对于每一个学习 Python 的同学,想必对 @ 符号一定不陌生了,正如你所知, @ 符号是装饰器的语法糖,@符号后面的函数就是我们本文的主角:装饰器

装饰器放在一个函数开始定义的地方,它就像一顶帽子一样戴在这个函数的头上。和这个函数绑定在一起。在我们调用这个函数的时候,第一件事并不是执行这个函数,而是将这个函数做为参数传入它头顶上这顶帽子,这顶帽子我们称之为 装饰器

曾经我在刚转行做程序员时的一次的面试中,被面试官问过这样的两个问题:

1、你都用过装饰器实现过什么样的功能?

2、如何写一个可以传参的装饰器?

对于当时实战经验非常有限的我,第一个问题只能回答一些非常简单的用法,而第二个问题却没能回答上来。

当时带着这两个问题,我就开始系统的学习装饰器的所有内容。这些一直整理在自己的博客中,今天对其进行了大量的补充和勘误,发表在这里分享给大家。希望对刚入门以及进阶的朋友可以提供一些参考。

01. Hello,装饰器

装饰器的使用方法很固定

  1. 先定义一个装饰器(帽子)

  2. 再定义你的业务函数或者类(人)

  3. 最后把这装饰器(帽子)扣在这个函数(人)头上

就像下面这样子

def decorator(func):    def wrapper(*args, **kw):        return func()    return wrapper

@decoratordef function():    print("hello, decorator")

实际上,装饰器并不是编码必须性,意思就是说,你不使用装饰器完全可以,它的出现,应该是使我们的代码

  • 更加优雅,代码结构更加清晰

  • 将实现特定的功能代码封装成装饰器,提高代码复用率,增强代码可读性

接下来,我将以实例讲解,如何编写出各种简单及复杂的装饰器。

02. 入门:日志打印器

首先是日志打印器
实现的功能:

  1. 在函数执行前,先打印一行日志告知一下主人,我要执行函数了。

  2. 在函数执行完,也不能拍拍屁股就走人了,咱可是有礼貌的代码,再打印一行日志告知下主人,我执行完啦。

# 这是装饰器函数,参数 func 是被装饰的函数def logger(func):    def wrapper(*args, **kw):        print('主人,我准备开始执行:{} 函数了:'.format(func.__name__))

        # 真正执行的是这行。        func(*args, **kw)

        print('主人,我执行完啦。')    return wrapper

假如,我的业务函数是,计算两个数之和。写好后,直接给它带上帽子。

@loggerdef add(x, y):    print('{} + {} = {}'.format(x, y, x+y))

然后执行一下 add 函数。

add(200, 50)

来看看输出了什么?

主人,我准备开始执行:add 函数了:200 + 50 = 250主人,我执行完啦。

03. 入门:时间计时器

再来看看 时间计时器
实现功能:顾名思义,就是计算一个函数的执行时长。

# 这是装饰函数def timer(func):    def wrapper(*args, **kw):        t1=time.time()        # 这是函数真正执行的地方        func(*args, **kw)        t2=time.time()

        # 计算下时长        cost_time = t2-t1         print("花费时间:{}秒".format(cost_time))    return wrapper

假如,我们的函数是要睡眠10秒。这样也能更好的看出这个计算时长到底靠不靠谱。

import time

@timerdef want_sleep(sleep_time):    time.sleep(sleep_time)

want_sleep(10)

来看看输出,如预期一样,输出10秒。

花费时间:10.0073800086975098秒

04. 进阶:带参数的函数装饰器

通过上面两个简单的入门示例,你应该能体会到装饰器的工作原理了。

不过,装饰器的用法还远不止如此,深究下去,还大有文章。今天就一起来把这个知识点学透。

回过头去看看上面的例子,装饰器是不能接收参数的。其用法,只能适用于一些简单的场景。不传参的装饰器,只能对被装饰函数,执行固定逻辑。

装饰器本身是一个函数,做为一个函数,如果不能传参,那这个函数的功能就会很受限,只能执行固定的逻辑。这意味着,如果装饰器的逻辑代码的执行需要根据不同场景进行调整,若不能传参的话,我们就要写两个装饰器,这显然是不合理的。

