Yager 合成公式

  Yager 合成公式去掉了 DS 合成公式中的归一化因子 11−k\frac{1}{1-k}1−k1​ ,并将冲突系数 kkk 分配给了辨识框架 Ω\OmegaΩ 对应的基本概率分配函数 m(Ω)m(\Omega)m(Ω)。公式定义如下: k=∑A1∩A2∩A3⋯=∅m1(A1)m2(A2)m3(A3)⋯k=\sum_{A_1\cap A_2\cap A_3\cdots=\emptyset}m_1(A_1)m_2(A_2)m_3(A_3)\cdotsk=A1​∩A2​∩A3​⋯=∅∑​m1​(A1​)m2​(A2​)m3​(A3​)⋯ m(∅)=0m(A)=∑A1∩A2∩A3⋯=Am1(A1)m2(A2)m3(A3)⋯,A≠∅,Ωm(Ω)=∑A1∩A2∩A3⋯=Ωm1(A1)m2(A2)m3(A3)⋯+k\begin{aligned} m(\emptyset)&=0 \\ \\ m(A)&=\sum_{A_1\cap A_2\cap A_3\cdots=A}m_1(A_1)m_2(A_2)m_3(A_3)\cdots,\quad A \neq\emptyset,\Omega \\ \\ m(\Omega)&=\sum_{A_1\cap A_2\cap A_3\cdots=\Omega}m_1(A_1)m_2(A_2)m_3(A_3)\cdots+k \\ \end{aligned}m(∅)m(A)m(Ω)​=0=A1​∩A2​∩A3​⋯=A∑​m1​(A1​)m2​(A2​)m3​(A3​)⋯,A​=∅,Ω=A1​∩A2​∩A3​⋯=Ω∑​m1​(A1​)m2​(A2​)m3​(A3​)⋯+k​

Example

Ω={A,B,C}m1:m1({A})=0.98,m1({B})=0.01,m1({C})=0.01m2:m2({A})=0,m2({B})=0.01,m2({C})=0.99m3:m3({A})=0.9,m3({B})=0,m3({C})=0.1\begin{aligned} &\Omega=\{A,B,C\} &\quad &\quad \\ &m_1:m_1(\{A\})=0.98,& m_1(\{B\})=0.01,\quad & m_1(\{C\})=0.01 \\ &m_2:m_2(\{A\})=0, & m_2(\{B\})=0.01,\quad & m_2(\{C\})=0.99 \\ &m_3:m_3(\{A\})=0.9, & m_3(\{B\})=0, \:\qquad&m_3(\{C\})=0.1 \\ \end{aligned}​Ω={A,B,C}m1​:m1​({A})=0.98,m2​:m2​({A})=0,m3​:m3​({A})=0.9,​m1​({B})=0.01,m2​({B})=0.01,m3​({B})=0,​m1​({C})=0.01m2​({C})=0.99m3​({C})=0.1​ k=1−[m1({A})m2({A})m3({A})+m1({B})m2({B})m3({B})+m1({C})m2({C})m3({C})]=1−[0.98×0×0.9+0.01×0.01×0+0.01×0.99×0.1]=0.99901m({A})=m1({A})m2({A})m3({A})=0.98×0×0.9=0m({B})=0m({C})=m1({C})m2({C})m3({C})=0.01×0.99×0.1=0.00099m(Ω)=0+k=0.99901\begin{aligned} k&=1-[m_1(\{A\})m_2(\{A\})m_3(\{A\})+m_1(\{B\})m_2(\{B\})m_3(\{B\})+m_1(\{C\})m_2(\{C\})m_3(\{C\})] \\ &=1-[0.98\times0\times0.9+0.01\times0.01\times0+0.01\times0.99\times0.1] \\ &=0.99901 \\ m(\{A\})&=m_1(\{A\})m_2(\{A\})m_3(\{A\}) \\ &=0.98\times0\times0.9 \\ &=0 \\ m(\{B\})&=0 \\ m(\{C\})&=m_1(\{C\})m_2(\{C\})m_3(\{C\}) \\ &=0.01\times0.99\times0.1 \\ &=0.00099 \\ m(\Omega)&=0+k=0.99901 \\ \end{aligned} km({A})m({B})m({C})m(Ω)​=1−[m1​({A})m2​({A})m3​({A})+m1​({B})m2​({B})m3​({B})+m1​({C})m2​({C})m3​({C})]=1−[0.98×0×0.9+0.01×0.01×0+0.01×0.99×0.1]=0.99901=m1​({A})m2​({A})m3​({A})=0.98×0×0.9=0=0=m1​({C})m2​({C})m3​({C})=0.01×0.99×0.1=0.00099=0+k=0.99901​

