲缓冲区,管理free page

  • flush list:表示需要刷新到磁盘的缓冲区,管理dirty page,内部page按修改时间排序。脏页即存在于flush链表,也在LRU链表中,但是两种互不影响,LRU链表负责管理page的可用性和释放,而flflush链表负责管理脏页的刷盘操作。

  • lru list:表示正在使用的缓冲区,管理clean page和dirty page,缓冲区以midpoint为基点,前面链表称为new列表区,存放经常访问的数据,占63%;后面的链表称为old列表区,存放使用较少数据,占37%。

  • 改进型LRU算法维护

普通LRU:末尾淘汰法,新数据从链表头部加入,释放空间时从末尾淘汰

改性LRU:链表分为new和old两个部分,加入元素时并不是从表头插入,而是从中间midpoint位置插入,如果数据很快被访问,那么page就会向new列表头部移动,如果数据没有被访问,会逐步向old尾部移动,等待淘汰。每当有新的page数据读取到buffffer pool时,InnoDb引擎会判断是否有空闲页,是否足够,如果有就将free page从free list列表删除,放入到LRU列表中。没有空闲页,就会根据LRU算法淘汰LRU链表默认的页,将内存空间释放分配给新的页。

  • Buffer Pool配置参数

show variables like ‘%innodb_page_size%’; //查看page页大小

show variables like ‘%innodb_old%’; //查看lru list中old列表参数

show variables like ‘%innodb_buffer%’; //查看buffffer pool参数

建议:将innodb_buffer_pool_size设置为总内存大小的60%-80%,

innodb_buffer_pool_instances可以设置为多个,这样可以避免缓存争夺。

  • Change Buffffer:写缓冲区,简称CB。在进行DML操作时,如果BP没有其相应的Page数据,并不会立刻将磁盘页加载到缓冲池,而是在CB记录缓冲变更,等未来数据被读取时,再将数据合并恢复到BP中。ChangeBuffer占用 BufferPoo l空间,默认占25%,最大允许占50%,可以根据读写业务量来进行调整。

参数:innodb_change_buffer_max_size;

当更新一条记录时,该记录在 BufferPool 存在,直接在BufferPool修改,一次内存操作。如果该记录在BufferPool不存在(没有命中),会直接在ChangeBuffer进行一次内存操作,不用再去磁盘查询数据,避免一次磁盘IO。当下次查询记录时,会先进性磁盘读取,然后再从ChangeBuffer中读取信息合并,最终载入BufferPool中。

写缓冲区,仅适用于非唯一普通索引页,为什么?

如果在索引设置唯一性,在进行修改时,InnoDB必须要做唯一性校验,因此必须查询磁盘,做一次IO操作。会直接将记录查询到BufferPool中,然后在缓冲池修改,不会在ChangeBuffer操作。

  • Adaptive Hash Index:自适应哈希索引,用于优化对BP数据的查询。InnoDB存储引擎会监控对表索引的查找,如果观察到建立哈希索引可以带来速度的提升,则建立哈希索引,所以称之为自适应。InnoDB存储引擎会自动根据访问的频率和模式来为某些页建立哈希索引。

  • Log Buffer:日志缓冲区,用来保存要写入磁盘上log文件(Redo/Undo)的数据,日志缓冲区的内容定期刷新到磁盘log文件中。日志缓冲区满时会自动将其刷新到磁盘,当遇到BLOB或多行更新的大事务操作时,增加日志缓冲区可以节省磁盘I/O。

LogBuffer主要是用于记录InnoDB引擎日志,在DML操作时会产生Redo和Undo日志。

LogBuffer空间满了,会自动写入磁盘。可以通过将innodb_log_buffffer_size参数调大,减少磁盘IO频率

InnoDB 磁盘结构

InnoDB磁盘主要包含Tablespaces,InnoDB Data Dictionary,Doublewrite Buffffer、Redo Log和Undo Logs。

  • 表空间(Tablespaces):用于存储表结构和数据。表空间又分为系统表空间、独立表空间、通用表空间、临时表空间、Undo表空间等多种类型;

  • 系统表空间(The System Tablespace)

包含InnoDB数据字典,Doublewrite Buffer,Change Buffer,Undo Logs的存储区域。系统表空间也默认包含任何用户在系统表空间创建的表数据和索引数据。系统表空间是一个共享的表空间因为它是被多个表共享的。该空间的数据文件通过参数innodb_data_file_path控制,默认值是ibdata1:12M:autoextend(文件名为ibdata1、12MB、自动扩展)。

  • 独立表空间(File-Per-Table Tablespaces)

