**转载请注明作者和出处:**http://blog.csdn.net/c406495762
运行平台: Windows
Python版本: Python3.x
IDE: Sublime text3
个人网站:http://cuijiahua.com


文章目录

    • @[toc]
    • 1.1 k-近邻法简介
    • 1.2 距离度量
      • 1.3.1 准备数据集
  • 二 k-近邻算法实战之约会网站配对效果判定

#一 简单k-近邻算法

本文将从k-邻近算法的思想开始讲起,使用python3一步一步编写代码进行实战训练。并且,我也提供了相应的数据集,对代码进行了详细的注释。除此之外,本文也对sklearn实现k-邻近算法的方法进行了讲解。实战实例:电影类别分类、约会网站配对效果判定、手写数字识别。

本文出现的所有代码和数据集,均可在我的github上下载,欢迎Follow、Star:https://github.com/Jack-Cherish/Machine-Learning/tree/master/kNN

更多精彩内容,尽在微信公众号,欢迎您的关注:

1.1 k-近邻法简介

k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

举个简单的例子,我们可以使用k-近邻算法分类一个电影是爱情片还是动作片。

电影名称 打斗镜头 接吻镜头 电影类型
电影1 1 101 爱情片
电影2 5 89 爱情片
电影3 108 5 动作片
电影4 115 8 动作片
表1.1 每部电影的打斗镜头数、接吻镜头数以及电影类型

表1.1就是我们已有的数据集合,也就是训练样本集。这个数据集有两个特征,即打斗镜头数和接吻镜头数。除此之外,我们也知道每个电影的所属类型,即分类标签。用肉眼粗略地观察,接吻镜头多的,是爱情片。打斗镜头多的,是动作片。以我们多年的看片经验,这个分类还算合理。如果现在给我一部电影,你告诉我这个电影打斗镜头数和接吻镜头数。不告诉我这个电影类型,我可以根据你给我的信息进行判断,这个电影是属于爱情片还是动作片。而k-近邻算法也可以像我们人一样做到这一点,不同的地方在于,我们的经验更"牛逼",而k-邻近算法是靠已有的数据。比如,你告诉我这个电影打斗镜头数为2,接吻镜头数为102,我的经验会告诉你这个是爱情片,k-近邻算法也会告诉你这个是爱情片。你又告诉我另一个电影打斗镜头数为49,接吻镜头数为51,我"邪恶"的经验可能会告诉你,这有可能是个"爱情动作片",画面太美,我不敢想象。 (如果说,你不知道"爱情动作片"是什么?请评论留言与我联系,我需要你这样像我一样纯洁的朋友。) 但是k-近邻算法不会告诉你这些,因为在它的眼里,电影类型只有爱情片和动作片,它会提取样本集中特征最相似数据(最邻近)的分类标签,得到的结果可能是爱情片,也可能是动作片,但绝不会是"爱情动作片"。当然,这些取决于数据集的大小以及最近邻的判断标准等因素。

1.2 距离度量

我们已经知道k-近邻算法根据特征比较,然后提取样本集中特征最相似数据(最邻近)的分类标签。那么,如何进行比较呢?比如,我们还是以表1.1为例,怎么判断红色圆点标记的电影所属的类别呢?如图1.1所示。

图1.1 电影分类

我们可以从散点图大致推断,这个红色圆点标记的电影可能属于动作片,因为距离已知的那两个动作片的圆点更近。k-近邻算法用什么方法进行判断呢?没错,就是距离度量。这个电影分类的例子有2个特征,也就是在2维实数向量空间,可以使用我们高中学过的两点距离公式计算距离,如图1.2所示。

图1.2 两点距离公式

通过计算,我们可以得到如下结果:

  • (101,20)->动作片(108,5)的距离约为16.55
  • (101,20)->动作片(115,8)的距离约为18.44
  • (101,20)->爱情片(5,89)的距离约为118.22
  • (101,20)->爱情片(1,101)的距离约为128.69

通过计算可知,红色圆点标记的电影到动作片 (108,5)的距离最近,为16.55。如果算法直接根据这个结果,判断该红色圆点标记的电影为动作片,这个算法就是最近邻算法,而非k-近邻算法。那么k-邻近算法是什么呢?k-近邻算法步骤如下:

  1. 计算已知类别数据集中的点与当前点之间的距离;
  2. 按照距离递增次序排序;
  3. 选取与当前点距离最小的k个点;
  4. 确定前k个点所在类别的出现频率;
  5. 返回前k个点所出现频率最高的类别作为当前点的预测分类。

