caffe 官方例程之R-CNN(物体检测)

翻译 2016年04月06日 20:15:13

慢慢翻译!

R-CNN is a state-of-the-art detector that classifies region proposals by a finetuned Caffe model. For the full details of the R-CNN system and model, refer to its project site and the paper:

Rich feature hierarchies for accurate object detection and semantic segmentation. Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik. CVPR 2014. Arxiv 2013.

In this example, we do detection by a pure Caffe edition of the R-CNN model for ImageNet. The R-CNN detector outputs class scores for the 200 detection classes of ILSVRC13. Keep in mind that these are raw one vs. all SVM scores, so they are not probabilistically calibrated or exactly comparable across classes. Note that this off-the-shelf model is simply for convenience, and is not the full R-CNN model.

Let's run detection on an image of a bicyclist riding a fish bike in the desert (from the ImageNet challenge—no joke).

First, we'll need region proposals and the Caffe R-CNN ImageNet model:

  • Selective Search is the region proposer used by R-CNN. The selective_search_ijcv_with_python Python module takes care of extracting proposals through the selective search MATLAB implementation. To install it, download the module and name its directory selective_search_ijcv_with_python, run the demo in MATLAB to compile the necessary functions, then add it to your PYTHONPATH for importing. (If you have your own region proposals prepared, or would rather not bother with this step, detect.py accepts a list of images and bounding boxes as CSV.)

-Run ./scripts/download_model_binary.py models/bvlc_reference_rcnn_ilsvrc13 to get the Caffe R-CNN ImageNet model.

With that done, we'll call the bundled detect.py to generate the region proposals and run the network. For an explanation of the arguments, do ./detect.py --help.

In [1]:
!mkdir -p _temp
!echo `pwd`/images/fish-bike.jpg > _temp/det_input.txt
!../python/detect.py --crop_mode=selective_search --pretrained_model=../models/bvlc_reference_rcnn_ilsvrc13/bvlc_reference_rcnn_ilsvrc13.caffemodel --model_def=../models/bvlc_reference_rcnn_ilsvrc13/deploy.prototxt --gpu --raw_scale=255 _temp/det_input.txt _temp/det_output.h5