孙全提出的合成公式

  有 n 个证据源,对的应基本概率分配函数为 m1,m2,⋯,mnm_1,m_2,\cdots,m_nm1​,m2​,⋯,mn​。设证据源 iii 和 jjj 之间的冲突系数为 kijk_{ij}kij​:kij=∑A1∩A2=∅mi(A1)mj(A2)=1−∑A1∩A2≠∅mi(A1)mj(A2)k_{ij}=\sum_{A_1\cap A_2=\emptyset}m_i(A_1)m_j(A_2)=1-\sum_{A_1\cap A_2\neq\emptyset}m_i(A_1)m_j(A_2)kij​=A1​∩A2​=∅∑​mi​(A1​)mj​(A2​)=1−A1​∩A2​​=∅∑​mi​(A1​)mj​(A2​) ε\varepsilonε 为证据的可信度:ε=e−k^,k^=2n(n−1)∑i<jkij\varepsilon=e^{-\hat{k}}, \quad \hat{k}=\frac{2}{n(n-1)}\sum_{i<j}k_{ij}ε=e−k^,k^=n(n−1)2​i<j∑​kij​ 公式定义如下:m(∅)=0m(\emptyset)=0m(∅)=0 m(A)=p(A)+k×ε×q(A),A≠∅,Ωm(A)=p(A)+k\times\varepsilon\times q(A),\quad A \neq\emptyset,\Omegam(A)=p(A)+k×ε×q(A),A​=∅,Ω m(Ω)=p(Ω)+k×ε×q(Ω)+k(1−ε)m(\Omega)=p(\Omega)+k\times\varepsilon\times q(\Omega)+k(1-\varepsilon)m(Ω)=p(Ω)+k×ε×q(Ω)+k(1−ε) p(A)=∑A1∩A2∩⋯∩An=Am1(A1)m2(A2)⋯mn(An)p(A)=\sum_{A_1\cap A_2\cap\cdots\cap A_n=A}m_1(A_1)m_2(A_2)\cdots m_n(A_n)p(A)=A1​∩A2​∩⋯∩An​=A∑​m1​(A1​)m2​(A2​)⋯mn​(An​) q(A)=1n∑i=1nmi(A)q(A)=\frac{1}{n}\sum_{i=1}^{n}m_i(A)q(A)=n1​i=1∑n​mi​(A) m(A)m(A)m(A) 又可写成如下形式:m(A)=(1−k)p(A)1−k+k×ε×q(A)m(A)=(1-k)\frac{p(A)}{1-k}+k\times\varepsilon\times q(A)m(A)=(1−k)1−kp(A)​+k×ε×q(A) 式中第一项的 p(A)1−k\frac{p(A)}{1-k}1−kp(A)​ 是 DS 合成公式。