比如,现在我这个k值取3,那么在电影例子中,按距离依次排序的三个点分别是动作片(108,5)、动作片(115,8)、爱情片(5,89)。在这三个点中,动作片出现的频率为三分之二,爱情片出现的频率为三分之一,所以该红色圆点标记的电影为动作片。这个判别过程就是k-近邻算法。

##1.3 Python3代码实现

我们已经知道了k-近邻算法的原理,那么接下来就是使用Python3实现该算法,依然以电影分类为例。

1.3.1 准备数据集

对于表1.1中的数据,我们可以使用numpy直接创建,代码如下:

# -*- coding: UTF-8 -*-
import numpy as np"""
函数说明:创建数据集Parameters:无
Returns:group - 数据集labels - 分类标签
Modify:2017-07-13
"""
def createDataSet():#四组二维特征group = np.array([[1,101],[5,89],[108,5],[115,8]])#四组特征的标签labels = ['爱情片','爱情片','动作片','动作片']return group, labels
if __name__ == '__main__':#创建数据集group, labels = createDataSet()#打印数据集print(group)print(labels)

运行结果,如图1.3所示:

图1.3 运行结果

###1.3.2 k-近邻算法

根据两点距离公式,计算距离,选择距离最小的前k个点,并返回分类结果。

# -*- coding: UTF-8 -*-
import numpy as np
import operator"""
函数说明:kNN算法,分类器Parameters:inX - 用于分类的数据(测试集)dataSet - 用于训练的数据(训练集)labes - 分类标签k - kNN算法参数,选择距离最小的k个点
Returns:sortedClassCount[0][0] - 分类结果Modify:2017-07-13
"""
def classify0(inX, dataSet, labels, k):#numpy函数shape[0]返回dataSet的行数dataSetSize = dataSet.shape[0]#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet#二维特征相减后平方sqDiffMat = diffMat**2#sum()所有元素相加,sum(0)列相加,sum(1)行相加sqDistances = sqDiffMat.sum(axis=1)#开方,计算出距离distances = sqDistances**0.5#返回distances中元素从小到大排序后的索引值sortedDistIndices = distances.argsort()#定一个记录类别次数的字典classCount = {}for i in range(k):#取出前k个元素的类别voteIlabel = labels[sortedDistIndices[i]]#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。#计算类别次数classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1#python3中用items()替换python2中的iteritems()#key=operator.itemgetter(1)根据字典的值进行排序#key=operator.itemgetter(0)根据字典的键进行排序#reverse降序排序字典sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)#返回次数最多的类别,即所要分类的类别return sortedClassCount[0][0]

###1.3.3 整体代码

这里预测红色圆点标记的电影(101,20)的类别,K-NN的k值为3。创建kNN_test01.py文件,编写代码如下:

# -*- coding: UTF-8 -*-
import numpy as np
import operator"""
函数说明:创建数据集Parameters:无
Returns:group - 数据集labels - 分类标签
Modify:2017-07-13
"""
def createDataSet():#四组二维特征group = np.array([[1,101],[5,89],[108,5],[115,8]])#四组特征的标签labels = ['爱情片','爱情片','动作片','动作片']return group, labels"""
函数说明:kNN算法,分类器Parameters:inX - 用于分类的数据(测试集)dataSet - 用于训练的数据(训练集)labes - 分类标签k - kNN算法参数,选择距离最小的k个点
Returns:sortedClassCount[0][0] - 分类结果Modify:2017-07-13
"""
def classify0(inX, dataSet, labels, k):#numpy函数shape[0]返回dataSet的行数dataSetSize = dataSet.shape[0]#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet#二维特征相减后平方sqDiffMat = diffMat**2#sum()所有元素相加,sum(0)列相加,sum(1)行相加sqDistances = sqDiffMat.sum(axis=1)#开方,计算出距离distances = sqDistances**0.5#返回distances中元素从小到大排序后的索引值sortedDistIndices = distances.argsort()#定一个记录类别次数的字典classCount = {}for i in range(k):#取出前k个元素的类别voteIlabel = labels[sortedDistIndices[i]]#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。#计算类别次数classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1#python3中用items()替换python2中的iteritems()#key=operator.itemgetter(1)根据字典的值进行排序#key=operator.itemgetter(0)根据字典的键进行排序#reverse降序排序字典sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)#返回次数最多的类别,即所要分类的类别return sortedClassCount[0][0]if __name__ == '__main__':#创建数据集group, labels = createDataSet()#测试集test = [101,20]#kNN分类test_class = classify0(test, group, labels, 3)#打印分类结果print(test_class)

