文章目录

  • 一、minist数据集的特点
  • 二、思路
  • 三、原理介绍
  • 四、实现过程
    • 1、代码:
  • 五、分析总结

一、minist数据集的特点

minist数据集可以在 http://yann.lecun.com/exdb/mnist/ 获取,它包含以下四个部分:

t10k-images-idx3-ubyte:包含10000个样本
t10k-labels-idx1-ubyte:包含10000个标签
train-images-idx3-ubyte:包含60000个样本
train-labels-idx1-ubyte:包含60000个标签

MNIST 数据集来自美国国家标准与技术研究所,National Institute of Standards and Technology(NIST)。 训练集 (training set) 由来自 250 个不同人手写的数字构成,其中 50% 是高中学生,50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set)也是同样比例的手写数字数据。
如图为minist数据集的范本:

二、思路

把图片当成一枚枚像素来看,下图为手写体数字1的图片,它在计算机中的存储其实是一个二维矩阵,每个元素都是0~1之间的数字,0代表白色,1代表黑色,小数代表某种程度的灰色。

对于minist数据集中的图片来说,我们只要把它当成长度为784的向量就可以了(忽略它的二维结构,28*28=784)。我们的任务就是让这个向量经过一个函数后输出一个类别。就是下边这个函数,称为softmax分类器。

这个式子里的图片向量的长度只有3,用x表示。乘上一个系数矩阵W,再加上一个列向量b,然后输入softmax函数,输出就是分类结果y。w是一个权重矩阵,w的每一行与整个图片像素相乘的结果是一个分数score,分数越高表示图片越接近改行代表的类别。因此,Wx + b的结果其实是一个列向量,每一行代表图片属于该类的评分。通常分类的结果并非评分,而是概率,表示有多大的概率属于此类别。因此,softmax函数的作用就是把评分转换成概率,并使总的概率为1.

三、原理介绍

卷积神经网络(Convolutional Neural Networks/CNNS/ConvNets)与普通神经网络非常相似,他们都由可学习的权重和偏置常量(biases)的神经元组成。每个神经元都接收一些输入,并做一些点积计算,输出是每个分类的分数,普通神经网络里的一些计算技巧到这里依旧适用。
卷积神经网络利用输入是图片的特点,把神经元设计成三个维度:width,height,depth(注意这个depth不是神经网络的深度,而是用来描述神经元的)。比如输入的图片大小是32323(rgb),那么输入神经元也就具有32323的维度。
一个卷积神经网络由很多层组成,它们的输入是三维的,输出也是三维的,有的层有参数,有的层不需要参数。
卷积神经网络通常包含以下几种层:
数据输入层:
该层要做的处理主要是对原始图像数据进行预处理,其中包括:
• 去均值:把输入数据各个维度都中心化为0,如下图所示,其目的就是把样本的中心拉回到坐标系原点上。
• 归一化:幅度归一化到同样的范围,如下所示,即减少各维度数据取值范围的差异而带来的干扰,比如,我们有两个维度的特征A和B,A范围是0到10,而B范围是0到10000,如果直接使用这两个特征是有问题的,好的做法就是归一化,即A和B的数据都变为0到1的范围。
• PCA/白化:用PCA降维;白化是对数据各个特征轴上的幅度归一化
卷积层

卷积神经网路中每层卷积层由若干卷积单元组成,每个卷积单元的参数都是通过反向传播算法优化得到的。卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网络能从低级特征中迭代提取更复杂的特征。

下面的动态图形象地展示了卷积层的计算过程:

线性整流层(Rectified Linear Units layer, ReLU layer),这一层神经的活性化函数(Activation function)使用线性整流(Rectified Linear Units, ReLU)f(x)=max(0,x)

把卷积层输出结果做非线性映射。

池化层(Pooling layer),通常在卷积层之后会得到维度很大的特征,将特征切成几个区域,取其最大值或平均值,得到新的、维度较小的特征。

池化层的具体作用。

1.特征不变性,也就是我们在图像处理中经常提到的特征的尺度不变性,池化操作就是图像的resize,平时一张狗的图像被缩小了一倍我们还能认出这是一张狗的照片,这说明这张图像中仍保留着狗最重要的特征,我们一看就能判断图像中画的是一只狗,图像压缩时去掉的信息只是一些无关紧要的信息,而留下的信息则是具有尺度不变性的特征,是最能表达图像的特征。

2.特征降维,我们知道一幅图像含有的信息是很大的,特征也很多,但是有些信息对于我们做图像任务时没有太多用途或者有重复,我们可以把这类冗余信息去除,把最重要的特征抽取出来,这也是池化操作的一大作用。