Example

(本示例采用前面 Yager 合成公式示例给出的数据)
k12=∑A1∩A2=∅m1(A1)m2(A2)=m1({A})m2({B})+m1({A})m2({C})+m1({B})m2({A})+m1({B})m2({C})+m1({C})m2({A})+m1({C})m2({B})=0.99k13=1−∑A1∩A3≠∅m1(A1)m3(A3)=1−[m1({A})m3({A})+m1({B})m3({B})+m1({C})m3({C})]=0.117k23=0.901k^=2n(n−1)∑i<jkij=23×(3−1)(0.99+0.117+0.901)=0.6693ε=e−k^=0.5120m({A})=(1−k)p({A})1−k+k×ε×q({A})=0+0.99901×0.5120×13(0.98+0+0.9)=0.3205m({B})=(1−k)p({B})1−k+k×ε×q({B})=0+0.99901×0.5120×13(0.01+0.01+0)=0.0034m({C})=(1−k)p({C})1−k+k×ε×q({C})=(1−0.99901)×1+0.99901×0.5120×13(0.01+0.99+0.1)=0.1885m(Ω)=(1−k)p(Ω)1−k+k×ε×q(Ω)+k(1−ε)=0+0+0.99901×(1−0.5120)=0.4875\begin{aligned} k_{12}&=\sum_{A_1\cap A_2=\emptyset}m_1(A_1)m_2(A_2) \\ &=m_1(\{A\})m_2(\{B\})+m_1(\{A\})m_2(\{C\})+m_1(\{B\})m_2(\{A\})+m_1(\{B\})m_2(\{C\})+m_1(\{C\})m_2(\{A\})+m_1(\{C\})m_2(\{B\}) \\ &=0.99 \\ k_{13}&=1-\sum_{A_1\cap A_3\neq\emptyset}m_1(A_1)m_3(A_3) \\ &=1-[m_1(\{A\})m_3(\{A\})+m_1(\{B\})m_3(\{B\})+m_1(\{C\})m_3(\{C\})] \\ &=0.117 \\ k_{23}&=0.901 \\ \hat{k}&=\frac{2}{n(n-1)}\sum_{i<j}k_{ij} \\ &=\frac{2}{3\times(3-1)}(0.99+0.117+0.901) \\ &=0.6693 \\ \varepsilon&=e^{-\hat{k}}=0.5120 \\ m(\{A\})&=(1-k)\frac{p(\{A\})}{1-k}+k\times\varepsilon\times q(\{A\}) \\ &=0+0.99901\times0.5120\times\frac{1}{3}(0.98+0+0.9) \\ &=0.3205 \\ m(\{B\})&=(1-k)\frac{p(\{B\})}{1-k}+k\times\varepsilon\times q(\{B\}) \\ &=0+0.99901\times0.5120\times\frac{1}{3}(0.01+0.01+0) \\ &=0.0034 \\ m(\{C\})&=(1-k)\frac{p(\{C\})}{1-k}+k\times\varepsilon\times q(\{C\}) \\ &=(1-0.99901)\times1+0.99901\times0.5120\times\frac{1}{3}(0.01+0.99+0.1) \\ &=0.1885 \\ m(\Omega)&=(1-k)\frac{p(\Omega)}{1-k}+k\times\varepsilon\times q(\Omega)+k(1-\varepsilon) \\ &=0+0+0.99901\times(1-0.5120) \\ &=0.4875 \\ \end{aligned} k12​k13​k23​k^εm({A})m({B})m({C})m(Ω)​=A1​∩A2​=∅∑​m1​(A1​)m2​(A2​)=m1​({A})m2​({B})+m1​({A})m2​({C})+m1​({B})m2​({A})+m1​({B})m2​({C})+m1​({C})m2​({A})+m1​({C})m2​({B})=0.99=1−A1​∩A3​​=∅∑​m1​(A1​)m3​(A3​)=1−[m1​({A})m3​({A})+m1​({B})m3​({B})+m1​({C})m3​({C})]=0.117=0.901=n(n−1)2​i<j∑​kij​=3×(3−1)2​(0.99+0.117+0.901)=0.6693=e−k^=0.5120=(1−k)1−kp({A})​+k×ε×q({A})=0+0.99901×0.5120×31​(0.98+0+0.9)=0.3205=(1−k)1−kp({B})​+k×ε×q({B})=0+0.99901×0.5120×31​(0.01+0.01+0)=0.0034=(1−k)1−kp({C})​+k×ε×q({C})=(1−0.99901)×1+0.99901×0.5120×31​(0.01+0.99+0.1)=0.1885=(1−k)1−kp(Ω)​+k×ε×q(Ω)+k(1−ε)=0+0+0.99901×(1−0.5120)=0.4875​

Smets 合成公式

  Smets 认为证据源之间的冲突只能来自于对辨识框架的错误定义。这样,Smets 将冲突系数 kkk 保留不用,而不用于归一化。(论文[2]中用 m(∅)m(\emptyset)m(∅) 表示 kkk,根据论文中给的示例来看 m(∅)m(\emptyset)m(∅) 不表示空集的 bpa,空集的 bpa 依然是0,论文中的 ∅\emptyset∅ 被解释为一个或几个假设没有被考虑在最初的辨识框架中。但是这样合成后的 bpa 累加和会小于1。)公式定义如下:m(A)=∑A1∩A2∩A3⋯=Am1(A1)m2(A2)m3(A3)⋯,A≠∅k=∑A1∩A2∩A3⋯=∅m1(A1)m2(A2)m3(A3)⋯\begin{aligned} m(A)&=\sum_{A_1\cap A_2\cap A_3\cdots=A}m_1(A_1)m_2(A_2)m_3(A_3)\cdots,\quad A \neq\emptyset \\ \\ k&=\sum_{A_1\cap A_2\cap A_3\cdots=\emptyset}m_1(A_1)m_2(A_2)m_3(A_3)\cdots \end{aligned}m(A)k​=A1​∩A2​∩A3​⋯=A∑​m1​(A1​)m2​(A2​)m3​(A3​)⋯,A​=∅=A1​∩A2​∩A3​⋯=∅∑​m1​(A1​)m2​(A2​)m3​(A3​)⋯​

Example

(本示例采用前面 Yager 合成公式示例给出的数据)
k=0.99901m({A})=0m({B})=0m({C})=0.00099m(Ω)=0m(∅)=0\begin{aligned} k&=0.99901 \\ m(\{A\})&=0 \\ m(\{B\})&=0 \\ m(\{C\})&=0.00099 \\ m(\Omega)&=0 \\ m(\emptyset)&=0 \\ \end{aligned} km({A})m({B})m({C})m(Ω)m(∅)​=0.99901=0=0=0.00099=0=0​