比如我们要实现一个可以定时发送邮件的任务(一分钟发送一封),定时进行时间同步的任务(一天同步一次),就可以自己实现一个 periodic_task (定时任务)的装饰器,这个装饰器可以接收一个时间间隔的参数,间隔多长时间执行一次任务。

可以这样像下面这样写,由于这个功能代码比较复杂,不利于学习,这里就不贴了。

@periodic_task(spacing=60)def send_mail():     pass

@periodic_task(spacing=86400)def ntp()pass 

那我们来自己创造一个伪场景,可以在装饰器里传入一个参数,指明国籍,并在函数执行前,用自己国家的母语打一个招呼。

# 小明,中国人@say_hello("china")def xiaoming():    pass

# jack,美国人@say_hello("america")def jack():    pass

那我们如果实现这个装饰器,让其可以实现 传参 呢?

会比较复杂,需要两层嵌套。

def say_hello(contry):    def wrapper(func):        def deco(*args, **kwargs):            if contry == "china":                print("你好!")            elif contry == "america":                print('hello.')            else:                return

            # 真正执行函数的地方            func(*args, **kwargs)        return deco    return wrapper

来执行一下

xiaoming()print("------------")jack()

看看输出结果。

你好!------------hello.

05. 高阶:不带参数的类装饰器

以上都是基于函数实现的装饰器,在阅读别人代码时,还可以时常发现还有基于类实现的装饰器。

基于类装饰器的实现,必须实现 __call____init__两个内置函数。__init__ :接收被装饰函数__call__ :实现装饰逻辑。

还是以日志打印这个简单的例子为例

class logger(object):    def __init__(self, func):        self.func = func

    def __call__(self, *args, **kwargs):        print("[INFO]: the function {func}() is running..."            .format(func=self.func.__name__))        return self.func(*args, **kwargs)

@loggerdef say(something):    print("say {}!".format(something))

say("hello")

执行一下,看看输出

[INFO]: the function say() is running...say hello!

06. 高阶:带参数的类装饰器

上面不带参数的例子,你发现没有,只能打印INFO级别的日志,正常情况下,我们还需要打印DEBUG WARNING等级别的日志。这就需要给类装饰器传入参数,给这个函数指定级别了。

带参数和不带参数的类装饰器有很大的不同。

__init__ :不再接收被装饰函数,而是接收传入参数。__call__ :接收被装饰函数,实现装饰逻辑。

class logger(object):    def __init__(self, level='INFO'):        self.level = level

    def __call__(self, func): # 接受函数        def wrapper(*args, **kwargs):            print("[{level}]: the function {func}() is running..."                .format(level=self.level, func=func.__name__))            func(*args, **kwargs)        return wrapper  #返回函数

@logger(level='WARNING')def say(something):    print("say {}!".format(something))

say("hello")

我们指定WARNING级别,运行一下,来看看输出。

[WARNING]: the function say() is running...say hello!

07. 使用偏函数与类实现装饰器

绝大多数装饰器都是基于函数和闭包实现的,但这并非制造装饰器的唯一方式。

事实上,Python 对某个对象是否能通过装饰器( @decorator)形式使用只有一个要求:decorator 必须是一个“可被调用(callable)的对象

对于这个 callable 对象,我们最熟悉的就是函数了。

除函数之外,类也可以是 callable 对象,只要实现了__call__ 函数(上面几个例子已经接触过了)。

还有容易被人忽略的偏函数其实也是 callable 对象。

接下来就来说说,如何使用 类和偏函数结合实现一个与众不同的装饰器。

如下所示,DelayFunc 是一个实现了 __call__ 的类,delay 返回一个偏函数,在这里 delay 就可以做为一个装饰器。(以下代码摘自 Python工匠:使用装饰器的小技巧)

import timeimport functools

class DelayFunc:    def __init__(self,  duration, func):        self.duration = duration        self.func = func

    def __call__(self, *args, **kwargs):        print(f'Wait for {self.duration} seconds...')        time.sleep(self.duration)        return self.func(*args, **kwargs)

    def eager_call(self, *args, **kwargs):        print('Call without delay')        return self.func(*args, **kwargs)

def delay(duration):    """    装饰器:推迟某个函数的执行。    同时提供 .eager_call 方法立即执行    """    # 此处为了避免定义额外函数,    # 直接使用 functools.partial 帮助构造 DelayFunc 实例    return functools.partial(DelayFunc, duration)