WARNING: Logging before InitGoogleLogging() is written to STDERR
I0218 20:43:25.383932 2099749632 net.cpp:42] Initializing net from parameters:
name: "R-CNN-ilsvrc13"
input: "data"
input_dim: 10
input_dim: 3
input_dim: 227
input_dim: 227
state {phase: TEST
}
layer {name: "conv1"type: "Convolution"bottom: "data"top: "conv1"convolution_param {num_output: 96kernel_size: 11stride: 4}
}
layer {name: "relu1"type: "ReLU"bottom: "conv1"top: "conv1"
}
layer {name: "pool1"type: "Pooling"bottom: "conv1"top: "pool1"pooling_param {pool: MAXkernel_size: 3stride: 2}
}
layer {name: "norm1"type: "LRN"bottom: "pool1"top: "norm1"lrn_param {local_size: 5alpha: 0.0001beta: 0.75}
}
layer {name: "conv2"type: "Convolution"bottom: "norm1"top: "conv2"convolution_param {num_output: 256pad: 2kernel_size: 5group: 2}
}
layer {name: "relu2"type: "ReLU"bottom: "conv2"top: "conv2"
}
layer {name: "pool2"type: "Pooling"bottom: "conv2"top: "pool2"pooling_param {pool: MAXkernel_size: 3stride: 2}
}
layer {name: "norm2"type: "LRN"bottom: "pool2"top: "norm2"lrn_param {local_size: 5alpha: 0.0001beta: 0.75}
}
layer {name: "conv3"type: "Convolution"bottom: "norm2"top: "conv3"convolution_param {num_output: 384pad: 1kernel_size: 3}
}
layer {name: "relu3"type: "ReLU"bottom: "conv3"top: "conv3"
}
layer {name: "conv4"type: "Convolution"bottom: "conv3"top: "conv4"convolution_param {num_output: 384pad: 1kernel_size: 3group: 2}
}
layer {name: "relu4"type: "ReLU"bottom: "conv4"top: "conv4"
}
layer {name: "conv5"type: "Convolution"bottom: "conv4"top: "conv5"convolution_param {num_output: 256pad: 1kernel_size: 3group: 2}
}
layer {name: "relu5"type: "ReLU"bottom: "conv5"top: "conv5"
}
layer {name: "pool5"type: "Pooling"bottom: "conv5"top: "pool5"pooling_param {pool: MAXkernel_size: 3stride: 2}
}
layer {name: "fc6"type: "InnerProduct"bottom: "pool5"top: "fc6"inner_product_param {num_output: 4096}
}
layer {name: "relu6"type: "ReLU"bottom: "fc6"top: "fc6"
}
layer {name: "drop6"type: "Dropout"bottom: "fc6"top: "fc6"dropout_param {dropout_ratio: 0.5}
}
layer {name: "fc7"type: "InnerProduct"bottom: "fc6"top: "fc7"inner_product_param {num_output: 4096}
}
layer {name: "relu7"type: "ReLU"bottom: "fc7"top: "fc7"
}
layer {name: "drop7"type: "Dropout"bottom: "fc7"top: "fc7"dropout_param {dropout_ratio: 0.5}
}
layer {name: "fc-rcnn"type: "InnerProduct"bottom: "fc7"top: "fc-rcnn"inner_product_param {num_output: 200}
}
I0218 20:43:25.385720 2099749632 net.cpp:336] Input 0 -> data
I0218 20:43:25.385769 2099749632 layer_factory.hpp:74] Creating layer conv1
I0218 20:43:25.385783 2099749632 net.cpp:76] Creating Layer conv1
I0218 20:43:25.385790 2099749632 net.cpp:372] conv1 <- data
I0218 20:43:25.385802 2099749632 net.cpp:334] conv1 -> conv1
I0218 20:43:25.385815 2099749632 net.cpp:105] Setting up conv1
I0218 20:43:25.386574 2099749632 net.cpp:112] Top shape: 10 96 55 55 (2904000)
I0218 20:43:25.386610 2099749632 layer_factory.hpp:74] Creating layer relu1
I0218 20:43:25.386625 2099749632 net.cpp:76] Creating Layer relu1
I0218 20:43:25.386631 2099749632 net.cpp:372] relu1 <- conv1
I0218 20:43:25.386641 2099749632 net.cpp:323] relu1 -> conv1 (in-place)
I0218 20:43:25.386649 2099749632 net.cpp:105] Setting up relu1
I0218 20:43:25.386656 2099749632 net.cpp:112] Top shape: 10 96 55 55 (2904000)
I0218 20:43:25.386663 2099749632 layer_factory.hpp:74] Creating layer pool1
I0218 20:43:25.386675 2099749632 net.cpp:76] Creating Layer pool1
I0218 20:43:25.386682 2099749632 net.cpp:372] pool1 <- conv1
I0218 20:43:25.386690 2099749632 net.cpp:334] pool1 -> pool1
I0218 20:43:25.386699 2099749632 net.cpp:105] Setting up pool1
I0218 20:43:25.386716 2099749632 net.cpp:112] Top shape: 10 96 27 27 (699840)
I0218 20:43:25.386725 2099749632 layer_factory.hpp:74] Creating layer norm1
I0218 20:43:25.386736 2099749632 net.cpp:76] Creating Layer norm1
I0218 20:43:25.386744 2099749632 net.cpp:372] norm1 <- pool1
I0218 20:43:25.386803 2099749632 net.cpp:334] norm1 -> norm1
I0218 20:43:25.386819 2099749632 net.cpp:105] Setting up norm1
I0218 20:43:25.386832 2099749632 net.cpp:112] Top shape: 10 96 27 27 (699840)
I0218 20:43:25.386842 2099749632 layer_factory.hpp:74] Creating layer conv2
I0218 20:43:25.386852 2099749632 net.cpp:76] Creating Layer conv2
I0218 20:43:25.386865 2099749632 net.cpp:372] conv2 <- norm1
I0218 20:43:25.386878 2099749632 net.cpp:334] conv2 -> conv2
I0218 20:43:25.386899 2099749632 net.cpp:105] Setting up conv2
I0218 20:43:25.387024 2099749632 net.cpp:112] Top shape: 10 256 27 27 (1866240)
I0218 20:43:25.387042 2099749632 layer_factory.hpp:74] Creating layer relu2
I0218 20:43:25.387050 2099749632 net.cpp:76] Creating Layer relu2
I0218 20:43:25.387058 2099749632 net.cpp:372] relu2 <- conv2
I0218 20:43:25.387066 2099749632 net.cpp:323] relu2 -> conv2 (in-place)
I0218 20:43:25.387075 2099749632 net.cpp:105] Setting up relu2
I0218 20:43:25.387081 2099749632 net.cpp:112] Top shape: 10 256 27 27 (1866240)
I0218 20:43:25.387089 2099749632 layer_factory.hpp:74] Creating layer pool2
I0218 20:43:25.387097 2099749632 net.cpp:76] Creating Layer pool2
I0218 20:43:25.387104 2099749632 net.cpp:372] pool2 <- conv2
I0218 20:43:25.387112 2099749632 net.cpp:334] pool2 -> pool2
I0218 20:43:25.387121 2099749632 net.cpp:105] Setting up pool2
I0218 20:43:25.387130 2099749632 net.cpp:112] Top shape: 10 256 13 13 (432640)
I0218 20:43:25.387137 2099749632 layer_factory.hpp:74] Creating layer norm2
I0218 20:43:25.387145 2099749632 net.cpp:76] Creating Layer norm2
I0218 20:43:25.387152 2099749632 net.cpp:372] norm2 <- pool2
I0218 20:43:25.387161 2099749632 net.cpp:334] norm2 -> norm2
I0218 20:43:25.387168 2099749632 net.cpp:105] Setting up norm2
I0218 20:43:25.387176 2099749632 net.cpp:112] Top shape: 10 256 13 13 (432640)
I0218 20:43:25.387228 2099749632 layer_factory.hpp:74] Creating layer conv3
I0218 20:43:25.387249 2099749632 net.cpp:76] Creating Layer conv3
I0218 20:43:25.387258 2099749632 net.cpp:372] conv3 <- norm2
I0218 20:43:25.387266 2099749632 net.cpp:334] conv3 -> conv3
I0218 20:43:25.387276 2099749632 net.cpp:105] Setting up conv3
I0218 20:43:25.389375 2099749632 net.cpp:112] Top shape: 10 384 13 13 (648960)
I0218 20:43:25.389408 2099749632 layer_factory.hpp:74] Creating layer relu3
I0218 20:43:25.389421 2099749632 net.cpp:76] Creating Layer relu3
I0218 20:43:25.389430 2099749632 net.cpp:372] relu3 <- conv3
I0218 20:43:25.389438 2099749632 net.cpp:323] relu3 -> conv3 (in-place)
I0218 20:43:25.389447 2099749632 net.cpp:105] Setting up relu3
I0218 20:43:25.389456 2099749632 net.cpp:112] Top shape: 10 384 13 13 (648960)
I0218 20:43:25.389462 2099749632 layer_factory.hpp:74] Creating layer conv4
I0218 20:43:25.389472 2099749632 net.cpp:76] Creating Layer conv4
I0218 20:43:25.389478 2099749632 net.cpp:372] conv4 <- conv3
I0218 20:43:25.389487 2099749632 net.cpp:334] conv4 -> conv4
I0218 20:43:25.389497 2099749632 net.cpp:105] Setting up conv4
I0218 20:43:25.391810 2099749632 net.cpp:112] Top shape: 10 384 13 13 (648960)
I0218 20:43:25.391856 2099749632 layer_factory.hpp:74] Creating layer relu4
I0218 20:43:25.391871 2099749632 net.cpp:76] Creating Layer relu4
I0218 20:43:25.391880 2099749632 net.cpp:372] relu4 <- conv4
I0218 20:43:25.391888 2099749632 net.cpp:323] relu4 -> conv4 (in-place)
I0218 20:43:25.391898 2099749632 net.cpp:105] Setting up relu4
I0218 20:43:25.391906 2099749632 net.cpp:112] Top shape: 10 384 13 13 (648960)
I0218 20:43:25.391913 2099749632 layer_factory.hpp:74] Creating layer conv5
I0218 20:43:25.391923 2099749632 net.cpp:76] Creating Layer conv5
I0218 20:43:25.391929 2099749632 net.cpp:372] conv5 <- conv4
I0218 20:43:25.391937 2099749632 net.cpp:334] conv5 -> conv5
I0218 20:43:25.391947 2099749632 net.cpp:105] Setting up conv5
I0218 20:43:25.393072 2099749632 net.cpp:112] Top shape: 10 256 13 13 (432640)
I0218 20:43:25.393108 2099749632 layer_factory.hpp:74] Creating layer relu5
I0218 20:43:25.393122 2099749632 net.cpp:76] Creating Layer relu5
I0218 20:43:25.393129 2099749632 net.cpp:372] relu5 <- conv5
I0218 20:43:25.393138 2099749632 net.cpp:323] relu5 -> conv5 (in-place)
I0218 20:43:25.393148 2099749632 net.cpp:105] Setting up relu5
I0218 20:43:25.393157 2099749632 net.cpp:112] Top shape: 10 256 13 13 (432640)
I0218 20:43:25.393167 2099749632 layer_factory.hpp:74] Creating layer pool5
I0218 20:43:25.393175 2099749632 net.cpp:76] Creating Layer pool5
I0218 20:43:25.393182 2099749632 net.cpp:372] pool5 <- conv5
I0218 20:43:25.393190 2099749632 net.cpp:334] pool5 -> pool5
I0218 20:43:25.393199 2099749632 net.cpp:105] Setting up pool5
I0218 20:43:25.393209 2099749632 net.cpp:112] Top shape: 10 256 6 6 (92160)
I0218 20:43:25.393218 2099749632 layer_factory.hpp:74] Creating layer fc6
I0218 20:43:25.393226 2099749632 net.cpp:76] Creating Layer fc6
I0218 20:43:25.393232 2099749632 net.cpp:372] fc6 <- pool5
I0218 20:43:25.393240 2099749632 net.cpp:334] fc6 -> fc6
I0218 20:43:25.393249 2099749632 net.cpp:105] Setting up fc6
I0218 20:43:25.516396 2099749632 net.cpp:112] Top shape: 10 4096 1 1 (40960)
I0218 20:43:25.516445 2099749632 layer_factory.hpp:74] Creating layer relu6
I0218 20:43:25.516463 2099749632 net.cpp:76] Creating Layer relu6
I0218 20:43:25.516470 2099749632 net.cpp:372] relu6 <- fc6
I0218 20:43:25.516480 2099749632 net.cpp:323] relu6 -> fc6 (in-place)
I0218 20:43:25.516490 2099749632 net.cpp:105] Setting up relu6
I0218 20:43:25.516497 2099749632 net.cpp:112] Top shape: 10 4096 1 1 (40960)
I0218 20:43:25.516505 2099749632 layer_factory.hpp:74] Creating layer drop6
I0218 20:43:25.516515 2099749632 net.cpp:76] Creating Layer drop6
I0218 20:43:25.516521 2099749632 net.cpp:372] drop6 <- fc6
I0218 20:43:25.516530 2099749632 net.cpp:323] drop6 -> fc6 (in-place)
I0218 20:43:25.516538 2099749632 net.cpp:105] Setting up drop6
I0218 20:43:25.516557 2099749632 net.cpp:112] Top shape: 10 4096 1 1 (40960)
I0218 20:43:25.516566 2099749632 layer_factory.hpp:74] Creating layer fc7
I0218 20:43:25.516576 2099749632 net.cpp:76] Creating Layer fc7
I0218 20:43:25.516582 2099749632 net.cpp:372] fc7 <- fc6
I0218 20:43:25.516589 2099749632 net.cpp:334] fc7 -> fc7
I0218 20:43:25.516599 2099749632 net.cpp:105] Setting up fc7
I0218 20:43:25.604786 2099749632 net.cpp:112] Top shape: 10 4096 1 1 (40960)
I0218 20:43:25.604838 2099749632 layer_factory.hpp:74] Creating layer relu7
I0218 20:43:25.604852 2099749632 net.cpp:76] Creating Layer relu7
I0218 20:43:25.604859 2099749632 net.cpp:372] relu7 <- fc7
I0218 20:43:25.604868 2099749632 net.cpp:323] relu7 -> fc7 (in-place)
I0218 20:43:25.604878 2099749632 net.cpp:105] Setting up relu7
I0218 20:43:25.604885 2099749632 net.cpp:112] Top shape: 10 4096 1 1 (40960)
I0218 20:43:25.604893 2099749632 layer_factory.hpp:74] Creating layer drop7
I0218 20:43:25.604902 2099749632 net.cpp:76] Creating Layer drop7
I0218 20:43:25.604908 2099749632 net.cpp:372] drop7 <- fc7
I0218 20:43:25.604917 2099749632 net.cpp:323] drop7 -> fc7 (in-place)
I0218 20:43:25.604924 2099749632 net.cpp:105] Setting up drop7
I0218 20:43:25.604933 2099749632 net.cpp:112] Top shape: 10 4096 1 1 (40960)
I0218 20:43:25.604939 2099749632 layer_factory.hpp:74] Creating layer fc-rcnn
I0218 20:43:25.604948 2099749632 net.cpp:76] Creating Layer fc-rcnn
I0218 20:43:25.604954 2099749632 net.cpp:372] fc-rcnn <- fc7
I0218 20:43:25.604962 2099749632 net.cpp:334] fc-rcnn -> fc-rcnn
I0218 20:43:25.604971 2099749632 net.cpp:105] Setting up fc-rcnn
I0218 20:43:25.606878 2099749632 net.cpp:112] Top shape: 10 200 1 1 (2000)
I0218 20:43:25.606904 2099749632 net.cpp:165] fc-rcnn does not need backward computation.
I0218 20:43:25.606909 2099749632 net.cpp:165] drop7 does not need backward computation.
I0218 20:43:25.606916 2099749632 net.cpp:165] relu7 does not need backward computation.
I0218 20:43:25.606922 2099749632 net.cpp:165] fc7 does not need backward computation.
I0218 20:43:25.606928 2099749632 net.cpp:165] drop6 does not need backward computation.
I0218 20:43:25.606935 2099749632 net.cpp:165] relu6 does not need backward computation.
I0218 20:43:25.606940 2099749632 net.cpp:165] fc6 does not need backward computation.
I0218 20:43:25.606946 2099749632 net.cpp:165] pool5 does not need backward computation.
I0218 20:43:25.606952 2099749632 net.cpp:165] relu5 does not need backward computation.
I0218 20:43:25.606958 2099749632 net.cpp:165] conv5 does not need backward computation.
I0218 20:43:25.606964 2099749632 net.cpp:165] relu4 does not need backward computation.
I0218 20:43:25.606971 2099749632 net.cpp:165] conv4 does not need backward computation.
I0218 20:43:25.606976 2099749632 net.cpp:165] relu3 does not need backward computation.
I0218 20:43:25.606982 2099749632 net.cpp:165] conv3 does not need backward computation.
I0218 20:43:25.606988 2099749632 net.cpp:165] norm2 does not need backward computation.
I0218 20:43:25.606995 2099749632 net.cpp:165] pool2 does not need backward computation.
I0218 20:43:25.607002 2099749632 net.cpp:165] relu2 does not need backward computation.
I0218 20:43:25.607007 2099749632 net.cpp:165] conv2 does not need backward computation.
I0218 20:43:25.607013 2099749632 net.cpp:165] norm1 does not need backward computation.
I0218 20:43:25.607199 2099749632 net.cpp:165] pool1 does not need backward computation.
I0218 20:43:25.607213 2099749632 net.cpp:165] relu1 does not need backward computation.
I0218 20:43:25.607219 2099749632 net.cpp:165] conv1 does not need backward computation.
I0218 20:43:25.607225 2099749632 net.cpp:201] This network produces output fc-rcnn
I0218 20:43:25.607239 2099749632 net.cpp:446] Collecting Learning Rate and Weight Decay.
I0218 20:43:25.607255 2099749632 net.cpp:213] Network initialization done.
I0218 20:43:25.607262 2099749632 net.cpp:214] Memory required for data: 62425920
E0218 20:43:26.388214 2099749632 upgrade_proto.cpp:618] Attempting to upgrade input file specified using deprecated V1LayerParameter: ../models/bvlc_reference_rcnn_ilsvrc13/bvlc_reference_rcnn_ilsvrc13.caffemodel
I0218 20:43:27.089423 2099749632 upgrade_proto.cpp:626] Successfully upgraded file specified using deprecated V1LayerParameter
GPU mode
Loading input...
selective_search_rcnn({'/Users/shelhamer/h/desk/caffe/caffe-dev/examples/images/fish-bike.jpg'}, '/var/folders/bk/dtkn5qjd11bd17b2j36zplyw0000gp/T/tmpakaRLL.mat')
Processed 1570 windows in 102.895 s.
/Users/shelhamer/anaconda/lib/python2.7/site-packages/pandas/io/pytables.py:2453: PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed,key->block1_values] [items->['prediction']]warnings.warn(ws, PerformanceWarning)
Saved to _temp/det_output.h5 in 0.298 s.