Dubois and Prade 合成公式

  对于有两个证据源的问题,证据源1有子集(命题)A1A_1A1​,证据源2有子集 A2A_2A2​,当 A1∩A2=∅A_1\cap A_2=\emptysetA1​∩A2​=∅ 时,m1(A1)⋅m2(A2)m_1(A_1)\cdot m_2(A_2)m1​(A1​)⋅m2​(A2​) 被分配给子集 B∪CB\cup CB∪C。公式定义如下:m(A)=∑A1∩A2=Am1(A1)m2(A2)+∑A1∪A2=A,A1∩A2=∅m1(A1)m2(A2)m(A)=\sum_{A_1\cap A_2=A}m_1(A_1)m_2(A_2)+\sum_{A_1\cup A_2=A,A_1\cap A_2=\emptyset}m_1(A_1)m_2(A_2)m(A)=A1​∩A2​=A∑​m1​(A1​)m2​(A2​)+A1​∪A2​=A,A1​∩A2​=∅∑​m1​(A1​)m2​(A2​)

Example

Ω={A,B,C}m1:m1({A})=0.1,m1({B})=0.1,m1({C})=0.8m2:m2({A})=0.8,m2({B})=0.1,m2({C})=0.1\begin{aligned} &\Omega=\{A,B,C\} &\quad &\quad \\ &m_1:m_1(\{A\})=0.1,& m_1(\{B\})=0.1,&\quad m_1(\{C\})=0.8 \\ &m_2:m_2(\{A\})=0.8,& m_2(\{B\})=0.1,&\quad m_2(\{C\})=0.1 \\ \end{aligned}​Ω={A,B,C}m1​:m1​({A})=0.1,m2​:m2​({A})=0.8,​m1​({B})=0.1,m2​({B})=0.1,​m1​({C})=0.8m2​({C})=0.1​ k=m1({A})m2({B})+m1({A})m2({C})+m1({B})m2({A})+m1({B})m2({C})+m1({C})m2({A})+m1({C})m2({B})=0.1×0.1+0.1×0.1+0.1×0.8+0.1×0.1+0.8×0.8+0.8×0.1=0.83m({A})=m1({A})m2({A})=0.1×0.8=0.08m({B})=0.01m({C})=0.08m({A,B})=∑A1∩A2={A,B}m1(A1)m2(A2)+∑A1∪A2={A,B},A1∩A2=∅m1(A1)m2(A2)=0+m1({A})m2({B})+m1({B})m2({A})=0+0.1×0.1+0.1×0.8=0.09m({A,C})=0+m1({A})m2({C})+m1({C})m2({A})=0+0.1×0.1+0.8×0.8=0.65m({B,C})=0+m1({B})m2({C})+m1({C})m2({B})=0+0.1×0.1+0.1×0.8=0.09m({A,B,C})=0\begin{aligned} k&=m_1(\{A\})m_2(\{B\})+m_1(\{A\})m_2(\{C\})+m_1(\{B\})m_2(\{A\})+m_1(\{B\})m_2(\{C\})+m_1(\{C\})m_2(\{A\})+m_1(\{C\})m_2(\{B\}) \\ &= 0.1\times0.1+0.1\times0.1+0.1\times0.8+0.1\times0.1+0.8\times0.8+0.8\times0.1 \\ &=0.83 \\ m(\{A\})&=m_1(\{A\})m_2(\{A\}) \\ &=0.1\times0.8 \\ &=0.08 \\ m(\{B\})&=0.01 \\ m(\{C\})&=0.08 \\ m(\{A,B\})&= \sum_{A_1\cap A_2=\{A,B\}}m_1(A_1)m_2(A_2)+\sum_{A_1\cup A_2=\{A,B\},A_1\cap A_2=\emptyset}m_1(A_1)m_2(A_2) \\ &=0+m_1(\{A\})m_2(\{B\})+m_1(\{B\})m_2(\{A\}) \\ &=0+0.1\times0.1+0.1\times0.8 \\ &=0.09 \\ m(\{A,C\})&=0+m_1(\{A\})m_2(\{C\})+m_1(\{C\})m_2(\{A\}) \\ &=0+0.1\times0.1+0.8\times0.8 \\ &=0.65 \\ m(\{B,C\})&=0+m_1(\{B\})m_2(\{C\})+m_1(\{C\})m_2(\{B\}) \\ &=0+0.1\times0.1+0.1\times0.8 \\ &=0.09 \\ m(\{A,B,C\})&=0 \end{aligned}km({A})m({B})m({C})m({A,B})m({A,C})m({B,C})m({A,B,C})​=m1​({A})m2​({B})+m1​({A})m2​({C})+m1​({B})m2​({A})+m1​({B})m2​({C})+m1​({C})m2​({A})+m1​({C})m2​({B})=0.1×0.1+0.1×0.1+0.1×0.8+0.1×0.1+0.8×0.8+0.8×0.1=0.83=m1​({A})m2​({A})=0.1×0.8=0.08=0.01=0.08=A1​∩A2​={A,B}∑​m1​(A1​)m2​(A2​)+A1​∪A2​={A,B},A1​∩A2​=∅∑​m1​(A1​)m2​(A2​)=0+m1​({A})m2​({B})+m1​({B})m2​({A})=0+0.1×0.1+0.1×0.8=0.09=0+m1​({A})m2​({C})+m1​({C})m2​({A})=0+0.1×0.1+0.8×0.8=0.65=0+m1​({B})m2​({C})+m1​({C})m2​({B})=0+0.1×0.1+0.1×0.8=0.09=0​