我们的业务函数很简单,就是相加

@delay(duration=2)def add(a, b):    return a+b

来看一下执行过程

>>> add    # 可见 add 变成了 Delay 的实例<__main__.delayfunc>0x107bd0be0>>>> >>> add(3,5)  # 直接调用实例,进入 __call__Wait for 2 seconds...8>>> >>> add.func # 实现实例方法0x107bef1e0>

08. 如何写能装饰类的装饰器?

用 Python 写单例模式的时候,常用的有三种写法。其中一种,是用装饰器来实现的。

以下便是我自己写的装饰器版的单例写法。

instances = {}

def singleton(cls):    def get_instance(*args, **kw):        cls_name = cls.__name__        print('===== 1 ====')        if not cls_name in instances:            print('===== 2 ====')            instance = cls(*args, **kw)            instances[cls_name] = instance        return instances[cls_name]    return get_instance

@singletonclass User:    _instance = None

    def __init__(self, name):        print('===== 3 ====')        self.name = name

可以看到我们用singleton 这个装饰函数来装饰 User 这个类。装饰器用在类上,并不是很常见,但只要熟悉装饰器的实现过程,就不难以实现对类的装饰。在上面这个例子中,装饰器就只是实现对类实例的生成的控制而已。

其实例化的过程,你可以参考我这里的调试过程,加以理解。


09. wraps 装饰器有啥用?

在 functools 标准库中有提供一个 wraps 装饰器,你应该也经常见过,那他有啥用呢?

先来看一个例子

def wrapper(func):    def inner_function():        pass    return inner_function

@wrapperdef wrapped():    pass

print(wrapped.__name__)#inner_function

为什么会这样子?不是应该返回 func 吗?

这也不难理解,因为上边执行func 和下边 decorator(func)  是等价的,所以上面 func.__name__ 是等价于下面decorator(func).__name__ 的,那当然名字是 inner_function

def wrapper(func):    def inner_function():        pass    return inner_function

def wrapped():    pass

print(wrapper(wrapped).__name__)#inner_function

那如何避免这种情况的产生?方法是使用 functools .wraps 装饰器,它的作用就是将 被修饰的函数(wrapped) 的一些属性值赋值给 修饰器函数(wrapper) ,最终让属性的显示更符合我们的直觉。

from functools import wraps

def wrapper(func):    @wraps(func)    def inner_function():        pass    return inner_function

@wrapperdef wrapped():    pass

print(wrapped.__name__)# wrapped

准确点说,wraps 其实是一个偏函数对象(partial),源码如下

def wraps(wrapped,          assigned = WRAPPER_ASSIGNMENTS,          updated = WRAPPER_UPDATES):    return partial(update_wrapper, wrapped=wrapped,                   assigned=assigned, updated=updated)

可以看到wraps其实就是调用了一个函数update_wrapper,知道原理后,我们改写上面的代码,在不使用 wraps的情况下,也可以让 wrapped.__name__ 打印出 wrapped,代码如下:

from functools import update_wrapper

WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',                       '__annotations__')

def wrapper(func):    def inner_function():        pass

    update_wrapper(inner_function, func, assigned=WRAPPER_ASSIGNMENTS)    return inner_function

@wrapperdef wrapped():    pass

print(wrapped.__name__)