This run was in GPU mode. For CPU mode detection, call detect.py without the --gpu argument.

Running this outputs a DataFrame with the filenames, selected windows, and their detection scores to an HDF5 file. (We only ran on one image, so the filenames will all be the same.)

In [2]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inlinedf = pd.read_hdf('_temp/det_output.h5', 'df')
print(df.shape)
print(df.iloc[0])

(1570, 5)
prediction    [-2.62247, -2.84579, -2.85122, -3.20838, -1.94...
ymin                                                     79.846
xmin                                                       9.62
ymax                                                     246.31
xmax                                                    339.624
Name: /Users/shelhamer/h/desk/caffe/caffe-dev/examples/images/fish-bike.jpg, dtype: object

1570 regions were proposed with the R-CNN configuration of selective search. The number of proposals will vary from image to image based on its contents and size -- selective search isn't scale invariant.

In general, detect.py is most efficient when running on a lot of images: it first extracts window proposals for all of them, batches the windows for efficient GPU processing, and then outputs the results. Simply list an image per line in the images_file, and it will process all of them.

Although this guide gives an example of R-CNN ImageNet detection, detect.py is clever enough to adapt to different Caffe models’ input dimensions, batch size, and output categories. You can switch the model definition and pretrained model as desired. Refer to python detect.py --help for the parameters to describe your data set. There's no need for hardcoding.

Anyway, let's now load the ILSVRC13 detection class names and make a DataFrame of the predictions. Note you'll need the auxiliary ilsvrc2012 data fetched by data/ilsvrc12/get_ilsvrc12_aux.sh.