Discounting and Dempster 合成公式

  该方法先给每个证据源分配一个表示信任度的系数 α\alphaα,用 mαi,im_{\alpha_i,i}mαi​,i​ 表示第 iii 个证据源被折扣后的基本概率分配函数。公式定义如下:mαi,i(A)=αimi(A),A≠Ωm_{\alpha_i,i}(A)=\alpha_im_i(A),\quad A \neq \Omegamαi​,i​(A)=αi​mi​(A),A​=Ω mαi,i(Ω)=1−αi+αimi(Ω)m_{\alpha_i,i}(\Omega)=1-\alpha_i+\alpha_im_i(\Omega)mαi​,i​(Ω)=1−αi​+αi​mi​(Ω) 然后采用 DS 合成公式合成各证据源的 mαi,im_{\alpha_i,i}mαi​,i​。
  当 αi=0\alpha_i=0αi​=0 时,表示第 iii 个证据源有问题,不信任它;当 αi=1\alpha_i=1αi​=1 时,表示完全信任第 iii 个证据源。

Example

(本示例采用前面 Dubois and Prade 合成公式示例给出的数据,α1=0.2\alpha_1=0.2α1​=0.2,α2=0.8\alpha_2=0.8α2​=0.8)
m0.2,1:m0.2,1({A})=0.02,m0.2,1({B})=0.02,m0.2,1({C})=0.16,m0.2,1(Ω)=0.8m0.8,2:m0.8,2({A})=0.64,m0.8,2({B})=0.08,m0.8,2({C})=0.08,m0.8,2(Ω)=0.2\begin{aligned} &m_{0.2,1}:m_{0.2,1}(\{A\})=0.02,& m_{0.2,1}(\{B\})=0.02,&\quad m_{0.2,1}(\{C\})=0.16,\quad m_{0.2,1}(\Omega)=0.8 \\ &m_{0.8,2}:m_{0.8,2}(\{A\})=0.64,& m_{0.8,2}(\{B\})=0.08,&\quad m_{0.8,2}(\{C\})=0.08,\quad m_{0.8,2}(\Omega)=0.2 \\ \end{aligned}​m0.2,1​:m0.2,1​({A})=0.02,m0.8,2​:m0.8,2​({A})=0.64,​m0.2,1​({B})=0.02,m0.8,2​({B})=0.08,​m0.2,1​({C})=0.16,m0.2,1​(Ω)=0.8m0.8,2​({C})=0.08,m0.8,2​(Ω)=0.2​ k=m0.2,1({A})m0.8,2({B})+m0.2,1({A})m0.8,2({C})+m0.2,1({B})m0.8,2({A})+m0.2,1({B})m0.8,2({C})+m0.2,1({C})m0.8,2({A})+m0.2,1({C})m0.8,2({B})=0.02×0.08+0.02×0.08+0.02×0.64+0.02×0.08+0.16×0.64+0.16×0.08=0.1328m({A})=m0.2,1({A})m0.8,2({A})+m0.2,1({A})m0.8,2(Ω)+m0.2,1(Ω)m0.8,2({A})1−k=0.02×0.64+0.02×0.2+0.8×0.641−0.1328=0.6098m({B})=m0.2,1({B})m0.8,2({B})+m0.2,1({B})m0.8,2(Ω)+m0.2,1(Ω)m0.8,2({B})1−k=0.02×0.08+0.02×0.2+0.8×0.081−0.1328=0.0803m({C})=m0.2,1({C})m0.8,2({C})+m0.2,1({C})m0.8,2(Ω)+m0.2,1(Ω)m0.8,2({C})1−k=0.16×0.08+0.16×0.2+0.8×0.081−0.1328=0.1255m(Ω)=m0.2,1(Ω)m0.8,2(Ω)1−k=0.8×0.21−0.1328=0.1845\begin{aligned} k&=m_{0.2,1}(\{A\})m_{0.8,2}(\{B\})+m_{0.2,1}(\{A\})m_{0.8,2}(\{C\})+m_{0.2,1}(\{B\})m_{0.8,2}(\{A\})+m_{0.2,1}(\{B\})m_{0.8,2}(\{C\})+m_{0.2,1}(\{C\})m_{0.8,2}(\{A\})+m_{0.2,1}(\{C\})m_{0.8,2}(\{B\}) \\ &= 0.02\times0.08+0.02\times0.08+0.02\times0.64+0.02\times0.08+0.16\times0.64+0.16\times0.08 \\ &=0.1328\\ m(\{A\})&=\frac{m_{0.2,1}(\{A\})m_{0.8,2}(\{A\})+m_{0.2,1}(\{A\})m_{0.8,2}(\Omega)+m_{0.2,1}(\Omega)m_{0.8,2}(\{A\})}{1-k} \\ &=\frac{0.02\times0.64+0.02\times0.2+0.8\times0.64}{1-0.1328} \\ &=0.6098 \\ m(\{B\})&=\frac{m_{0.2,1}(\{B\})m_{0.8,2}(\{B\})+m_{0.2,1}(\{B\})m_{0.8,2}(\Omega)+m_{0.2,1}(\Omega)m_{0.8,2}(\{B\})}{1-k} \\ &=\frac{0.02\times0.08+0.02\times0.2+0.8\times0.08}{1-0.1328} \\ &=0.0803\\ m(\{C\})&=\frac{m_{0.2,1}(\{C\})m_{0.8,2}(\{C\})+m_{0.2,1}(\{C\})m_{0.8,2}(\Omega)+m_{0.2,1}(\Omega)m_{0.8,2}(\{C\})}{1-k} \\ &=\frac{0.16\times0.08+0.16\times0.2+0.8\times0.08}{1-0.1328} \\ &=0.1255\\ m(\Omega)&=\frac{m_{0.2,1}(\Omega)m_{0.8,2}(\Omega)}{1-k} \\ &=\frac{0.8\times0.2}{1-0.1328} \\ &=0.1845 \\ \end{aligned}km({A})m({B})m({C})m(Ω)​=m0.2,1​({A})m0.8,2​({B})+m0.2,1​({A})m0.8,2​({C})+m0.2,1​({B})m0.8,2​({A})+m0.2,1​({B})m0.8,2​({C})+m0.2,1​({C})m0.8,2​({A})+m0.2,1​({C})m0.8,2​({B})=0.02×0.08+0.02×0.08+0.02×0.64+0.02×0.08+0.16×0.64+0.16×0.08=0.1328=1−km0.2,1​({A})m0.8,2​({A})+m0.2,1​({A})m0.8,2​(Ω)+m0.2,1​(Ω)m0.8,2​({A})​=1−0.13280.02×0.64+0.02×0.2+0.8×0.64​=0.6098=1−km0.2,1​({B})m0.8,2​({B})+m0.2,1​({B})m0.8,2​(Ω)+m0.2,1​(Ω)m0.8,2​({B})​=1−0.13280.02×0.08+0.02×0.2+0.8×0.08​=0.0803=1−km0.2,1​({C})m0.8,2​({C})+m0.2,1​({C})m0.8,2​(Ω)+m0.2,1​(Ω)m0.8,2​({C})​=1−0.13280.16×0.08+0.16×0.2+0.8×0.08​=0.1255=1−km0.2,1​(Ω)m0.8,2​(Ω)​=1−0.13280.8×0.2​=0.1845​