运行结果,如图1.4所示:

图1.4 运行结果

可以看到,分类结果根据我们的"经验",是正确的,尽管这种分类比较耗时,用时1.4s。

到这里,也许有人早已经发现,电影例子中的特征是2维的,这样的距离度量可以用两 点距离公式计算,但是如果是更高维的呢?对,没错。我们可以用欧氏距离(也称欧几里德度量),如图1.5所示。我们高中所学的两点距离公式就是欧氏距离在二维空间上的公式,也就是欧氏距离的n的值为2的情况。

图1.5 欧氏距离公式

看到这里,有人可能会问:“分类器何种情况下会出错?”或者“答案是否总是正确的?”答案是否定的,分类器并不会得到百分百正确的结果,我们可以使用多种方法检测分类器的正确率。此外分类器的性能也会受到多种因素的影响,如分类器设置和数据集等。不同的算法在不同数据集上的表现可能完全不同。为了测试分类器的效果,我们可以使用已知答案的数据,当然答案不能告诉分类器,检验分类器给出的结果是否符合预期结果。通过大量的测试数据,我们可以得到分类器的错误率-分类器给出错误结果的次数除以测试执行的总数。错误率是常用的评估方法,主要用于评估分类器在某个数据集上的执行效果。完美分类器的错误率为0,最差分类器的错误率是1.0。同时,我们也不难发现,k-近邻算法没有进行数据的训练,直接使用未知的数据与已知的数据进行比较,得到结果。因此,可以说k-邻近算法不具有显式的学习过程。


二 k-近邻算法实战之约会网站配对效果判定

上一小结学习了简单的k-近邻算法的实现方法,但是这并不是完整的k-近邻算法流程,k-近邻算法的一般流程:

  1. 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据。一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理。
  2. 准备数据:使用Python解析、预处理数据。
  3. 分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化。
  4. 测试算法:计算错误率。
  5. 使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类。

已经了解了k-近邻算法的一般流程,下面开始进入实战内容。

##2.1 实战背景

海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的任选,但她并不是喜欢每一个人。经过一番总结,她发现自己交往过的人可以进行如下分类:

  • 不喜欢的人
  • 魅力一般的人
  • 极具魅力的人

海伦收集约会数据已经有了一段时间,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共有1000行。

datingTestSet.txt数据下载

海伦收集的样本数据主要包含以下3种特征:

  • 每年获得的飞行常客里程数
  • 玩视频游戏所消耗时间百分比
  • 每周消费的冰淇淋公升数

这里不得不吐槽一句,海伦是个小吃货啊,冰淇淋公斤数都影响自己择偶标准。打开txt文本文件,数据格式如图2.1所示。

图2.1 datingTestSet.txt格式

##2.2 准备数据:数据解析

在将上述特征数据输入到分类器前,必须将待处理的数据的格式改变为分类器可以接收的格式。分类器接收的数据是什么格式的?从上小结已经知道,要将数据分类两部分,即特征矩阵和对应的分类标签向量。在kNN_test02.py文件中创建名为file2matrix的函数,以此来处理输入格式问题。 将datingTestSet.txt放到与kNN_test02.py相同目录下,编写代码如下:

# -*- coding: UTF-8 -*-
import numpy as np
"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力Parameters:filename - 文件名
Returns:returnMat - 特征矩阵classLabelVector - 分类Label向量Modify:2017-03-24
"""
def file2matrix(filename):#打开文件fr = open(filename)#读取文件所有内容arrayOLines = fr.readlines()#得到文件行数numberOfLines = len(arrayOLines)#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列returnMat = np.zeros((numberOfLines,3))#返回的分类标签向量classLabelVector = []#行的索引值index = 0for line in arrayOLines:#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')line = line.strip()#使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。listFromLine = line.split('\t')#将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵returnMat[index,:] = listFromLine[0:3]#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力if listFromLine[-1] == 'didntLike':classLabelVector.append(1)elif listFromLine[-1] == 'smallDoses':classLabelVector.append(2)elif listFromLine[-1] == 'largeDoses':classLabelVector.append(3)index += 1return returnMat, classLabelVector"""
函数说明:main函数Parameters:无
Returns:无Modify:2017-03-24
"""
if __name__ == '__main__':#打开的文件名filename = "datingTestSet.txt"#打开并处理数据datingDataMat, datingLabels = file2matrix(filename)print(datingDataMat)print(datingLabels)