10. 内置装饰器:property

以上,我们介绍的都是自定义的装饰器。

其实Python语言本身也有一些装饰器。比如property这个内建装饰器,我们再熟悉不过了。

它通常存在于类中,可以将一个函数定义成一个属性,属性的值就是该函数return的内容。

通常我们给实例绑定属性是这样的

class Student(object):    def __init__(self, name, age=None):        self.name = name        self.age = age

# 实例化xiaoming = Student("小明")

# 添加属性xiaoming.age=25

# 查询属性xiaoming.age

# 删除属性del xiaoming.age

但是稍有经验的开发人员,一下就可以看出,这样直接把属性暴露出去,虽然写起来很简单,但是并不能对属性的值做合法性限制。为了实现这个功能,我们可以这样写。

class Student(object):    def __init__(self, name):        self.name = name        self.name = None

    def set_age(self, age):        if not isinstance(age, int):            raise ValueError('输入不合法:年龄必须为数值!')        if not 0 100:            raise ValueError('输入不合法:年龄范围必须0-100')        self._age=age

    def get_age(self):        return self._age

    def del_age(self):        self._age = None

xiaoming = Student("小明")

# 添加属性xiaoming.set_age(25)

# 查询属性xiaoming.get_age()

# 删除属性xiaoming.del_age()

上面的代码设计虽然可以变量的定义,但是可以发现不管是获取还是赋值(通过函数)都和我们平时见到的不一样。
按照我们思维习惯应该是这样的。

# 赋值xiaoming.age = 25

# 获取xiaoming.age

那么这样的方式我们如何实现呢。请看下面的代码。

class Student(object):    def __init__(self, name):        self.name = name        self.name = None

    @property    def age(self):        return self._age

    @age.setter    def age(self, value):        if not isinstance(value, int):            raise ValueError('输入不合法:年龄必须为数值!')        if not 0 100:            raise ValueError('输入不合法:年龄范围必须0-100')        self._age=value

    @age.deleter    def age(self):        del self._age

xiaoming = Student("小明")

# 设置属性xiaoming.age = 25

# 查询属性xiaoming.age

# 删除属性del xiaoming.age

@property装饰过的函数,会将一个函数定义成一个属性,属性的值就是该函数return的内容。同时,会将这个函数变成另外一个装饰器。就像后面我们使用的@age.setter@age.deleter

@age.setter 使得我们可以使用XiaoMing.age = 25这样的方式直接赋值。@age.deleter 使得我们可以使用del XiaoMing.age这样的方式来删除属性。

property 的底层实现机制是「描述符」,为此我还写过一篇文章。

这里也介绍一下吧,正好将这些看似零散的文章全部串起来。

如下,我写了一个类,里面使用了 property 将 math 变成了类实例的属性

class Student:    def __init__(self, name):        self.name = name

    @property    def math(self):        return self._math

    @math.setter    def math(self, value):        if 0 <= value <= 100:            self._math = value        else:            raise ValueError("Valid value must be in [0, 100]")

为什么说 property 底层是基于描述符协议的呢?通过 PyCharm 点击进入 property 的源码,很可惜,只是一份类似文档一样的伪源码,并没有其具体的实现逻辑。

不过,从这份伪源码的魔法函数结构组成,可以大体知道其实现逻辑。

这里我自己通过模仿其函数结构,结合「描述符协议」来自己实现类 property 特性。

代码如下:

class TestProperty(object):

    def __init__(self, fget=None, fset=None, fdel=None, doc=None):        self.fget = fget        self.fset = fset        self.fdel = fdel        self.__doc__ = doc

    def __get__(self, obj, objtype=None):        print("in __get__")        if obj is None:            return self        if self.fget is None:            raise AttributeError        return self.fget(obj)

    def __set__(self, obj, value):        print("in __set__")        if self.fset is None:            raise AttributeError        self.fset(obj, value)

    def __delete__(self, obj):        print("in __delete__")        if self.fdel is None:            raise AttributeError        self.fdel(obj)

    def getter(self, fget):        print("in getter")        return type(self)(fget, self.fset, self.fdel, self.__doc__)

    def setter(self, fset):        print("in setter")        return type(self)(self.fget, fset, self.fdel, self.__doc__)

    def deleter(self, fdel):        print("in deleter")        return type(self)(self.fget, self.fset, fdel, self.__doc__)

