文章目录

  • 主要内容

Croce F. and Hein M. Mind the box: ℓ1\ell_1ℓ1​-APGD for sparse adversarial attacks on image classifiers. In International Conference on Machine Learning (ICML), 2021.

以往的ℓ1\ell_1ℓ1​攻击, 为了保证
∥x′−x∥1≤ϵ,x′∈[0,1]d,\|x' - x\|_1 \le \epsilon, x' \in [0, 1]^d, ∥x′−x∥1​≤ϵ,x′∈[0,1]d,
其是通过两步投影的方式完成的, 即
x′=PH∘PB1(x;ϵ)(u).x' = P_H \circ P_{B_1 (x; \epsilon)} (u). x′=PH​∘PB1​(x;ϵ)​(u).
其中B1B_1B1​表示1范数球, 而HHH表示[0,1]d[0, 1]^d[0,1]d的空间.
本文直接
x′=PS(u),S:=H⋂B1(x;ϵ).x' = P_S (u), \: S := H \bigcap B_1 (x; \epsilon). x′=PS​(u),S:=H⋂B1​(x;ϵ).

主要内容

上图展示了1范数球和SSS, 可以发现, 差别还是很大的.
正因如此, 和ℓ∞,ℓ2\ell_{\infty}, \ell_2ℓ∞​,ℓ2​不同, 基于二步投影的ℓ1\ell_1ℓ1​攻击非常低效.
于是乎, 作者直接投影到SSS, 即考虑如下的优化问题:
min⁡z∥z−u∥22s.t.∥z−x∥1≤ϵ,z∈[0,1]d.\min_{z} \: \|z - u\|_2^2 \\ \mathrm{s.t.} \: \|z - x\|_1 \le \epsilon, \: z \in [0, 1]^d. zmin​∥z−u∥22​s.t.∥z−x∥1​≤ϵ,z∈[0,1]d.

不妨令w~=z−x\tilde{w} = z - xw~=z−x, 则
min⁡w~∥w~−(u−x)∥22s.t.∥w~∥1≤ϵ,w~+x∈[0,1]d.\min_{\tilde{w}} \: \|\tilde{w} - (u - x)\|_2^2 \\ \mathrm{s.t.} \: \|\tilde{w}\|_1 \le \epsilon, \: \tilde{w} + x \in [0, 1]^d. w~min​∥w~−(u−x)∥22​s.t.∥w~∥1​≤ϵ,w~+x∈[0,1]d.
再令w=sign(u−x)w~w = \mathrm{sign}(u-x) \tilde{w}w=sign(u−x)w~, 此时有
min⁡w∥w−∣u−x∣∥22s.t.∥w∥1≤ϵ,sign(u−x)w+x∈[0,1]d.\min_{w} \: \|w - |u - x|\|_2^2 \\ \mathrm{s.t.} \: \|w\|_1 \le \epsilon, \: \mathrm{sign}(u-x)w+ x \in [0, 1]^d. wmin​∥w−∣u−x∣∥22​s.t.∥w∥1​≤ϵ,sign(u−x)w+x∈[0,1]d.
显然, www非负(否则徒增消耗罢了).
为此, 我们可以归结为上述问题为下述类型问题:
min⁡z12∥z−∣u∣∥22s.t.∑izi≤ϵ,zi≥0,sign(u)z+x∈[0,1]d.\min_{z} \: \frac{1}{2}\|z - |u|\|_2^2 \\ \mathrm{s.t.} \: \sum_i z_i \le \epsilon, \: z_i \ge 0, \: \mathrm{sign}(u)z + x \in [0, 1]^d. zmin​21​∥z−∣u∣∥22​s.t.i∑​zi​≤ϵ,zi​≥0,sign(u)z+x∈[0,1]d.
约束条件可以进一步改写为
∑izi≤ϵ,zi∈[0,γi],γi=max⁡{−xsign(u),(1−x)sign(u)}.\sum_i z_i \le \epsilon, \\ z_i \in [0, \gamma_i], \\ \gamma_i = \max \{-x\mathrm{sign} (u), (1 - x)\mathrm{sign}(u) \}. i∑​zi​≤ϵ,zi​∈[0,γi​],γi​=max{−xsign(u),(1−x)sign(u)}.
注: 这是从这篇论文中学到的一个很有趣的技巧:
a≤sign(u)z+x≤b⇔sign(u)a≤z+sign(u)x≤sign(u)borsign(u)b≤z+sign(u)x≤sign(u)a⇔z∈[(a−x)sign(u),(b−x)sign(u)].\begin{array}{ll} & a \le \mathrm{sign}(u)z + x \le b \\ \Leftrightarrow& \mathrm{sign}(u) a \le z + \mathrm{sign}(u) x \le \mathrm{sign}(u)b \\ or & \mathrm{sign}(u) b \le z + \mathrm{sign}(u) x \le \mathrm{sign}(u)a \\ \Leftrightarrow& z \in [(a - x)\mathrm{sign}(u), (b - x)\mathrm{sign}(u)]. \end{array} ⇔or⇔​a≤sign(u)z+x≤bsign(u)a≤z+sign(u)x≤sign(u)bsign(u)b≤z+sign(u)x≤sign(u)az∈[(a−x)sign(u),(b−x)sign(u)].​
下面通过拉格朗日乘子法求解(既然是个凸问题, 假设γ>0\gamma > 0γ>0):
L(z;λ;α;β)=12∥z−∣u∣∥22+λ(∑izi−ϵ)−αTz+βT(z−γ).\mathcal{L}(z;\lambda; \alpha; \beta) = \frac{1}{2} \|z - |u|\|_2^2 + \lambda (\sum_i z_i - \epsilon) - \alpha^Tz + \beta^T (z - \gamma). L(z;λ;α;β)=21​∥z−∣u∣∥22​+λ(i∑​zi​−ϵ)−αTz+βT(z−γ).
由此可得KKT条件:
∇ziL=(zi−∣ui∣)+λ−αi+βi=0;λ(∑izi−ϵ)=0;αizi=0,βi(zi−γi)=0;λ,αi,βi≥0.\nabla_{z_i}\mathcal{L} = (z_i - |u_i|) + \lambda - \alpha_i + \beta_i = 0; \\ \lambda (\sum_i z_i - \epsilon) = 0; \\ \alpha_i z_i = 0, \beta_i (z_i - \gamma_i) = 0; \\ \lambda, \alpha_i, \beta_i \ge 0. ∇zi​​L=(zi​−∣ui​∣)+λ−αi​+βi​=0;λ(i∑​zi​−ϵ)=0;αi​zi​=0,βi​(zi​−γi​)=0;λ,αi​,βi​≥0.