In [3]:
with open('../data/ilsvrc12/det_synset_words.txt') as f:labels_df = pd.DataFrame([{'synset_id': l.strip().split(' ')[0],'name': ' '.join(l.strip().split(' ')[1:]).split(',')[0]}for l in f.readlines()])
labels_df.sort('synset_id')
predictions_df = pd.DataFrame(np.vstack(df.prediction.values), columns=labels_df['name'])
print(predictions_df.iloc[0])

name
accordion      -2.622471
airplane       -2.845788
ant            -2.851219
antelope       -3.208377
apple          -1.949950
armadillo      -2.472935
artichoke      -2.201684
axe            -2.327404
baby bed       -2.737925
backpack       -2.176763
bagel          -2.681061
balance beam   -2.722538
banana         -2.390628
band aid       -1.598909
banjo          -2.298197
...
trombone        -2.582361
trumpet         -2.352853
turtle          -2.360859
tv or monitor   -2.761043
unicycle        -2.218467
vacuum          -1.907717
violin          -2.757079
volleyball      -2.723689
waffle iron     -2.418540
washer          -2.408994
water bottle    -2.174899
watercraft      -2.837425
whale           -3.120338
wine bottle     -2.772960
zebra           -2.742913
Name: 0, Length: 200, dtype: float32

Let's look at the activations.

In [4]:
plt.gray()
plt.matshow(predictions_df.values)
plt.xlabel('Classes')
plt.ylabel('Windows')

Out[4]:
<matplotlib.text.Text at 0x114f15f90>

<matplotlib.figure.Figure at 0x114254b50>

Now let's take max across all windows and plot the top classes.

In [5]:
max_s = predictions_df.max(0)
max_s.sort(ascending=False)
print(max_s[:10])

name
person          1.835771
bicycle         0.866110
unicycle        0.057080
motorcycle     -0.006122
banjo          -0.028209
turtle         -0.189831
electric fan   -0.206788
cart           -0.214235
lizard         -0.393519
helmet         -0.477942
dtype: float32

The top detections are in fact a person and bicycle. Picking good localizations is a work in progress; we pick the top-scoring person and bicycle detections.

In [6]:
# Find, print, and display the top detections: person and bicycle.
i = predictions_df['person'].argmax()
j = predictions_df['bicycle'].argmax()# Show top predictions for top detection.
f = pd.Series(df['prediction'].iloc[i], index=labels_df['name'])
print('Top detection:')
print(f.order(ascending=False)[:5])
print('')# Show top predictions for second-best detection.
f = pd.Series(df['prediction'].iloc[j], index=labels_df['name'])
print('Second-best detection:')
print(f.order(ascending=False)[:5])# Show top detection in red, second-best top detection in blue.
im = plt.imread('images/fish-bike.jpg')
plt.imshow(im)
currentAxis = plt.gca()det = df.iloc[i]
coords = (det['xmin'], det['ymin']), det['xmax'] - det['xmin'], det['ymax'] - det['ymin']
currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor='r', linewidth=5))det = df.iloc[j]
coords = (det['xmin'], det['ymin']), det['xmax'] - det['xmin'], det['ymax'] - det['ymin']
currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor='b', linewidth=5))

Top detection:
name
person             1.835771
swimming trunks   -1.150371
rubber eraser     -1.231106
turtle            -1.266037
plastic bag       -1.303265
dtype: float32Second-best detection:
name
bicycle     0.866110
unicycle   -0.359139
scorpion   -0.811621
lobster    -0.982891
lamp       -1.096808
dtype: float32

Out[6]:
<matplotlib.patches.Rectangle at 0x118576a90>

That's cool. Let's take all 'bicycle' detections and NMS them to get rid of overlapping windows.

In [7]:
def nms_detections(dets, overlap=0.3):"""
    Non-maximum suppression: Greedily select high-scoring detections and
    skip detections that are significantly covered by a previously
    selected detection.    This version is translated from Matlab code by Tomasz Malisiewicz,
    who sped up Pedro Felzenszwalb's code.    Parameters
    ----------
    dets: ndarray
        each row is ['xmin', 'ymin', 'xmax', 'ymax', 'score']
    overlap: float
        minimum overlap ratio (0.3 default)    Output
    ------
    dets: ndarray
        remaining after suppression.
    """x1 = dets[:, 0]y1 = dets[:, 1]x2 = dets[:, 2]y2 = dets[:, 3]ind = np.argsort(dets[:, 4])w = x2 - x1h = y2 - y1area = (w * h).astype(float)pick = []while len(ind) > 0:i = ind[-1]pick.append(i)ind = ind[:-1]xx1 = np.maximum(x1[i], x1[ind])yy1 = np.maximum(y1[i], y1[ind])xx2 = np.minimum(x2[i], x2[ind])yy2 = np.minimum(y2[i], y2[ind])w = np.maximum(0., xx2 - xx1)h = np.maximum(0., yy2 - yy1)wh = w * ho = wh / (area[i] + area[ind] - wh)ind = ind[np.nonzero(o <= overlap)[0]]return dets[pick, :]

In [8]:
scores = predictions_df['bicycle']
windows = df[['xmin', 'ymin', 'xmax', 'ymax']].values
dets = np.hstack((windows, scores[:, np.newaxis]))
nms_dets = nms_detections(dets)

Show top 3 NMS'd detections for 'bicycle' in the image and note the gap between the top scoring box (red) and the remaining boxes.

In [9]:
plt.imshow(im)
currentAxis = plt.gca()
colors = ['r', 'b', 'y']
for c, det in zip(colors, nms_dets[:3]):currentAxis.add_patch(plt.Rectangle((det[0], det[1]), det[2]-det[0], det[3]-det[1],fill=False, edgecolor=c, linewidth=5))
print 'scores:', nms_dets[:3, 4]

scores: [ 0.86610985 -0.70051557 -1.34796357]

This was an easy instance for bicycle as it was in the class's training set. However, the person result is a true detection since this was not in the set for that class.

You should try out detection on an image of your own next!

(Remove the temp directory to clean up, and we're done.)

In [10]:
!rm -rf _temp

R-CNN is a state-of-the-art detector that classifies region proposals by a finetuned Caffe model. For the full details of the R-CNN system and model, refer to its project site and the paper:

Rich feature hierarchies for accurate object detection and semantic segmentation. Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik. CVPR 2014. Arxiv 2013.

In this example, we do detection by a pure Caffe edition of the R-CNN model for ImageNet. The R-CNN detector outputs class scores for the 200 detection classes of ILSVRC13. Keep in mind that these are raw one vs. all SVM scores, so they are not probabilistically calibrated or exactly comparable across classes. Note that this off-the-shelf model is simply for convenience, and is not the full R-CNN model.

Let's run detection on an image of a bicyclist riding a fish bike in the desert (from the ImageNet challenge—no joke).

First, we'll need region proposals and the Caffe R-CNN ImageNet model:

  • Selective Search is the region proposer used by R-CNN. The selective_search_ijcv_with_python Python module takes care of extracting proposals through the selective search MATLAB implementation. To install it, download the module and name its directory selective_search_ijcv_with_python, run the demo in MATLAB to compile the necessary functions, then add it to your PYTHONPATH for importing. (If you have your own region proposals prepared, or would rather not bother with this step, detect.py accepts a list of images and bounding boxes as CSV.)

-Run ./scripts/download_model_binary.py models/bvlc_reference_rcnn_ilsvrc13 to get the Caffe R-CNN ImageNet model.

With that done, we'll call the bundled detect.py to generate the region proposals and run the network. For an explanation of the arguments, do ./detect.py --help.