然后 Student 类,我们也相应改成如下

class Student:    def __init__(self, name):        self.name = name

    # 其实只有这里改变    @TestProperty    def math(self):        return self._math

    @math.setter    def math(self, value):        if 0 <= value <= 100:            self._math = value        else:            raise ValueError("Valid value must be in [0, 100]")

为了尽量让你少产生一点疑惑,我这里做两点说明:

  1. 使用TestProperty装饰后,math 不再是一个函数,而是TestProperty类的一个实例。所以第二个math函数可以使用 math.setter 来装饰,本质是调用TestProperty.setter 来产生一个新的 TestProperty 实例赋值给第二个math

  2. 第一个 math 和第二个 math 是两个不同 TestProperty 实例。但他们都属于同一个描述符类(TestProperty),当对 math 对于赋值时,就会进入 TestProperty.__set__,当对math 进行取值里,就会进入 TestProperty.__get__。仔细一看,其实最终访问的还是Student实例的 _math 属性。

说了这么多,还是运行一下,更加直观一点。

# 运行后,会直接打印这一行,这是在实例化 TestProperty 并赋值给第二个mathin setter>>>>>> s1.math = 90in __set__>>> s1.mathin __get__90

如对上面代码的运行原理,有疑问的同学,请务必结合上面两点说明加以理解,那两点相当关键。

11. 其他装饰器:装饰器实战

读完并理解了上面的内容,你可以说是Python高手了。别怀疑,自信点,因为很多人都不知道装饰器有这么多用法呢。

在我看来,使用装饰器,可以达到如下目的:

  • 使代码可读性更高,逼格更高;

  • 代码结构更加清晰,代码冗余度更低;

刚好我在最近也有一个场景,可以用装饰器很好的实现,暂且放上来看看。

这是一个实现控制函数运行超时的装饰器。如果超时,则会抛出超时异常。

有兴趣的可以看看。

import signal

class TimeoutException(Exception):    def __init__(self, error='Timeout waiting for response from Cloud'):        Exception.__init__(self, error)

def timeout_limit(timeout_time):    def wraps(func):        def handler(signum, frame):            raise TimeoutException()

        def deco(*args, **kwargs):            signal.signal(signal.SIGALRM, handler)            signal.alarm(timeout_time)            func(*args, **kwargs)            signal.alarm(0)        return deco    return wraps

以上,便是我对装饰器的所有分享。

▼ 点击成为社区注册会员          「在看」一下,一起PY!

python类之间传参_没看懂这11 条,别说你精通 Python 装饰器相关推荐

  1. 没看完这11 条,别说你精通 Python 装饰器

    对于每一个学习 Python 的同学,想必对 @ 符号一定不陌生了,正如你所知, @ 符号是装饰器的语法糖,@符号后面的函数就是我们本文的主角:装饰器. 装饰器放在一个函数开始定义的地方,它就像一顶帽 ...

  2. 如何看懂python代码分几步_如何看懂源代码--(分析源代码方法)

    在阅读程式码的细节之前,我们应先试着捕捉系统的运作情境.在采取由上至下的方式时,系统性的架构是最顶端的层次,而系统的运作情境,则是在它之下的另一个层次. 好的说明文件难求,拼凑故事的能力很重要 有些系 ...

  3. python解包裹_关于Python中包裹传参和解包裹的理解

    原标题:关于Python中包裹传参和解包裹的理解 1.包裹传参 首先思考一个问题:为什么要有包裹传参?原因包括但不仅限于以下两点:①不确定参数的个数.②希望函数定义的更加松散灵活 包裹传参分两种:包裹 ...

  4. python包裹 函数_关于Python中包裹传参和解包裹的理解

    1.包裹传参 首先思考一个问题:为什么要有包裹传参?原因包括但不仅限于以下两点:①不确定参数的个数.②希望函数定义的更加松散灵活 包裹传参分两种:包裹位置传参和包裹关键字传参.先看包裹位置传参: 在这 ...