zi=∣ui∣−λ+αi−βi.z_i = |u_i| - \lambda + \alpha_i - \beta_i. zi​=∣ui​∣−λ+αi​−βi​.
我们再来具体分析:
1.
βi≠0⇒zi=γi>0⇒αi=0.\beta_i \not = 0 \Rightarrow z_i = \gamma_i > 0 \Rightarrow \alpha_i = 0. βi​​=0⇒zi​=γi​>0⇒αi​=0.

βi=max⁡(0,∣ui∣−γi−λ).\beta_i = \max(0, |u_i| - \gamma_i - \lambda). βi​=max(0,∣ui​∣−γi​−λ).
2.
αi≠0⇒zi=0⇒βi=0.\alpha_i \not = 0 \Rightarrow z_i = 0 \Rightarrow \beta_i = 0. αi​​=0⇒zi​=0⇒βi​=0.

αi=max⁡(0,λ−∣ui∣).\alpha_i = \max(0, \lambda - |u_i|). αi​=max(0,λ−∣ui​∣).
于是
zi={0,λ>∣ui∣∣ui∣−λ,∣ui∣−γi≤λ≤∣ui∣γi,λ<∣ui∣−γi.z_i=\left\{ \begin{array}{ll} 0, & \lambda > |u_i| \\ |u_i| - \lambda, & |u_i| - \gamma_i \le \lambda \le |u_i| \\ \gamma_i, & \lambda < |u_i| - \gamma_i. \end{array} \right . zi​=⎩⎨⎧​0,∣ui​∣−λ,γi​,​λ>∣ui​∣∣ui​∣−γi​≤λ≤∣ui​∣λ<∣ui​∣−γi​.​
其中λ\lambdaλ是下列方程的解:
λ(∑izi−ϵ)=0.\lambda (\sum_i z_i - \epsilon) = 0. λ(i∑​zi​−ϵ)=0.
其有一个特殊的表达方式:
zi=max⁡(0,min⁡(γi,∣ui∣−λ)).z_i = \max(0, \min(\gamma_i, |u_i| - \lambda)). zi​=max(0,min(γi​,∣ui​∣−λ)).

λ(∑imax⁡(0,min⁡(γi,∣ui∣−λ))−ϵ)=0.\lambda (\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda)) - \epsilon) = 0. λ(i∑​max(0,min(γi​,∣ui​∣−λ))−ϵ)=0.

若λ=0\lambda=0λ=0时:
∑imax⁡(0,min⁡(γi,∣ui∣−λ))≤ϵ,\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda)) \le \epsilon, i∑​max(0,min(γi​,∣ui​∣−λ))≤ϵ,
则此时λ=0\lambda=0λ=0恰为最优解, 否则需要通过
∑imax⁡(0,min⁡(γi,∣ui∣−λ))=ϵ,\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda)) = \epsilon, i∑​max(0,min(γi​,∣ui​∣−λ))=ϵ,
求解出λ\lambdaλ.
因为∑imax⁡(0,min⁡(γi,∣ui∣−λ))\sum_i \max(0, \min(\gamma_i, |u_i| - \lambda))∑i​max(0,min(γi​,∣ui​∣−λ))关于λ\lambdaλ是单调递减的, 作者给了一个方便的算法求解(虽然我对这个算法的表述有一点点疑惑).