运行上述代码,得到的数据解析结果如图2.2所示。

图2.2 数据解析结果

可以看到,我们已经顺利导入数据,并对数据进行解析,格式化为分类器需要的数据格式。接着我们需要了解数据的真正含义。可以通过友好、直观的图形化的方式观察数据。

##2.3 分析数据:数据可视化

在kNN_test02.py文件中编写名为showdatas的函数,用来将数据可视化。编写代码如下:

# -*- coding: UTF-8 -*-from matplotlib.font_manager import FontProperties
import matplotlib.lines as mlines
import matplotlib.pyplot as plt
import numpy as np"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力Parameters:filename - 文件名
Returns:returnMat - 特征矩阵classLabelVector - 分类Label向量Modify:2017-03-24
"""
def file2matrix(filename):#打开文件fr = open(filename)#读取文件所有内容arrayOLines = fr.readlines()#得到文件行数numberOfLines = len(arrayOLines)#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列returnMat = np.zeros((numberOfLines,3))#返回的分类标签向量classLabelVector = []#行的索引值index = 0for line in arrayOLines:#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')line = line.strip()#使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。listFromLine = line.split('\t')#将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵returnMat[index,:] = listFromLine[0:3]#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力if listFromLine[-1] == 'didntLike':classLabelVector.append(1)elif listFromLine[-1] == 'smallDoses':classLabelVector.append(2)elif listFromLine[-1] == 'largeDoses':classLabelVector.append(3)index += 1return returnMat, classLabelVector"""
函数说明:可视化数据Parameters:datingDataMat - 特征矩阵datingLabels - 分类Label
Returns:无
Modify:2017-03-24
"""
def showdatas(datingDataMat, datingLabels):#设置汉字格式font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)#将fig画布分隔成1行1列,不共享x轴和y轴,fig画布的大小为(13,8)#当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8))numberOfLabels = len(datingLabels)LabelsColors = []for i in datingLabels:if i == 1:LabelsColors.append('black')if i == 2:LabelsColors.append('orange')if i == 3:LabelsColors.append('red')#画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5)#设置标题,x轴label,y轴labelaxs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比',FontProperties=font)axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占',FontProperties=font)plt.setp(axs0_title_text, size=9, weight='bold', color='red') plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')#画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)#设置标题,x轴label,y轴labelaxs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数',FontProperties=font)axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)plt.setp(axs1_title_text, size=9, weight='bold', color='red') plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')#画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)#设置标题,x轴label,y轴labelaxs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数',FontProperties=font)axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比',FontProperties=font)axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)plt.setp(axs2_title_text, size=9, weight='bold', color='red') plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')#设置图例didntLike = mlines.Line2D([], [], color='black', marker='.',markersize=6, label='didntLike')smallDoses = mlines.Line2D([], [], color='orange', marker='.',markersize=6, label='smallDoses')largeDoses = mlines.Line2D([], [], color='red', marker='.',markersize=6, label='largeDoses')#添加图例axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses])axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses])axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses])#显示图片plt.show()"""
函数说明:main函数Parameters:无
Returns:无Modify:2017-03-24
"""
if __name__ == '__main__':#打开的文件名filename = "datingTestSet.txt"#打开并处理数据datingDataMat, datingLabels = file2matrix(filename)showdatas(datingDataMat, datingLabels)

运行上述代码,可以看到可视化结果如图2.3所示。

图2.3 数据可视化结果 [点击查看大图](https://img-blog.csdn.net/20170715153336117?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYzQwNjQ5NTc2Mg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)

通过数据可以很直观的发现数据的规律,比如以玩游戏所消耗时间占比与每年获得的飞行常客里程数,只考虑这二维的特征信息,给我的感觉就是海伦喜欢有生活质量的男人。为什么这么说呢?每年获得的飞行常客里程数表明,海伦喜欢能享受飞行常客奖励计划的男人,但是不能经常坐飞机,疲于奔波,满世界飞。同时,这个男人也要玩视频游戏,并且占一定时间比例。能到处飞,又能经常玩游戏的男人是什么样的男人?很显然,有生活质量,并且生活悠闲的人。我的分析,仅仅是通过可视化的数据总结的个人看法。我想,每个人的感受应该也是不尽相同。

##2.4 准备数据:数据归一化

表2.1给出了四组样本,如果想要计算样本3和样本4之间的距离,可以使用欧拉公式计算。

| 样本 | 玩游戏所耗时间百分比 | 每年获得的飞行常用里程数 | 每周消费的冰淇淋公升数 | 样本分类 |
| :---------: |:---------

Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文)相关推荐

  1. 统计学方法机器学习实战(二) K近邻算法

    目录 一.前言: 二.理论难点: 距离度量: 欧式距离: 三.数据可视化 四.数据归一化: 五.代码实践: 理论补充 实验一: 海伦约会 实验二 使用sklearn实现knn 六.总结 1.kNN算法 ...