3.在一定程度上防止过拟合,更方便优化。

池化层用的方法有Max pooling 和 average pooling,而实际用的较多的是Max pooling。
全连接层( Fully-Connected layer), 把所有局部特征结合变成全局特征,用来计算最后每一类的得分。

四、实现过程

1、代码:

trainMinistFromPackage.py(训练数据)

import tensorflow as tf
import numpy as np # 习惯加上这句,但这边没有用到
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as plt
mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)sess = tf.InteractiveSession()# 1、权重初始化,偏置初始化
# 为了创建这个模型 ,我们需要创建大量的权重和偏置项
# 为了不在建立模型的时候反复操作,定义两个函数用于初始化
def weight_variable(shape):initial = tf.truncated_normal(shape,stddev=0.1)#正太分布的标准差设为0.1return tf.Variable(initial)
def bias_variable(shape):initial = tf.constant(0.1,shape=shape)return tf.Variable(initial)# 2、卷积层和池化层也是接下来要重复使用的,因此也为它们定义创建函数
# tf.nn.conv2d是Tensorflow中的二维卷积函数,参数x是输入,w是卷积的参数
# strides代表卷积模块移动的步长,都是1代表会不遗漏地划过图片的每一个点,padding代表边界的处理方式
# padding = 'SAME',表示padding后卷积的图与原图尺寸一致,激活函数relu()
# tf.nn.max_pool是Tensorflow中的最大池化函数,这里使用2 * 2 的最大池化,即将2 * 2 的像素降为1 * 1的像素
# 最大池化会保留原像素块中灰度值最高的那一个像素,即保留最显著的特征,因为希望整体缩小图片尺寸
# ksize:池化窗口的大小,取一个四维向量,一般是[1,height,width,1]
# 因为我们不想再batch和channel上做池化,一般也是[1,stride,stride,1]
def conv2d(x, w):return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 保证输出和输入是同样大小
def max_pool_2x2(x):return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')# 3、参数
# 这里的x,y_并不是特定的值,它们只是一个占位符,可以在TensorFlow运行某一计算时根据该占位符输入具体的值
# 输入图片x是一个2维的浮点数张量,这里分配给它的shape为[None, 784],784是一张展平的MNIST图片的维度
# None 表示其值的大小不定,在这里作为第1个维度值,用以指代batch的大小,means x 的数量不定
# 输出类别y_也是一个2维张量,其中每一行为一个10维的one_hot向量,用于代表某一MNIST图片的类别
x = tf.placeholder(tf.float32, [None, 784], name="x-input")
y_ = tf.placeholder(tf.float32, [None, 10]) # 10列# 4、第一层卷积,它由一个卷积接一个max pooling完成
# 张量形状[5,5,1,32]代表卷积核尺寸为5 * 5,1个颜色通道,32个通道数目
w_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32]) # 每个输出通道都有一个对应的偏置量
# 我们把x变成一个4d 向量其第2、第3维对应图片的宽、高,最后一维代表图片的颜色通道数(灰度图的通道数为1,如果是RGB彩色图,则为3)
x_image = tf.reshape(x, [-1, 28, 28, 1])
# 因为只有一个颜色通道,故最终尺寸为[-1,28,28,1],前面的-1代表样本数量不固定,最后的1代表颜色通道数量
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1) # 使用conv2d函数进行卷积操作,非线性处理
h_pool1 = max_pool_2x2(h_conv1)                          # 对卷积的输出结果进行池化操作# 5、第二个和第一个一样,是为了构建一个更深的网络,把几个类似的堆叠起来
# 第二层中,每个5 * 5 的卷积核会得到64个特征
w_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)# 输入的是第一层池化的结果
h_pool2 = max_pool_2x2(h_conv2)# 6、密集连接层
# 图片尺寸减小到7 * 7,加入一个有1024个神经元的全连接层,
# 把池化层输出的张量reshape(此函数可以重新调整矩阵的行、列、维数)成一些向量,加上偏置,然后对其使用Relu激活函数
w_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1,7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)# 7、使用dropout,防止过度拟合
# dropout是在神经网络里面使用的方法,以此来防止过拟合
# 用一个placeholder来代表一个神经元的输出
# tf.nn.dropout操作除了可以屏蔽神经元的输出外,
# 还会自动处理神经元输出值的scale,所以用dropout的时候可以不用考虑scale
keep_prob = tf.placeholder(tf.float32, name="keep_prob")# placeholder是占位符
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)# 8、输出层,最后添加一个softmax层
w_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2) + b_fc2, name="y-pred")# 9、训练和评估模型
# 损失函数是目标类别和预测类别之间的交叉熵
# 参数keep_prob控制dropout比例,然后每100次迭代输出一次日志
cross_entropy = tf.reduce_sum(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 预测结果与真实值的一致性,这里产生的是一个bool型的向量
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
# 将bool型转换成float型,然后求平均值,即正确的比例
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 初始化所有变量,在2017年3月2号以后,用 tf.global_variables_initializer()替代tf.initialize_all_variables()
sess.run(tf.initialize_all_variables())# 保存最后一个模型
saver = tf.train.Saver(max_to_keep=1)for i in range(1000):batch = mnist.train.next_batch(64)if i % 100 == 0:train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1],keep_prob: 1.0})print("Step %d ,training accuracy %g" % (i, train_accuracy))train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print("test accuracy %f " % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))# 保存模型于文件夹
saver.save(sess,"save/model")