Murphy 合成公式

  设有 nnn 个证据源,该方法先将 nnn 个证据源的 bpa 取平均得到 mavgm_{avg}mavg​,再用 DS 合成公式对 mavgm_{avg}mavg​ 迭代 (n−1)(n-1)(n−1) 次得到合成后的 bpa。令 fDS(S1,S2)f_{DS}(S_1,S_2)fDS​(S1​,S2​) 表示两个证据源的 DS 合成公式,mim^imi 表示第 iii 次迭代后的 bpa,则 Murphy 合成公式定义如下:m1=fDS(mavg,mavg)m^1=f_{DS}(m_{avg},m_{avg})m1=fDS​(mavg​,mavg​) mi=fDS(mi−1,mavg),i≥2m^i=f_{DS}(m^{i-1},m_{avg}),\quad i \geq2mi=fDS​(mi−1,mavg​),i≥2

Example

Ω={A,B,C}m1:m1({A})=0.5,m1({B,C})=0.5,m2:m2({C})=0.5,m2({A,B})=0.5\begin{aligned} &\Omega=\{A,B,C\} \\ &m_1:m_1(\{A\})=0.5,& m_1(\{B,C\})=0.5, \\ &m_2:m_2(\{C\})=0.5,& m_2(\{A,B\})=0.5 \\ \end{aligned}​Ω={A,B,C}m1​:m1​({A})=0.5,m2​:m2​({C})=0.5,​m1​({B,C})=0.5,m2​({A,B})=0.5​ mavg({A})=mavg({C})=mavg({A,B})=mavg({B,C})=0.25m_{avg}(\{A\})=m_{avg}(\{C\})=m_{avg}(\{A,B\})=m_{avg}(\{B,C\})=0.25mavg​({A})=mavg​({C})=mavg​({A,B})=mavg​({B,C})=0.25
k=mavg({A})mavg({C})+mavg({A})mavg({B,C})+mavg({C})mavg({A})+mavg({C})mavg({A,B})+mavg({A,B})mavg({C})+mavg({B,C})mavg({A})=0.25×0.25×6=0.375m({A})=mavg({A})mavg({A})+mavg({A})mavg({A,B})+mavg({A,B})mavg({A})1−k=0.25×0.25×31−0.375=0.3m({B})=mavg({A,B})mavg({B,C})+mavg({B,C})mavg({A,B})1−k=0.25×0.25×21−0.375=0.2m({C})=mavg({C})mavg({C})+mavg({C})mavg({B,C})+mavg({B,C})mavg({C})1−k=0.25×0.25×31−0.375=0.3m({A,B})=mavg({A,B})mavg({A,B})1−k=0.25×0.251−0.375=0.1m({B,C})=mavg({B,C})mavg({B,C})1−k=0.25×0.251−0.375=0.1\begin{aligned} k&=m_{avg}(\{A\})m_{avg}(\{C\})+m_{avg}(\{A\})m_{avg}(\{B,C\})+m_{avg}(\{C\})m_{avg}(\{A\})+m_{avg}(\{C\})m_{avg}(\{A,B\})+m_{avg}(\{A,B\})m_{avg}(\{C\})+m_{avg}(\{B,C\})m_{avg}(\{A\}) \\ &=0.25\times0.25\times6 \\ &=0.375 \\ m(\{A\})&=\frac{m_{avg}(\{A\})m_{avg}(\{A\})+m_{avg}(\{A\})m_{avg}(\{A,B\})+m_{avg}(\{A,B\})m_{avg}(\{A\})}{1-k} \\ &=\frac{0.25\times0.25\times3}{1-0.375} \\ &=0.3 \\ m(\{B\})&=\frac{m_{avg}(\{A,B\})m_{avg}(\{B,C\})+m_{avg}(\{B,C\})m_{avg}(\{A,B\})}{1-k} \\ &=\frac{0.25\times0.25\times2}{1-0.375} \\ &=0.2 \\ m(\{C\})&=\frac{m_{avg}(\{C\})m_{avg}(\{C\})+m_{avg}(\{C\})m_{avg}(\{B,C\})+m_{avg}(\{B,C\})m_{avg}(\{C\})}{1-k} \\ &=\frac{0.25\times0.25\times3}{1-0.375} \\ &=0.3 \\ m(\{A,B\})&=\frac{m_{avg}(\{A,B\})m_{avg}(\{A,B\})}{1-k} \\ &=\frac{0.25\times0.25}{1-0.375} \\ &=0.1 \\ m(\{B,C\})&=\frac{m_{avg}(\{B,C\})m_{avg}(\{B,C\})}{1-k} \\ &=\frac{0.25\times0.25}{1-0.375} \\ &=0.1 \\ \end{aligned}km({A})m({B})m({C})m({A,B})m({B,C})​=mavg​({A})mavg​({C})+mavg​({A})mavg​({B,C})+mavg​({C})mavg​({A})+mavg​({C})mavg​({A,B})+mavg​({A,B})mavg​({C})+mavg​({B,C})mavg​({A})=0.25×0.25×6=0.375=1−kmavg​({A})mavg​({A})+mavg​({A})mavg​({A,B})+mavg​({A,B})mavg​({A})​=1−0.3750.25×0.25×3​=0.3=1−kmavg​({A,B})mavg​({B,C})+mavg​({B,C})mavg​({A,B})​=1−0.3750.25×0.25×2​=0.2=1−kmavg​({C})mavg​({C})+mavg​({C})mavg​({B,C})+mavg​({B,C})mavg​({C})​=1−0.3750.25×0.25×3​=0.3=1−kmavg​({A,B})mavg​({A,B})​=1−0.3750.25×0.25​=0.1=1−kmavg​({B,C})mavg​({B,C})​=1−0.3750.25×0.25​=0.1​

参考文献

[1] 孙全, 叶秀清, 顾伟康. 一种新的基于证据理论的合成公式[J]. 电子学报, 2000, 28(8):117-119. [2] Lefevre E , Colot O , Vannoorenberghe P . Belief function combination and conflict management[J]. Information Fusion, 2002, 3(2):149-162. [3] Murphy C K . Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000.

证据理论(2)—— 多种合成公式相关推荐

  1. 科研 | Nature:新型土壤细菌具有多种合成次级代谢物的基因

    本文由殷继忠编译,董小橙.江舜尧编辑. "微生太"原创微文. 导读 在土壤生态系统中,微生物可以产生多种次生代谢物,如抗生素,抗真菌剂和铁载体等.大多数已知的抗生素都来自于少数可培 ...

  2. 精灵复兴 与服务器链接中断,精灵复兴一键服务端+视频架设教程+GM模式介绍+2036合成公式+客户端...

    精灵复兴一键服务端+视频架设教程+GM模式介绍+2036合成公式+客户端 ---------------------------------------------------- 安装详解↓↓↓↓↓↓ ...

  3. 云顶之弈两个传送门_云顶之弈兹若特传送门合成公式 云顶之弈兹若特传送门怎么合成...