In [1]:
!mkdir -p _temp
!echo `pwd`/images/fish-bike.jpg > _temp/det_input.txt
!../python/detect.py --crop_mode=selective_search --pretrained_model=../models/bvlc_reference_rcnn_ilsvrc13/bvlc_reference_rcnn_ilsvrc13.caffemodel --model_def=../models/bvlc_reference_rcnn_ilsvrc13/deploy.prototxt --gpu --raw_scale=255 _temp/det_input.txt _temp/det_output.h5

WARNING: Logging before InitGoogleLogging() is written to STDERR
I0218 20:43:25.383932 2099749632 net.cpp:42] Initializing net from parameters:
name: "R-CNN-ilsvrc13"
input: "data"
input_dim: 10
input_dim: 3
input_dim: 227
input_dim: 227
state {phase: TEST
}
layer {name: "conv1"type: "Convolution"bottom: "data"top: "conv1"convolution_param {num_output: 96kernel_size: 11stride: 4}
}
layer {name: "relu1"type: "ReLU"bottom: "conv1"top: "conv1"
}
layer {name: "pool1"type: "Pooling"bottom: "conv1"top: "pool1"pooling_param {pool: MAXkernel_size: 3stride: 2}
}
layer {name: "norm1"type: "LRN"bottom: "pool1"top: "norm1"lrn_param {local_size: 5alpha: 0.0001beta: 0.75}
}
layer {name: "conv2"type: "Convolution"bottom: "norm1"top: "conv2"convolution_param {num_output: 256pad: 2kernel_size: 5group: 2}
}
layer {name: "relu2"type: "ReLU"bottom: "conv2"top: "conv2"
}
layer {name: "pool2"type: "Pooling"bottom: "conv2"top: "pool2"pooling_param {pool: MAXkernel_size: 3stride: 2}
}
layer {name: "norm2"type: "LRN"bottom: "pool2"top: "norm2"lrn_param {local_size: 5alpha: 0.0001beta: 0.75}
}
layer {name: "conv3"type: "Convolution"bottom: "norm2"top: "conv3"convolution_param {num_output: 384pad: 1kernel_size: 3}
}
layer {name: "relu3"type: "ReLU"bottom: "conv3"top: "conv3"
}
layer {name: "conv4"type: "Convolution"bottom: "conv3"top: "conv4"convolution_param {num_output: 384pad: 1kernel_size: 3group: 2}
}
layer {name: "relu4"type: "ReLU"bottom: "conv4"top: "conv4"
}
layer {name: "conv5"type: "Convolution"bottom: "conv4"top: "conv5"convolution_param {num_output: 256pad: 1kernel_size: 3group: 2}
}
layer {name: "relu5"type: "ReLU"bottom: "conv5"top: "conv5"
}
layer {name: "pool5"type: "Pooling"bottom: "conv5"top: "pool5"pooling_param {pool: MAXkernel_size: 3stride: 2}
}
layer {name: "fc6"type: "InnerProduct"bottom: "pool5"top: "fc6"inner_product_param {num_output: 4096}
}
layer {name: "relu6"type: "ReLU"bottom: "fc6"top: "fc6"
}
layer {name: "drop6"type: "Dropout"bottom: "fc6"top: "fc6"dropout_param {dropout_ratio: 0.5}
}
layer {name: "fc7"type: "InnerProduct"bottom: "fc6"top: "fc7"inner_product_param {num_output: 4096}
}
layer {name: "relu7"type: "ReLU"bottom: "fc7"top: "fc7"
}
layer {name: "drop7"type: "Dropout"bottom: "fc7"top: "fc7"dropout_param {dropout_ratio: 0.5}
}
layer {name: "fc-rcnn"type: "InnerProduct"bottom: "fc7"top: "fc-rcnn"inner_product_param {num_output: 200}
}
I0218 20:43:25.385720 2099749632 net.cpp:336] Input 0 -> data
I0218 20:43:25.385769 2099749632 layer_factory.hpp:74] Creating layer conv1
I0218 20:43:25.385783 2099749632 net.cpp:76] Creating Layer conv1
I0218 20:43:25.385790 2099749632 net.cpp:372] conv1 <- data
I0218 20:43:25.385802 2099749632 net.cpp:334] conv1 -> conv1
I0218 20:43:25.385815 2099749632 net.cpp:105] Setting up conv1
I0218 20:43:25.386574 2099749632 net.cpp:112] Top shape: 10 96 55 55 (2904000)
I0218 20:43:25.386610 2099749632 layer_factory.hpp:74] Creating layer relu1
I0218 20:43:25.386625 2099749632 net.cpp:76] Creating Layer relu1
I0218 20:43:25.386631 2099749632 net.cpp:372] relu1 <- conv1
I0218 20:43:25.386641 2099749632 net.cpp:323] relu1 -> conv1 (in-place)
I0218 20:43:25.386649 2099749632 net.cpp:105] Setting up relu1
I0218 20:43:25.386656 2099749632 net.cpp:112] Top shape: 10 96 55 55 (2904000)
I0218 20:43:25.386663 2099749632 layer_factory.hpp:74] Creating layer pool1
I0218 20:43:25.386675 2099749632 net.cpp:76] Creating Layer pool1
I0218 20:43:25.386682 2099749632 net.cpp:372] pool1 <- conv1
I0218 20:43:25.386690 2099749632 net.cpp:334] pool1 -> pool1
I0218 20:43:25.386699 2099749632 net.cpp:105] Setting up pool1
I0218 20:43:25.386716 2099749632 net.cpp:112] Top shape: 10 96 27 27 (699840)
I0218 20:43:25.386725 2099749632 layer_factory.hpp:74] Creating layer norm1
I0218 20:43:25.386736 2099749632 net.cpp:76] Creating Layer norm1
I0218 20:43:25.386744 2099749632 net.cpp:372] norm1 <- pool1
I0218 20:43:25.386803 2099749632 net.cpp:334] norm1 -> norm1
I0218 20:43:25.386819 2099749632 net.cpp:105] Setting up norm1
I0218 20:43:25.386832 2099749632 net.cpp:112] Top shape: 10 96 27 27 (699840)
I0218 20:43:25.386842 2099749632 layer_factory.hpp:74] Creating layer conv2
I0218 20:43:25.386852 2099749632 net.cpp:76] Creating Layer conv2
I0218 20:43:25.386865 2099749632 net.cpp:372] conv2 <- norm1
I0218 20:43:25.386878 2099749632 net.cpp:334] conv2 -> conv2
I0218 20:43:25.386899 2099749632 net.cpp:105] Setting up conv2
I0218 20:43:25.387024 2099749632 net.cpp:112] Top shape: 10 256 27 27 (1866240)
I0218 20:43:25.387042 2099749632 layer_factory.hpp:74] Creating layer relu2
I0218 20:43:25.387050 2099749632 net.cpp:76] Creating Layer relu2
I0218 20:43:25.387058 2099749632 net.cpp:372] relu2 <- conv2
I0218 20:43:25.387066 2099749632 net.cpp:323] relu2 -> conv2 (in-place)
I0218 20:43:25.387075 2099749632 net.cpp:105] Setting up relu2
I0218 20:43:25.387081 2099749632 net.cpp:112] Top shape: 10 256 27 27 (1866240)
I0218 20:43:25.387089 2099749632 layer_factory.hpp:74] Creating layer pool2
I0218 20:43:25.387097 2099749632 net.cpp:76] Creating Layer pool2
I0218 20:43:25.387104 2099749632 net.cpp:372] pool2 <- conv2
I0218 20:43:25.387112 2099749632 net.cpp:334] pool2 -> pool2
I0218 20:43:25.387121 2099749632 net.cpp:105] Setting up pool2
I0218 20:43:25.387130 2099749632 net.cpp:112] Top shape: 10 256 13 13 (432640)
I0218 20:43:25.387137 2099749632 layer_factory.hpp:74] Creating layer norm2
I0218 20:43:25.387145 2099749632 net.cpp:76] Creating Layer norm2
I0218 20:43:25.387152 2099749632 net.cpp:372] norm2 <- pool2
I0218 20:43:25.387161 2099749632 net.cpp:334] norm2 -> norm2
I0218 20:43:25.387168 2099749632 net.cpp:105] Setting up norm2
I0218 20:43:25.387176 2099749632 net.cpp:112] Top shape: 10 256 13 13 (432640)
I0218 20:43:25.387228 2099749632 layer_factory.hpp:74] Creating layer conv3
I0218 20:43:25.387249 2099749632 net.cpp:76] Creating Layer conv3
I0218 20:43:25.387258 2099749632 net.cpp:372] conv3 <- norm2
I0218 20:43:25.387266 2099749632 net.cpp:334] conv3 -> conv3
I0218 20:43:25.387276 2099749632 net.cpp:105] Setting up conv3
I0218 20:43:25.389375 2099749632 net.cpp:112] Top shape: 10 384 13 13 (648960)
I0218 20:43:25.389408 2099749632 layer_factory.hpp:74] Creating layer relu3
I0218 20:43:25.389421 2099749632 net.cpp:76] Creating Layer relu3
I0218 20:43:25.389430 2099749632 net.cpp:372] relu3 <- conv3
I0218 20:43:25.389438 2099749632 net.cpp:323] relu3 -> conv3 (in-place)
I0218 20:43:25.389447 2099749632 net.cpp:105] Setting up relu3
I0218 20:43:25.389456 2099749632 net.cpp:112] Top shape: 10 384 13 13 (648960)
I0218 20:43:25.389462 2099749632 layer_factory.hpp:74] Creating layer conv4
I0218 20:43:25.389472 2099749632 net.cpp:76] Creating Layer conv4
I0218 20:43:25.389478 2099749632 net.cpp:372] conv4 <- conv3
I0218 20:43:25.389487 2099749632 net.cpp:334] conv4 -> conv4
I0218 20:43:25.389497 2099749632 net.cpp:105] Setting up conv4
I0218 20:43:25.391810 2099749632 net.cpp:112] Top shape: 10 384 13 13 (648960)
I0218 20:43:25.391856 2099749632 layer_factory.hpp:74] Creating layer relu4
I0218 20:43:25.391871 2099749632 net.cpp:76] Creating Layer relu4