默认开启,独立表空间是一个单表表空间,该表创建于自己的数据文件中,而非创建于系统表空间中。当innodb_file_per_table选项开启时,表将被创建于表空间中。否则,innodb将被创建于系统表空间中。每个表文件表空间由一个.ibd数据文件代表,该文件默认被创建于数据库目录中。表空间的表文件支持动态(dynamic)和压缩(commpressed)行格式。

  • 通用表空间(General Tablespaces)

通用表空间为通过create tablespace语法创建的共享表空间。通用表空间可以创建于mysql数据目录外的其他表空间,其可以容纳多张表,且其支持所有的行格式。

CREATE TABLESPACE ts1 ADD DATAFILE ts1.ibd Engine=InnoDB; //创建表空间ts1

CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE ts1; //将表添加到ts1 表空间

  • 撤销表空间(Undo Tablespaces)

撤销表空间由一个或多个包含Undo日志文件组成。在MySQL 5.7版本之前Undo占用的是System Tablespace共享区,从5.7开始将Undo从System Tablespace分离了出来。InnoDB使用的undo表空间由innodb_undo_tablespaces配置选项控制,默认为0。

参数值为0表示使用系统表空间ibdata1;大于0表示使用undo表空间undo_001、undo_002等。

  • 临时表空间(Temporary Tablespaces)

分为session temporary tablespaces 和global temporary tablespace两种。session temporary tablespaces 存储的是用户创建的临时表和磁盘内部的临时表。global temporary tablespace储存用户临时表的回滚段(rollback segments )。mysql服务器正常关闭或异常终止时,临时表空间将被移除,每次启动时会被重新创建。

  • 数据字典(InnoDB Data Dictionary)

InnoDB数据字典由内部系统表组成,这些表包含用于查找表、索引和表字段等对象的元数据。元数据物理上位于InnoDB系统表空间中。由于历史原因,数据字典元数据在一定程度上与InnoDB表元数据文件(.frm文件)中存储的信息重叠。

  • 双写缓冲区(Doublewrite Buffffer)

位于系统表空间,是一个存储区域。在BufffferPage的page页刷新到磁盘真正的位置前,会先将数据存在Doublewrite 缓冲区。如果在page页写入过程中出现操作系统、存储子系统或mysqld进程崩溃,InnoDB可以在崩溃恢复期间从Doublewrite 缓冲区中找到页面的一个好备份。在大多数情况下,默认情况下启用双写缓冲区,要禁用Doublewrite 缓冲区,可以将innodb_doublewrite设置为0。使用Doublewrite 缓冲区时建议将innodb_flflush_method设置为O_DIRECT。

  • 重做日志(Redo Log)

重做日志是一种基于磁盘的数据结构,用于在崩溃恢复期间更正不完整事务写入的数据。MySQL以循环方式写入重做日志文件,记录InnoDB中所有对Buffffer Pool修改的日志。当出现实例故障(像断电),导致数据未能更新到数据文件,则数据库重启时须redo,重新把数据更新到数据文件。读写事务在执行的过程中,都会不断的产生redo log。默认情况下,重做日志在磁盘上由两个名为ib_logfifile0和ib_logfifile1的文件物理表示。

  • 撤销日志(Undo Logs)

撤消日志是在事务开始之前保存的被修改数据的备份,用于例外情况时回滚事务。撤消日志属于逻辑日志,根据每行记录进行记录。撤消日志存在于系统表空间、撤消表空间和临时表空间中。

新版本的区别:

MySQL 5.7 版本

  • 将 Undo日志表空间从共享表空间 ibdata 文件中分离出来,可以在安装 MySQL 时由用户自行指定文件大小和数量。

  • 增加了 temporary 临时表空间,里面存储着临时表或临时查询结果集的数据。

  • Buffer Pool 大小可以动态修改,无需重启数据库实例。

MySQL 8.0 版本

  • 将InnoDB表的数据字典和Undo都从共享表空间ibdata中彻底分离出来了,以前需要 ibdata中数据字典与独立表空间ibd文件中数据字典一致才行,8.0版本就不需要了。

  • temporary 临时表空间也可以配置多个物理文件,而且均为 InnoDB 存储引擎并能创建索引,这样加快了处理的速度。

  • 用户可以像 Oracle 数据库那样设置一些表空间,每个表空间对应多个物理文件,每个表空间可以给多个表使用,但一个表只能存储在一个表空间中。

  • 将Doublewrite Buffer从共享表空间ibdata中也分离出来了。

InnoDB 线程模型

  • IO Thread

在InnoDB中使用了大量的 AIO(Async IO)来做读写处理,这样可以极大提高数据库的性能。在 InnoDB1.0版本之前共有4个IO Thread,分别是write,read,insert buffffer和log thread,后来版本将read thread和write thread分别增大到了4个,一共有10个了。