    LOL云顶之弈兹若特传送门合成公式是游戏S3赛季银河战争装备合成玩法,当英雄战败后将召唤虚灵嘲讽附近敌方喔,那么云顶之弈兹若特传送门合成公式是什么.英雄联盟云顶之弈兹若特传送门怎么合成呢,跑跑车手游网 ...

  4. 算法 放置奇兵 如何配置使算力最大化 十星合成公式 十五星合成公式(升级、赋能)

    20200309 合成5星时,优先合成3星较多的,3星相同滴,看谁4星多就合成谁,消耗3个四星时,优先消耗四星多的,4星数量相同滴,看谁3星少就合成谁 比如,合成深渊5星狗粮的时候,首先看3星哪个多( ...

  5. 数据处理之衡量数据远近的多种距离公式

    距离公式 距离的判定 欧式距离 曼哈顿距离 切比雪夫距离 明可夫斯基距离 马氏距离 汉明距离 相似度的判定 余弦相似度 皮尔森相关系数 Jaccard相似系数 参考大神连接1: https://www ...

  6. 不可思议有氧机器人_不思议迷宫机器人生产线选什么好 机器人合成公式一览...

    不思议迷宫天空战机器人生产线选什么好呢?选摧毁要什么条件能合成机器人呢?下面我们就一起来看看吧! 机器人生产线 摧毁生产线:飞艇材料 TS-260x4 RS-500,战力+2500 RS-500x4 ...

  7. 新超越极限地图和隐藏口令及装备合成公式

    完整版见https://jadyer.github.io/2013/09/08/xcyjx/ 新超越极限地形图 新超越极限装备位置图 /*** ============================ ...

  8. 2018-3-8(论文--网络评论中的非结构化信息表示与研究)笔记-----基于证据理论的网络评论综合方法

    Why  综合评价?? (1)实际的生活中,我们队网络评论进行结构化处理的目的不仅在存储而是试图利用这些信息对产品进行综合的评定 (2)通过综合评定企业可以知道产品在客户心中的地位以及受欢迎的程度,从 ...

  9. sin傅里叶变换公式_全面解析傅立叶变换(非常详细)

    前言 第一部分. DFT 第一章.傅立叶变换的由来 第二章.实数形式离散傅立叶变换(Real DFT) 从头到尾彻底理解傅里叶变换算法.下 第三章.复数 第四章.复数形式离散傅立叶变换 前言:&quo ...

  10. D-S证据理论的简要介绍

    D-S证据理论属于不确定性推理方法,证据理论是Dempster于1967年首先提出,由他的学生Shafer于1976年进一步发展起来的一种不精确推理理论,也称为Dempster/Shafer 证据理论 ...

最新文章

  1. 基于SSM实现小区物业管理系
  2. Android activity属性
  3. ubuntu 11.10上安装osdlyrics 歌词插件
  4. 2016 年 ACM/ICPC 青岛区域赛 Problem C Pocky
  5. 联合概率,条件概率,边缘概率的通俗理解
  6. 统计文件字符个数 java_如何统计个文件中的字符个数
  7. SQLite Tutorial 4 : How to export SQLite file into CSV or Excel file
  8. C# webservice 配置总结
  9. 【2019JXCPC省赛:H】Rng(找规律+逆元)
  10. 多个相同name的文本输入框,输入其中一个后,使剩下的不能输入值
  11. 关于Maven里的setting.xml下载
  12. 一个软件完整的开发流程介绍
  13. 自然辩证法对计算机科学技术的应用,自然辩证法在计算机科学技术中的应用.doc...
  14. 怀仁一中2021高考成绩查询,2019怀仁一中录取分数线(附2019高考成绩喜报)
  15. TIA博途WINCC中如何获取当前画面编号并发送给PLC?
  16. 华为CE系列和S系列交换机堆叠配置及mad检测
  17. 如何有效管理自己电脑里的文件?
  18. 2、设计2个类,要求如下:[必做题] 2.1 定义一个汽车类Vehicle, 2.1.1 属性包括:汽车品牌brand(String类型)、颜色color(String类型 )和速度speed(do
  19. Proteus8.12 基于51单片机的家用供暖系统
  20. 抽象类、接口、Objext 详解

热门文章

  1. Kindle3与亚马逊
  2. VS2015正确卸载方法,亲测
  3. 易语言变量和c对应关系,详解易语言变量用法和原理
  4. 纸质办公电子化——iWebOffice中间件
  5. win10定时关机c语言,电脑定时关机win10,电脑定时关机命令-
  6. Windows下用cmd命令安装及卸载服务
  7. 电芯知识汇总(转载)
  8. oracle四大索引类型,各种Oracle索引类型介绍
  9. 计算机局域网共享本地安全策略,如何设置局域网共享
  10. docker 安装oracle11g 并配置数据持久化