I0218 20:43:25.391880 2099749632 net.cpp:372] relu4 <- conv4
I0218 20:43:25.391888 2099749632 net.cpp:323] relu4 -> conv4 (in-place)
I0218 20:43:25.391898 2099749632 net.cpp:105] Setting up relu4
I0218 20:43:25.391906 2099749632 net.cpp:112] Top shape: 10 384 13 13 (648960)
I0218 20:43:25.391913 2099749632 layer_factory.hpp:74] Creating layer conv5
I0218 20:43:25.391923 2099749632 net.cpp:76] Creating Layer conv5
I0218 20:43:25.391929 2099749632 net.cpp:372] conv5 <- conv4
I0218 20:43:25.391937 2099749632 net.cpp:334] conv5 -> conv5
I0218 20:43:25.391947 2099749632 net.cpp:105] Setting up conv5
I0218 20:43:25.393072 2099749632 net.cpp:112] Top shape: 10 256 13 13 (432640)
I0218 20:43:25.393108 2099749632 layer_factory.hpp:74] Creating layer relu5
I0218 20:43:25.393122 2099749632 net.cpp:76] Creating Layer relu5
I0218 20:43:25.393129 2099749632 net.cpp:372] relu5 <- conv5
I0218 20:43:25.393138 2099749632 net.cpp:323] relu5 -> conv5 (in-place)
I0218 20:43:25.393148 2099749632 net.cpp:105] Setting up relu5
I0218 20:43:25.393157 2099749632 net.cpp:112] Top shape: 10 256 13 13 (432640)
I0218 20:43:25.393167 2099749632 layer_factory.hpp:74] Creating layer pool5
I0218 20:43:25.393175 2099749632 net.cpp:76] Creating Layer pool5
I0218 20:43:25.393182 2099749632 net.cpp:372] pool5 <- conv5
I0218 20:43:25.393190 2099749632 net.cpp:334] pool5 -> pool5
I0218 20:43:25.393199 2099749632 net.cpp:105] Setting up pool5
I0218 20:43:25.393209 2099749632 net.cpp:112] Top shape: 10 256 6 6 (92160)
I0218 20:43:25.393218 2099749632 layer_factory.hpp:74] Creating layer fc6
I0218 20:43:25.393226 2099749632 net.cpp:76] Creating Layer fc6
I0218 20:43:25.393232 2099749632 net.cpp:372] fc6 <- pool5
I0218 20:43:25.393240 2099749632 net.cpp:334] fc6 -> fc6
I0218 20:43:25.393249 2099749632 net.cpp:105] Setting up fc6
I0218 20:43:25.516396 2099749632 net.cpp:112] Top shape: 10 4096 1 1 (40960)
I0218 20:43:25.516445 2099749632 layer_factory.hpp:74] Creating layer relu6
I0218 20:43:25.516463 2099749632 net.cpp:76] Creating Layer relu6
I0218 20:43:25.516470 2099749632 net.cpp:372] relu6 <- fc6
I0218 20:43:25.516480 2099749632 net.cpp:323] relu6 -> fc6 (in-place)
I0218 20:43:25.516490 2099749632 net.cpp:105] Setting up relu6
I0218 20:43:25.516497 2099749632 net.cpp:112] Top shape: 10 4096 1 1 (40960)
I0218 20:43:25.516505 2099749632 layer_factory.hpp:74] Creating layer drop6
I0218 20:43:25.516515 2099749632 net.cpp:76] Creating Layer drop6
I0218 20:43:25.516521 2099749632 net.cpp:372] drop6 <- fc6
I0218 20:43:25.516530 2099749632 net.cpp:323] drop6 -> fc6 (in-place)
I0218 20:43:25.516538 2099749632 net.cpp:105] Setting up drop6
I0218 20:43:25.516557 2099749632 net.cpp:112] Top shape: 10 4096 1 1 (40960)
I0218 20:43:25.516566 2099749632 layer_factory.hpp:74] Creating layer fc7
I0218 20:43:25.516576 2099749632 net.cpp:76] Creating Layer fc7
I0218 20:43:25.516582 2099749632 net.cpp:372] fc7 <- fc6
I0218 20:43:25.516589 2099749632 net.cpp:334] fc7 -> fc7
I0218 20:43:25.516599 2099749632 net.cpp:105] Setting up fc7
I0218 20:43:25.604786 2099749632 net.cpp:112] Top shape: 10 4096 1 1 (40960)
I0218 20:43:25.604838 2099749632 layer_factory.hpp:74] Creating layer relu7
I0218 20:43:25.604852 2099749632 net.cpp:76] Creating Layer relu7
I0218 20:43:25.604859 2099749632 net.cpp:372] relu7 <- fc7
I0218 20:43:25.604868 2099749632 net.cpp:323] relu7 -> fc7 (in-place)
I0218 20:43:25.604878 2099749632 net.cpp:105] Setting up relu7
I0218 20:43:25.604885 2099749632 net.cpp:112] Top shape: 10 4096 1 1 (40960)
I0218 20:43:25.604893 2099749632 layer_factory.hpp:74] Creating layer drop7
I0218 20:43:25.604902 2099749632 net.cpp:76] Creating Layer drop7
I0218 20:43:25.604908 2099749632 net.cpp:372] drop7 <- fc7
I0218 20:43:25.604917 2099749632 net.cpp:323] drop7 -> fc7 (in-place)
I0218 20:43:25.604924 2099749632 net.cpp:105] Setting up drop7
I0218 20:43:25.604933 2099749632 net.cpp:112] Top shape: 10 4096 1 1 (40960)
I0218 20:43:25.604939 2099749632 layer_factory.hpp:74] Creating layer fc-rcnn
I0218 20:43:25.604948 2099749632 net.cpp:76] Creating Layer fc-rcnn
I0218 20:43:25.604954 2099749632 net.cpp:372] fc-rcnn <- fc7
I0218 20:43:25.604962 2099749632 net.cpp:334] fc-rcnn -> fc-rcnn
I0218 20:43:25.604971 2099749632 net.cpp:105] Setting up fc-rcnn
I0218 20:43:25.606878 2099749632 net.cpp:112] Top shape: 10 200 1 1 (2000)
I0218 20:43:25.606904 2099749632 net.cpp:165] fc-rcnn does not need backward computation.
I0218 20:43:25.606909 2099749632 net.cpp:165] drop7 does not need backward computation.
I0218 20:43:25.606916 2099749632 net.cpp:165] relu7 does not need backward computation.
I0218 20:43:25.606922 2099749632 net.cpp:165] fc7 does not need backward computation.
I0218 20:43:25.606928 2099749632 net.cpp:165] drop6 does not need backward computation.
I0218 20:43:25.606935 2099749632 net.cpp:165] relu6 does not need backward computation.
I0218 20:43:25.606940 2099749632 net.cpp:165] fc6 does not need backward computation.
I0218 20:43:25.606946 2099749632 net.cpp:165] pool5 does not need backward computation.
I0218 20:43:25.606952 2099749632 net.cpp:165] relu5 does not need backward computation.
I0218 20:43:25.606958 2099749632 net.cpp:165] conv5 does not need backward computation.
I0218 20:43:25.606964 2099749632 net.cpp:165] relu4 does not need backward computation.
I0218 20:43:25.606971 2099749632 net.cpp:165] conv4 does not need backward computation.
I0218 20:43:25.606976 2099749632 net.cpp:165] relu3 does not need backward computation.
I0218 20:43:25.606982 2099749632 net.cpp:165] conv3 does not need backward computation.
I0218 20:43:25.606988 2099749632 net.cpp:165] norm2 does not need backward computation.
I0218 20:43:25.606995 2099749632 net.cpp:165] pool2 does not need backward computation.
I0218 20:43:25.607002 2099749632 net.cpp:165] relu2 does not need backward computation.
I0218 20:43:25.607007 2099749632 net.cpp:165] conv2 does not need backward computation.
I0218 20:43:25.607013 2099749632 net.cpp:165] norm1 does not need backward computation.
I0218 20:43:25.607199 2099749632 net.cpp:165] pool1 does not need backward computation.
I0218 20:43:25.607213 2099749632 net.cpp:165] relu1 does not need backward computation.
I0218 20:43:25.607219 2099749632 net.cpp:165] conv1 does not need backward computation.
I0218 20:43:25.607225 2099749632 net.cpp:201] This network produces output fc-rcnn
I0218 20:43:25.607239 2099749632 net.cpp:446] Collecting Learning Rate and Weight Decay.
I0218 20:43:25.607255 2099749632 net.cpp:213] Network initialization done.
I0218 20:43:25.607262 2099749632 net.cpp:214] Memory required for data: 62425920
E0218 20:43:26.388214 2099749632 upgrade_proto.cpp:618] Attempting to upgrade input file specified using deprecated V1LayerParameter: ../models/bvlc_reference_rcnn_ilsvrc13/bvlc_reference_rcnn_ilsvrc13.caffemodel
I0218 20:43:27.089423 2099749632 upgrade_proto.cpp:626] Successfully upgraded file specified using deprecated V1LayerParameter
GPU mode
Loading input...
selective_search_rcnn({'/Users/shelhamer/h/desk/caffe/caffe-dev/examples/images/fish-bike.jpg'}, '/var/folders/bk/dtkn5qjd11bd17b2j36zplyw0000gp/T/tmpakaRLL.mat')
Processed 1570 windows in 102.895 s.
/Users/shelhamer/anaconda/lib/python2.7/site-packages/pandas/io/pytables.py:2453: PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed,key->block1_values] [items->['prediction']]warnings.warn(ws, PerformanceWarning)
Saved to _temp/det_output.h5 in 0.298 s.