  • read thread : 负责读取操作,将数据从磁盘加载到缓存page页。4个

  • write thread:负责写操作,将缓存脏页刷新到磁盘。4个

  • log thread:负责将日志缓冲区内容刷新到磁盘。1个

  • insert buffffer thread :负责将写缓冲内容刷新到磁盘。1个

  • Purge Thread

事务提交之后,其使用的undo日志将不再需要,因此需要Purge Thread回收已经分配的undo

页。

show variables like ‘%innodb_purge_threads%’;

  • Page Cleaner Thread

作用是将脏数据刷新到磁盘,脏数据刷盘后相应的redo log也就可以覆盖,即可以同步数据,又能达到redo log循环使用的目的。会调用write thread线程处理。

show variables like ‘%innodb_page_cleaners%’;

  • Master Thread

Master thread是InnoDB的主线程,负责调度其他各线程,优先级最高。作用是将缓冲池中的数据异步刷新到磁盘 ,保证数据的一致性。包含:脏页的刷新(page cleaner thread)、undo页回收(purge thread)、redo日志刷新(log thread)、合并写缓冲等。内部有两个主处理,分别是每隔1秒和10秒处理。

每1秒的操作:

  • 刷新日志缓冲区,刷到磁盘

  • 合并写缓冲区数据,根据IO读写压力来决定是否操作

  • 刷新脏页数据到磁盘,根据脏页比例达到75%才操作(innodb_max_dirty_pages_pct,innodb_io_capacity)

每10秒的操作:

  • 刷新脏页数据到磁盘

  • 合并写缓冲区数据

  • 刷新日志缓冲区

  • 删除无用的undo页

InnoDB 数据文件

InnoDB数据文件存储结构:

分为一个ibd数据文件–>Segment(段)–>Extent(区)–>Page(页)–>Row(行)

  • Tablesapce :表空间,用于存储多个ibd数据文件,用于存储表的记录和索引。一个文件包含多个段。

  • Segment:段,用于管理多个Extent,分为数据段(Leaf node segment)、索引段(Non-leaf nodesegment)、回滚段(Rollback segment)。一个表至少会有两个segment,一个管理数据,一个管理索引。每多创建一个索引,会多两个segment。

  • Extent:区,一个区固定包含64个连续的页,大小为1M。当表空间不足,需要分配新的页资源,不会一页一页分,直接分配一个区。

  • Page:页,用于存储多个Row行记录,大小为16K。包含很多种页类型,比如数据页,undo页,系统页,事务数据页,大的BLOB对象页。

  • Row: 行,包含了记录的字段值,事务ID(Trx id)、滚动指针(Roll pointer)、字段指针(Field

pointers)等信息。

Page是文件最基本的单位,无论何种类型的page,都是由page header,page trailer和page

body组成。如下图所示

InnoDB 文件存储格式

show table status;

一般情况下,如果row_format为REDUNDANT、COMPACT,文件格式为Antelope;如果

row_format为DYNAMIC和COMPRESSED,文件格式为Barracuda。

通过 information_schema 查看指定表的文件格式

select * from information_schema.innodb_sys_tables;

File 文件格式(File-Format)

在早期的InnoDB版本中,文件格式只有一种,随着InnoDB引擎的发展,出现了新文件格式,用于支持新的功能。目前InnoDB只支持两种文件格式:Antelope 和 Barracuda。

  • Antelope: 先前未命名的,最原始的InnoDB文件格式,它支持两种行格式:COMPACT和REDUNDANT,MySQL 5.6及其以前版本默认格式为Antelope。

  • Barracuda: 新的文件格式。它支持InnoDB的所有行格式,包括新的行格式:COMPRESSED和 DYNAMIC。

通过innodb_fifile_format 配置参数可以设置InnoDB文件格式,之前默认值为Antelope,5.7版本开始改为Barracuda

Mysql 架构原理,自学编程找工作相关推荐

  1. 自学Python找工作,投简历没回应是什么原因?

    Python是目前比较热门的语言,但热门不意味着好找工作,导致投简历没有回应的原因太多太多.但无外乎几个原因:1.简历写的有问题.2.技术不够. 记得看过一则关于自学python找工作的内容: 自学p ...

  2. 30岁自学嵌入式找工作,可行吗?前景怎么样?