  2. 《机器学习实战》——kNN(k近邻算法)

    原作者写的太好了,包括排版都特别整齐(其中有一个错误之处就是在约会网站配对效果判定的时候,列表顺序不对,导致结果有误,这里我已做出修改) 原作者和出处:http://blog.csdn.net/c40 ...

  3. 机器学习实战学习笔记 一 k-近邻算法

    k-近邻算法很简单,这里就不赘述了,主要看一下python实现这个算法的一些细节.下面是书中给出的算法的具体实现. def clssify(inX,dataset,label,k):#计算距离data ...

  4. 机器学习第七章之K近邻算法

    K近邻算法(了解) 7.1 K近邻算法 7.1.1 K近邻算法的原理介绍 7.1.2 K近邻算法的计算步骤及代码实现 7.2 数据预处理之数据归一化 7.2.1 min-max标准化 7.2.2 Z- ...

  5. 01. 机器学习笔记01——K近邻算法 , CV_example

    K近邻算法(K-nearest neighbor,KNN算法) 李航博士<统计学习方法> 最近邻(k-Nearest Neighbors,KNN)算法是一种分类算法 应用场景:字符识别.文 ...

  6. 【机器学习】原理与实现k近邻算法

    文章目录 系列文章目录 前言 一.k近邻算法是什么? 二.使用步骤 1.引入库 2.读入数据 总结 前言 随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了 ...

  7. 机器学习入门 | 【01】K近邻算法

    文章目录 1.K近邻算法[通过你的邻居来判断你的类别] 1.简介 2.电影案例分析 3.api的初步使用 3.1 一般的流程: 3.2 sklearn模块介绍 3.3 API的使用 3.4 距离度量 ...

  8. 统计学习方法笔记(一)-k近邻算法原理及python实现

    k近邻法 k近邻算法 算法原理 距离度量 距离度量python实现 k近邻算法实现 案例地址 k近邻算法 kkk近邻法(kkk-NN)是一种基本分类和回归方法. 算法原理 输入:训练集 T={(x1, ...

  9. k近邻算法python解读_Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文)...

    运行平台: Windows IDE: Sublime text3 一.简单k-近邻算法 本文将从k-近邻 1.k-近邻法简介 k近邻法(k-nearest neighbor, k-NN)是1967年由 ...

最新文章

  1. 现金流量表整理及开发
  2. 【JVM调优工具篇】使用JProfiler追踪GC Roots溯源
  3. TensorFlow 调用预训练好的模型—— Python 实现
  4. 一条命令扫描局域网所以IP地址和MAC地址
  5. 用前考虑清楚,伤敌一千自损八百的字体反爬虫
  6. NYOJ458 - 小光棍数
  7. (2)通过输入参数(测量数据)构建三维体模型(01)
  8. 鱼C论坛_VIP二号光盘
  9. 江西省萍乡市谷歌高清卫星地图下载
  10. 逆水寒ol服务器维修,逆水寒OL:官方再开多个服务器玩家关心的问题却是一个字_...
  11. java IO流分类
  12. html做彩色方格,超级炫酷,美图秀秀制作超漂亮彩色格子字图文教程
  13. 计算机毕业设计论文资料查找
  14. 数字图像处理(8):实现FFT快速算法(C语言)
  15. 高通平台批量解析SN号的脚本
  16. Android权限Uri.parse的几种用法 (学习日记)
  17. 用计算机亩换算成平方,平方换算亩计算器(农村土地面积计算公式)
  18. [jzoj 4249] 【五校联考7day1】游戏 {贪心/斜率优化}
  19. 九零后看什么网络电视
  20. leetcode98.验证二叉搜索树 Python

热门文章

  1. 三级缓存(不是CPU的概念,而是一种技术上逻辑容错处理方案)
  2. 推动SOA演进 锐易特RES Infomatic™信息整合套件全面升级
  3. 普通小灯改造WiFi控制灯代码
  4. 刚学C语言和python,请多多指教
  5. 诺顿12 免许可 英文版 Symantec Endpoint Protection 12.1.671.4971 下载
  6. Simulink 频谱分析工具
  7. 树莓派+USB摄像头+yeelink实现云监控
  8. Ajax使用的五步法
  9. MacOS系统下的桌面整理
  10. html中ct一般指什么颜色,第七章 CT试题(录入)