This run was in GPU mode. For CPU mode detection, call detect.py without the --gpu argument.

Running this outputs a DataFrame with the filenames, selected windows, and their detection scores to an HDF5 file. (We only ran on one image, so the filenames will all be the same.)

In [2]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inlinedf = pd.read_hdf('_temp/det_output.h5', 'df')
print(df.shape)
print(df.iloc[0])

(1570, 5)
prediction    [-2.62247, -2.84579, -2.85122, -3.20838, -1.94...
ymin                                                     79.846
xmin                                                       9.62
ymax                                                     246.31
xmax                                                    339.624
Name: /Users/shelhamer/h/desk/caffe/caffe-dev/examples/images/fish-bike.jpg, dtype: object

1570 regions were proposed with the R-CNN configuration of selective search. The number of proposals will vary from image to image based on its contents and size -- selective search isn't scale invariant.

In general, detect.py is most efficient when running on a lot of images: it first extracts window proposals for all of them, batches the windows for efficient GPU processing, and then outputs the results. Simply list an image per line in the images_file, and it will process all of them.

Although this guide gives an example of R-CNN ImageNet detection, detect.py is clever enough to adapt to different Caffe models’ input dimensions, batch size, and output categories. You can switch the model definition and pretrained model as desired. Refer to python detect.py --help for the parameters to describe your data set. There's no need for hardcoding.

Anyway, let's now load the ILSVRC13 detection class names and make a DataFrame of the predictions. Note you'll need the auxiliary ilsvrc2012 data fetched by data/ilsvrc12/get_ilsvrc12_aux.sh.

In [3]:
with open('../data/ilsvrc12/det_synset_words.txt') as f:labels_df = pd.DataFrame([{'synset_id': l.strip().split(' ')[0],'name': ' '.join(l.strip().split(' ')[1:]).split(',')[0]}for l in f.readlines()])
labels_df.sort('synset_id')
predictions_df = pd.DataFrame(np.vstack(df.prediction.values), columns=labels_df['name'])
print(predictions_df.iloc[0])

name
accordion      -2.622471
airplane       -2.845788
ant            -2.851219
antelope       -3.208377
apple          -1.949950
armadillo      -2.472935
artichoke      -2.201684
axe            -2.327404
baby bed       -2.737925
backpack       -2.176763
bagel          -2.681061
balance beam   -2.722538
banana         -2.390628
band aid       -1.598909
banjo          -2.298197
...
trombone        -2.582361
trumpet         -2.352853
turtle          -2.360859
tv or monitor   -2.761043
unicycle        -2.218467
vacuum          -1.907717
violin          -2.757079
volleyball      -2.723689
waffle iron     -2.418540
washer          -2.408994
water bottle    -2.174899
watercraft      -2.837425
whale           -3.120338
wine bottle     -2.772960
zebra           -2.742913
Name: 0, Length: 200, dtype: float32

Let's look at the activations.

In [4]:
plt.gray()
plt.matshow(predictions_df.values)
plt.xlabel('Classes')
plt.ylabel('Windows')

Out[4]:
<matplotlib.text.Text at 0x114f15f90>

<matplotlib.figure.Figure at 0x114254b50>

Now let's take max across all windows and plot the top classes.

In [5]:
max_s = predictions_df.max(0)
max_s.sort(ascending=False)
print(max_s[:10])

name
person          1.835771
bicycle         0.866110
unicycle        0.057080
motorcycle     -0.006122
banjo          -0.028209
turtle         -0.189831
electric fan   -0.206788
cart           -0.214235
lizard         -0.393519
helmet         -0.477942
dtype: float32

The top detections are in fact a person and bicycle. Picking good localizations is a work in progress; we pick the top-scoring person and bicycle detections.

In [6]:
# Find, print, and display the top detections: person and bicycle.
i = predictions_df['person'].argmax()
j = predictions_df['bicycle'].argmax()# Show top predictions for top detection.
f = pd.Series(df['prediction'].iloc[i], index=labels_df['name'])
print('Top detection:')
print(f.order(ascending=False)[:5])
print('')# Show top predictions for second-best detection.
f = pd.Series(df['prediction'].iloc[j], index=labels_df['name'])
print('Second-best detection:')
print(f.order(ascending=False)[:5])# Show top detection in red, second-best top detection in blue.
im = plt.imread('images/fish-bike.jpg')
plt.imshow(im)
currentAxis = plt.gca()det = df.iloc[i]
coords = (det['xmin'], det['ymin']), det['xmax'] - det['xmin'], det['ymax'] - det['ymin']
currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor='r', linewidth=5))det = df.iloc[j]
coords = (det['xmin'], det['ymin']), det['xmax'] - det['xmin'], det['ymax'] - det['ymin']
currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor='b', linewidth=5))

Top detection:
name
person             1.835771
swimming trunks   -1.150371
rubber eraser     -1.231106
turtle            -1.266037
plastic bag       -1.303265
dtype: float32Second-best detection:
name
bicycle     0.866110
unicycle   -0.359139
scorpion   -0.811621
lobster    -0.982891
lamp       -1.096808
dtype: float32

Out[6]:
<matplotlib.patches.Rectangle at 0x118576a90>

That's cool. Let's take all 'bicycle' detections and NMS them to get rid of overlapping windows.