运行结果:

demp.py(生成界面,测试检测效果)

import tensorflow as tf
import numpy as np
import tkinter as tk
from tkinter import filedialog
from PIL import Image, ImageTk
from tkinter import filedialog
import timedef creat_windows():win = tk.Tk() # 创建窗口sw = win.winfo_screenwidth()sh = win.winfo_screenheight()ww, wh = 400, 450x, y = (sw-ww)/2, (sh-wh)/2win.geometry("%dx%d+%d+%d"%(ww, wh, x, y-40)) # 居中放置窗口win.title('手写体识别') # 窗口命名bg1_open = Image.open("timg.jpg").resize((300, 300))bg1 = ImageTk.PhotoImage(bg1_open)canvas = tk.Label(win, image=bg1)canvas.pack()var = tk.StringVar() # 创建变量文字var.set('')tk.Label(win, textvariable=var, bg='#C1FFC1', font=('宋体', 21), width=20, height=2).pack()tk.Button(win, text='选择图片', width=20, height=2, bg='#FF8C00', command=lambda:main(var, canvas), font=('圆体', 10)).pack()win.mainloop()def main(var, canvas):file_path = filedialog.askopenfilename()bg1_open = Image.open(file_path).resize((28, 28))pic = np.array(bg1_open).reshape(784,)bg1_resize = bg1_open.resize((300, 300))bg1 = ImageTk.PhotoImage(bg1_resize)canvas.configure(image=bg1)canvas.image = bg1init = tf.global_variables_initializer()with tf.Session() as sess:sess.run(init)saver = tf.train.import_meta_graph('save/model.meta')  # 载入模型结构saver.restore(sess, 'save/model')  # 载入模型参数graph = tf.get_default_graph()       # 加载计算图x = graph.get_tensor_by_name("x-input:0")  # 从模型中读取占位符变量keep_prob = graph.get_tensor_by_name("keep_prob:0")y_conv = graph.get_tensor_by_name("y-pred:0")  # 关键的一句  从模型中读取占位符变量prediction = tf.argmax(y_conv, 1)predint = prediction.eval(feed_dict={x: [pic], keep_prob: 1.0}, session=sess)  # feed_dict输入数据给placeholder占位符answer = str(predint[0])var.set("预测的结果是:" + answer)if __name__ == "__main__":creat_windows()

运行结果:

实验中每次batch的数量为100,batch表示一次迭代训练数据量的大小;batchsize越小,一个batch中的随机性越大,越不易收敛。然而batchsize越小,速度越快,权值更新越频繁;且具有随机性,对于非凸损失函数来讲,更便于寻找全局最优。从这个角度看,收敛更快,更容易达到全局最优。batchsize越大,越能够表征全体数据的特征,其确定的梯度下降方向越准确,(因此收敛越快),且迭代次数少,总体速度更快。
因为实验结果的手写体识别正确率为:

这里就不在演示手写体测试正确的例子了,我们来看一下,识别失败的例子吧。
(1)下图是‘1’,却识别成了‘8’


(2)下图是‘2’,却识别成了‘7’

(3)下图是‘2’却识别成了‘3’
(4)下图是‘4’却识别成了‘9’

(5)下图是‘5’,却识别成了‘8’

(7)下图是‘6’,却识别成了‘8’

五、分析总结

(1)通过上面识别错误的例子可以看出,该方法对手写体的规范性有着较高的要求,不规范或者‘歪瓜裂枣’的数字往往很容易识别出错。
(2)实验中每次batch的数量为100,batch表示一次迭代训练数据量的大小;batchsize越小,一个batch中的随机性越大,越不易收敛,batchsize越大,越能够表征全体数据的特征,其确定的梯度下降方向越准确,(因此收敛越快),且迭代次数少,总体速度更快。

Python计算机视觉_实现手写体识别相关推荐

  1. 手写体识别python,python使用KNN算法手写体识别

    本文实例为大家分享了用KNN算法手写体识别的具体代码,供大家参考,具体内容如下 #!/usr/bin/python #coding:utf-8 import numpy as np import op ...