  5. python函数参数传递机制_Python 学习笔记(一) 理解Python的函数传参机制

    对于刚接触Python不久的新手,Python的函数传参机制往往会让人迷惑.学过C的同学都知道函数参数可以传值或者传地址.比如下面这段代码 点击(此处)折叠或打开 void func(int inpu ...

  6. Python 命令行传参

    Python 命令行传参 说到 python 命令行传参,可能大部分人的第一反应就是用 argparse.的确,argparse 在我们需要指定多个预设的参数(如深度学习中指定模型的超参数等)时,是非 ...

  7. Vue.js父与子组件之间传参 父向子组件传参   例子:App.vue为父,引入componetA组件之后,则可以在template中使用标签(注意驼峰写法要改成componet-a写法,因为ht

    Vue.js父与子组件之间传参 父向子组件传参 例子:App.vue为父,引入componetA组件之后,则可以在template中使用标签(注意驼峰写法要改成componet-a写法,因为html对 ...

  8. c++ 计算长方形面积 类对象传参

    c++ 计算长方形面积 类对象传参 题目 问题描述 问题分析 设计思想 设计表示 源代码 测试数据及运行结果 题目 编写一个程序计算两个给定长方形的面积,其中在设计类成员函数addarea()(用于计 ...

  9. Python函数之传参

    Python函数之传参 1.函数的传参 实参 位置参数,从左至右,一一对应形参. 关键字参数, 一一对应形参. 混合参数.一一对应形参并且所有的位置参数一定在所有的关键字参数前面. 形参 位置参数.从 ...

  10. python类构造方法缺省_浅谈python3 构造函数和析构函数

    要点: 1.魔法方法,被__双下划线所包围 在适当的时候自动被调用 2.在创建一个对象的时候,一定会调用构造函数 3. del析构函数,在del a对象的时候,并一定会调用该析构函数 只有当该对象的引 ...

最新文章

  1. 机器人是如何规划路径的?动画演示一下吧
  2. ASP.NET MVC 4 (十一) Bundles和显示模式
  3. flink 本地_Flink原理Apache Flink漫谈系列 State
  4. Re-Order Buffer
  5. 苹果回应iPhone12用5G耗电快;央行:微信支付宝和数字人民币不存在竞争关系;Win10X 将于年底签署 RTM|极客头条
  6. 中国自主可免费使用的一站式 IoT 集成开发环境 RT-Thread Studio 发布!
  7. python3爬取网易云歌单数据清洗_如何利用Python网络爬虫爬取网易云音乐歌词
  8. 工业机器人技术试题_工业机器人考试试题库
  9. 3D画图软件测试自学,3D版的“画图”!Win10Paint3D上手体验
  10. 好看的html页脚,Photoshop教程:设计非常漂亮的网页页脚
  11. 鸿蒙 OS 的到来,能为我们改变什么?
  12. 在 tsx 中使用 react 的 ref 属性
  13. 有道云笔记Markdown图片插入居中方法
  14. 自建局域网 OTA 服务器
  15. Yapi idea插件使用
  16. UDS之浅谈27服务
  17. java压缩解压缩rar、zip文件
  18. cesium 建筑物加载(带高度)
  19. 微信公众号开发(一) -- 自定义菜单 动态菜单
  20. 谷歌浏览器记住的密码如何查看

热门文章

  1. 3. Ubuntu LAMP 环境搭建
  2. 计算机一级a河北,2009年河北省计算机一级考试A卷
  3. ubuntu 压缩率最高的软件_国外这款不知名的视频压缩软件,100M视频秒变2M,网友:太好用了...
  4. Docker在测试领域的应用
  5. SVN报错 could not connect to server
  6. 驱动人生后门清除方案
  7. AWS成本估算的相关小工具
  8. php 基础 自动类型转换
  9. Zookeeper学习笔记——1 单机版本环境搭建
  10. MongoDB 可视化管理工具 MongoCola-1.1.0 测试版发布