In [7]:
def nms_detections(dets, overlap=0.3):"""
    Non-maximum suppression: Greedily select high-scoring detections and
    skip detections that are significantly covered by a previously
    selected detection.    This version is translated from Matlab code by Tomasz Malisiewicz,
    who sped up Pedro Felzenszwalb's code.    Parameters
    ----------
    dets: ndarray
        each row is ['xmin', 'ymin', 'xmax', 'ymax', 'score']
    overlap: float
        minimum overlap ratio (0.3 default)    Output
    ------
    dets: ndarray
        remaining after suppression.
    """x1 = dets[:, 0]y1 = dets[:, 1]x2 = dets[:, 2]y2 = dets[:, 3]ind = np.argsort(dets[:, 4])w = x2 - x1h = y2 - y1area = (w * h).astype(float)pick = []while len(ind) > 0:i = ind[-1]pick.append(i)ind = ind[:-1]xx1 = np.maximum(x1[i], x1[ind])yy1 = np.maximum(y1[i], y1[ind])xx2 = np.minimum(x2[i], x2[ind])yy2 = np.minimum(y2[i], y2[ind])w = np.maximum(0., xx2 - xx1)h = np.maximum(0., yy2 - yy1)wh = w * ho = wh / (area[i] + area[ind] - wh)ind = ind[np.nonzero(o <= overlap)[0]]return dets[pick, :]

In [8]:
scores = predictions_df['bicycle']
windows = df[['xmin', 'ymin', 'xmax', 'ymax']].values
dets = np.hstack((windows, scores[:, np.newaxis]))
nms_dets = nms_detections(dets)

Show top 3 NMS'd detections for 'bicycle' in the image and note the gap between the top scoring box (red) and the remaining boxes.

In [9]:
plt.imshow(im)
currentAxis = plt.gca()
colors = ['r', 'b', 'y']
for c, det in zip(colors, nms_dets[:3]):currentAxis.add_patch(plt.Rectangle((det[0], det[1]), det[2]-det[0], det[3]-det[1],fill=False, edgecolor=c, linewidth=5))
print 'scores:', nms_dets[:3, 4]

scores: [ 0.86610985 -0.70051557 -1.34796357]

This was an easy instance for bicycle as it was in the class's training set. However, the person result is a true detection since this was not in the set for that class.

You should try out detection on an image of your own next!

(Remove the temp directory to clean up, and we're done.)

In [10]:
!rm -rf _temp

caffe 官方例程之R-CNN(物体检测)相关推荐

  1. 物体检测之从RCNN到Faster RCNN

    RCNN 问题与创新 架构 训练 测试 Fast RCNN 问题与创新 架构 训练 测试 Faster RCNN 问题与创新 架构 训练 测试 总结 本文将简要介绍物体检测的two stage的相关算 ...

  2. Faster R CNN

    Faster R CNN 3 FASTER R-CNN 我们的Faster R CNN 由两个模块组成,第一个模块是 proposes regions 的全卷积网络,第二个是使用 proposed r ...

  3. CNN应用之基于Overfeat的物体检测-2014 ICLR-未完待续

    转载自:深度学习(二十)CNN应用之基于Overfeat的物体检测-2014 ICLR-未完待续 - hjimce的专栏 - 博客频道 - CSDN.NET http://blog.csdn.net/ ...

  4. CNN应用之SPP(基于空间金字塔池化的卷积神经网络物体检测)-ECCV 2014-未完待续

    基于空间金字塔池化的卷积神经网络物体检测 原文地址:http://blog.csdn.net/hjimce/article/details/50187655 作者:hjimce 一.相关理论 本篇博文 ...

  5. CNN应用之基于R-CNN的物体检测-CVPR 2014-未完待续

    转载自: 深度学习(十八)CNN应用之基于R-CNN的物体检测-CVPR 2014-未完待续 - hjimce的专栏 - 博客频道 - CSDN.NET http://blog.csdn.net/hj ...

  6. 如何使用CNN进行物体识别和分类_基于CNN目标检测方法(RCNN系列,YOLO,SSD)

    转载自:基于CNN目标检测方法(RCNN,Fast-RCNN,Faster-RCNN,Mask-RCNN,YOLO,SSD)行人检测 一.研究意义 卷积神经网络(CNN)由于其强大的特征提取能力,近年 ...

  7. 《深度学习之PyTorch物体检测实战》—读书笔记

    随书代码 物体检测与PyTorch 深度学习 为了赋予计算机以人类的理解能力与逻辑思维,诞生了人工智能(Artificial Intelligence, AI)这一学科.在实现人工智能的众多算法中,机 ...

  8. AI学习笔记(十二)物体检测(上)

    AI学习笔记之物体检测(上) 物体检测简介 常见检测网络 IOU TP.TN.FP.FN precision(精确度)和recall(召回率) 边框回归 边框回归具体方法 Selective Sear ...

  9. 物体检测及分类方法总结(提供了很多论文和代码链接)

    原文:http://blog.csdn.net/yimingsilence/article/details/53995721 这里搜集了一些关于物体检测的方法分析和介绍,看好哪个可以去详细研究一下,基 ...

  10. 物体检测及分类方法总结

    原文:http://blog.csdn.net/yimingsilence/article/details/53995721 方法选择: ========DPM========= 使用传统的slide ...

最新文章

  1. numpy如何生成随机数
  2. 使用Python+Qt时解决QTreeWidget中的内容超出边界后自动隐藏的问题
  3. 路径规划后对路径进行平滑处理
  4. 3分钟入门python_3分钟学完Python,直接从入门到精通「史上最强干货库」
  5. String和Date、Timestamp之间的转换
  6. IEEE754标准中32位、64位浮点数的取值范围
  7. Java – HashMap详细说明
  8. ble芯片 全称_蓝牙芯片都有哪些厂商?一文解答
  9. 如何掌握openGauss数据库核心技术?秘诀一:拿捏SQL引擎(3)
  10. c语言中cnthe普通变量,不得不说,关于 *(unsigned long *) 和 (unsigned long)
  11. 提高Entity Framework性能的一些建议
  12. 如何使用Aiseesoft iPhone Ringtone Maker for Mac在Mac上制作铃声
  13. IDEA安装插件IDE Eval Reset
  14. VMware esxi6.7U3B安装镜像集成Realtek8168网卡驱动
  15. CF855G Harry Vs Voldemort 题解
  16. 【Zynq UltraScale+ MPSoC解密学习1】Zynq UltraScale+的基本介绍
  17. Linux-京东字节百度提前批,一面二面都被问到了awk——实例篇(3)查进程,kill指定进程
  18. Python-自学爬虫篇
  19. 「需求广场」需求词更新明细(九)
  20. Matplotlib:设置坐标轴范围,刻度,位置,自定义刻度名称,添加数据标签

热门文章

  1. iptables 简介
  2. Spring事务传播实验剖析(一)
  3. Linux 安装python 模块及库
  4. 1196971406
  5. tomcat下部署activemq(转)
  6. 基于Mesos和Docker的分布式计算平台
  7. Andorid提高--数据持久化
  8. Ubuntu16.04LTS +Qt+boost1.66编译错误:consuming_buffers.hpp: parse error in template argument list...
  9. iOS开发--Swift RAC响应式编程初探
  10. 20款优秀的可以替代桌面软件的Web应用(转载自JavaEye)