除了投影之外, 作者还给出了一个最速下降方向, 证明是类似的.

作者关于ℓ\ellℓ攻击的分析感觉很通透, 不错的文章啊.

Mind the Box: $\ell_1$-APGD for Sparse Adversarial Attacks on Image Classifiers相关推荐

  1. 【全文翻译】Composite Adversarial Attacks

    复合对抗攻击 1. Abstract 2.Introduction 3.Preliminaries and Related work(准备工作和相关工作) Adversarial Attack Aut ...

  2. 【Paper-Attack】Exploratory Adversarial Attacks on Graph Neural Networks

    Exploratory Adversarial Attacks on Graph Neural Networks 依赖training loss的最大梯度的这种基于梯度的策略,在攻击GNN模型时候,可 ...

  3. 【论文学习】《Who is Real Bob? Adversarial Attacks on Speaker Recognition Systems》

    <Who is Real Bob? Adversarial Attacks on Speaker Recognition Systems>论文学习 文章目录 <Who is Real ...

  4. LOWKEY: LEVERAGING ADVERSARIAL ATTACKS TO PROTECT SOCIAL MEDIA USERS FROM FACIAL RECOGNITION

    LOWKEY: LEVERAGING ADVERSARIAL ATTACKS TO PROTECT SOCIAL MEDIA USERS FROM FACIAL RECOGNITION LOWKEY: ...

  5. 论文阅读-FDA Federated Defense Against Adversarial Attacks for Cloud-Based IIoT Applications

    FDA: Federated Defense Against Adversarial Attacks for Cloud-Based IIoT Applications (这里的对抗攻击都有哪儿些 - ...

  6. [论文阅读笔记]SEMANTIC ADVERSARIAL ATTACKS: PARAMETRIC TRANSFORMATIONS THAT FOOL DEEP CLASSIFIERS(ICCV)

    SEMANTIC ADVERSARIAL ATTACKS: PARAMETRIC TRANSFORMATIONS THAT FOOL DEEP CLASSIFIERS(2019 ICCV) 文章简介: ...

  7. Query-Efficient Black-box Adversarial Attacks Guided by a Transfer-based Prior-阅读札记

    Query-Efficient Black-box Adversarial Attacks Guided by a Transfer-based Prior 阅读笔记 文章信息:Dong, Yinpe ...

  8. 论文学习:Practical Adversarial Attacks Against Speaker Recognition Systems

    文章题目:Practical Adversarial Attacks Against Speaker Recognition Systems 来源:ACM HotMobile 2020 链接:http ...

  9. Towards Deep Learning Models Resistant to Adversarial Attacks (PGD)

    Towards Deep Learning Models Resistant to Adversarial Attacks 从对抗鲁棒性的角度出发 本文从鲁棒优化的角度研究了神经网络的对抗鲁棒性. 我 ...

最新文章

  1. hdu 1688 Sightseeing
  2. INSTALL PARSE FAILED INCONSISTENT CERTIFICATES错误解决方法
  3. python读文件的三个方法read()、readline()、readlines()详解
  4. html overflow 样式,css样式之overflow-x属性样式
  5. hdu区域赛在线热身赛 暨 第十二场组队赛
  6. php memcached 队列,redis获取所有队列_memcached
  7. 最新编程语言排行榜出炉:Swift和Kotlin好像开始凉了
  8. 拓端tecdat|R语言可视化探索BRFSS数据并逻辑回归Logistic回归预测中风
  9. dns学习笔记03-配置master区域
  10. CSDN 赚积分C币方法
  11. 史上最全常用正则表达式大全
  12. 从Android运行时出发,打造我们的脱壳神器
  13. 金蝶云星空API调用实践
  14. YDOOK: ANSYS Maxwell 19 教程21:Maxwell 2D 直流传导电场 求解设置 分析设置
  15. Notepad++安装HexEditor插件
  16. 怎么通过网络快速赚钱,无非是这4种方式!
  17. 苹果发布会:或将发布一款付费游戏订阅服务
  18. 微信翻译,快把上海老外搞疯了
  19. 学python哪个app比较好_初学python编程,有哪些不错的软件值得一用?
  20. MaxCompute实践之路(三) -- Java对接MaxCompute

热门文章

  1. ARM汇编指令MRS和MSR
  2. 清华大学推荐人工智能A类B类期刊与会议汇总!!!发论文必备
  3. java拜年源码_拜年拜年,红包红包,手快有…
  4. 微信小程序引入iconfont单色图标实例
  5. Python APP自动化测试详解
  6. 高级前端基础-JavaScript抽象语法树AST
  7. 转JavaScript的语法解析与抽象语法树
  8. 北京智汇云舟科技:智慧城市实时实景数字孪生技术
  9. 计算机网络基础 第二章
  10. CSS库 Tailwind