    大家好,我是张巧龙,在知乎上看到一个问题:30岁自学嵌入式找工作,可行吗? 看看一个高赞回答: 注:以下内容不代表本公众号观点,仅供参考. 不可行. 嵌入式涉及软件.硬件开发,难度比较大,而工资又不是 ...

  3. MySQL 数据存储和优化------MySQL架构原理 ---- (架构---索引---事务---锁---集群---性能---分库分表---实战---运维)持续更新

    Mysql架构体系全系列文章主目录(进不去说明还没写完)https://blog.csdn.net/grd_java/article/details/123033016 本文只是整个系列笔记的第一章: ...

  4. 27岁自学python找工作_27岁0基础自学Python,多久可以找到工作?

    下载好向圈APP可以快速联系圈友 您需要 登录 才可以下载或查看,没有帐号?立即注册 x 27岁零基础努力自学Python,多久或什么程度可以找到工作? 背景: 毕业近5年,至今仍无任何表面成绩,一开 ...

  5. 中专学历自学前端找工作?也太真实了。。。

    自我介绍 在没有任何包装的情况下成功收到大概十几家公司的面试邀请. 因为喜欢代码,喜欢编程,而坚持下来的学习.想起五六年前智能手机刚兴起的时候,我就在各种论坛(代表:某葫*侠),各种 Q 群混着跟着搞 ...

  6. 大专自学python找工作_大专生自学Python到找到工作的经历

    先做个自我介绍,我13年考上一所很烂专科民办的学校,学的是生物专业,具体的学校名称我就不说出来献丑了.13年我就辍学了,我在那样的学校,一年学费要1万多,但是根本没有人学习,我实在看不到希望,我就退学 ...

  7. 我表弟高中毕业就想自学Java找工作靠谱吗?

    现在流行一句话:360行,行行转Java! 其实这句话并不夸张,现在各个行业转行做程序员的太多了,就只为了一个目的:高薪! 还有很多高中.初中.中专学历的来自学编程,很多人就有这样的问题:高中这样的学 ...

  8. 研一被放养,想自学嵌入式找工作,可行吗?

    先说结论,完全可行. 实际工作对于学校的知识就是降维打击,放不放养,关系并不大,除非你按照本文的策略和去刻意学习,那才有可能毕业就甩同学几条街. 能考上研究生的,学习能力毋庸置疑. 其次就是学历背书, ...

  9. 为什么自学Java找工作越来越难,HR究竟在顾忌啥?

    相信很多关注Java或想要进入IT互联网行业的同学,都在垂涎程序员的高福利: 薪资高,成长快,随着资历丰富薪资可达百万 名誉好,互联网大厂头衔,同学口中真受用 前景好,未来智慧城市.元宇宙--前景无限 ...

最新文章

  1. 第14章4节《MonkeyRunner源码剖析》 HierarchyViewer实现原理-装备ViewServer-端口转发 3...
  2. OpenGL鼠标拾取
  3. UA MATH571A QE练习 R语言 非参数回归 上
  4. 一、【SAP-PM模块】SAP系统PM模块概述
  5. java链表实现_链表的原理及java实现
  6. python flask 上传下载 api_Flask 文件下载API
  7. php ip2long mysql,PHP基于ip2long实现IP转换整形
  8. RCD:Residual Current Device,剩余电流装置
  9. 525 Contiguous Array 连续数组
  10. wlanconnect无法连接wifi_苹果iphone12无法连接wifi怎么回事 解决方法分享
  11. matlab 注释多行方法
  12. 自己动手写ORB特征
  13. java 通用权限管理_通用权限管理设计篇(一)
  14. 利用SUS实现自动补丁管理
  15. Windows故障恢复控制台教程
  16. 简单图文解释冯诺依曼体系结构(通俗易懂版)
  17. Android APP热更新中的插件化(Hook技术:反射或动态代理),Demo (2)
  18. 国会大厦骚乱,与一家极不可靠的面部识别公司……
  19. VS code之代码格式化快捷键
  20. 可汗学院的数学从零开始学习顺序?

热门文章

  1. Centos8.3上安装Ceph Pacific 16.2.5,并实现双网络和SSD加速
  2. 行星减速机构造工作原理
  3. 没有足够的内存继续执行程序。 (mscorlib)
  4. lua中pairs和ipairs的区别
  5. Optitrack下通过mavros实现offbord控制
  6. 异常检测 Deep One-Class Classification
  7. Mysql的sql优化方法
  8. linux中的inode文件编号和软硬链接
  9. MySQL Zero date value prohibited 问题解析
  10. Data truncation: Incorrect date value这个问题解决方式