  2. python计算机视觉--基于(BOW)的图像检索与识别

    目录 前言 一.基本原理 1.1 图像分类简介 1.2 Bag-of-words模型 1.3 Bag-of-features模型 1.4  Bag-of-features算法 1.5  Bag-of- ...

  3. python模拟手写笔迹_pytorch实现MNIST手写体识别

    本文实例为大家分享了pytorch实现MNIST手写体识别的具体代码,供大家参考,具体内容如下 实验环境 pytorch 1.4 Windows 10 python 3.7 cuda 10.1(我笔记 ...

  4. python神经网络案例——CNN卷积神经网络实现mnist手写体识别

    分享一个朋友的人工智能教程.零基础!通俗易懂!风趣幽默!还带黄段子!大家可以看看是否对自己有帮助:点击打开 全栈工程师开发手册 (作者:栾鹏) python教程全解 CNN卷积神经网络的理论教程参考 ...

  5. python神经网络案例——FC全连接神经网络实现mnist手写体识别

    全栈工程师开发手册 (作者:栾鹏) python教程全解 FC全连接神经网络的理论教程参考 http://blog.csdn.net/luanpeng825485697/article/details ...

  6. python识别手写文字_Python3实现简单可学习的手写体识别(实例讲解)

    1.前言 版本:Python3.6.1 + PyQt5 + SQL Server 2012 以前一直觉得,机器学习.手写体识别这种程序都是很高大上很难的,直到偶然看到了这个视频,听了老师讲的思路后,瞬 ...

  7. 手写体识别代码_【玩转腾讯云】使用API快速构建文字识别小工具之唐诗识别

    本篇推文共计1500个字,阅读时间约3分钟. 腾讯云-腾讯倾力打造的云计算品牌,以卓越科技能力助力各行各业数字化转型,为全球客户提供领先的云计算.大数据.人工智能服务,以及定制化行业解决方案.具体包括 ...

  8. python机器学习手写字体识别_Python 3 利用机器学习模型 进行手写体数字检测

    0.引言 介绍了如何生成手写体数字的数据,提取特征,借助 sklearn 机器学习模型建模,进行识别手写体数字 1-9 模型的建立和测试. 用到的几种模型: 1. LR,Logistic Regres ...

  9. Python 计算机视觉(十六)—— 图像和视频中的人脸识别

    参考的一些文章以及论文我都会给大家分享出来 -- 链接就贴在原文,论文我上传到资源中去,大家可以免费下载学习,如果当天资源区找不到论文,那就等等,可能正在审核,审核完后就可以下载了.大家一起学习,一起 ...

最新文章

  1. C# 开发微信扫码登录
  2. oracle最大值填充,Oracle sequence值到了最大值的处理
  3. if something reaches the top
  4. NYOJ 737 合并石子(一)
  5. Servlet_概述
  6. Linux多进程拷贝文件
  7. 【BZOJ1196】公路修建问题,二分+最小生成树
  8. mysql游标触发器批量_MySQL游标和触发器
  9. 【数据结构笔记27】树习题:完全二叉搜索树(Complete Binary Search Tree)
  10. AIX系统修改文件系统的方法
  11. 假短信截图在线生成器_10个超好玩的自动生成器
  12. Framework 修改默认输入法
  13. java socket 读取文件_java中ServerSocket读取文件流不是分行读取
  14. celebA数据集(StarGAN)分享
  15. 玩转华为数据中心交换机系列 | 汇总
  16. 如何用光盘映像文件重装服务器系统,光盘映像文件怎么安装,小编教你光盘映像文件怎么安装系统...
  17. Codeforces Round #806 (Div. 4)题解
  18. select中like与rlike的用法详解
  19. php字符串6,6.PHP字符串
  20. 关于用友T3 Automation错误(-2147024770)

热门文章

  1. 分享自制CAN工具【python源码】
  2. WAS 8.5在HP-UX Itanium上无法图形化安装启动IIM之解
  3. QT如何与xbox手柄连接
  4. 行测——逻辑推理——2复合命题推理
  5. 如何在小程序内使用流式布局实现动态相册效果?
  6. 用Java实现一个最简单的番茄钟
  7. nuxt项目实现将网页分享至微博、微信、和QQ
  8. 1.心灵鸡汤-英语句子
  9. 分享网易MuMu安卓模拟器 Mac版
  10. 私域运营系统的两个基础