卷积神经网络基础

本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。 二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。

下面我们用corr2d函数实现二维互相关运算,它接受输入数组X与核数组K,并输出数组Y。

import torch
import torch.nn as nndef corr2d(X, K):H, W = X.shapeh, w = K.shapeY = torch.zeros(H - h + 1, W - w + 1)for i in range(Y.shape[0]):for j in range(Y.shape[1]):Y[i, j] = (X[i: i + h, j: j + w] * K).sum()return Y
#构造上图中的输入数组X、核数组K来验证二维互相关运算的输出。
X = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
K = torch.tensor([[0, 1], [2, 3]])
Y = corr2d(X, K)
print(Y)
#tensor([[19., 25.],
#        [37., 43.]])

二维卷积层

二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏置来得到输出。卷积层的模型参数包括卷积核和标量偏置。

class Conv2D(nn.Module):def __init__(self, kernel_size):super(Conv2D, self).__init__()self.weight = nn.Parameter(torch.randn(kernel_size))self.bias = nn.Parameter(torch.randn(1))def forward(self, x):return corr2d(x, self.weight) + self.bias

下面我们看一个例子,我们构造一张6×8的图像,中间4列为黑(0),其余为白(1),希望检测到颜色边缘。我们的标签是一个6×7的二维数组,第2列是1(从1到0的边缘),第6列是-1(从0到1的边缘)。

X = torch.ones(6, 8)
Y = torch.zeros(6, 7)
X[:, 2: 6] = 0
Y[:, 1] = 1
Y[:, 5] = -1
print(X)
print(Y)#tensor([[1., 1., 0., 0., 0., 0., 1., 1.],[1., 1., 0., 0., 0., 0., 1., 1.],[1., 1., 0., 0., 0., 0., 1., 1.],[1., 1., 0., 0., 0., 0., 1., 1.],[1., 1., 0., 0., 0., 0., 1., 1.],[1., 1., 0., 0., 0., 0., 1., 1.]])
#tensor([[ 0.,  1.,  0.,  0.,  0., -1.,  0.],[ 0.,  1.,  0.,  0.,  0., -1.,  0.],[ 0.,  1.,  0.,  0.,  0., -1.,  0.],[ 0.,  1.,  0.,  0.,  0., -1.,  0.],[ 0.,  1.,  0.,  0.,  0., -1.,  0.],[ 0.,  1.,  0.,  0.,  0., -1.,  0.]])

我们希望学习一个1×2卷积层,通过卷积层来检测颜色边缘。

conv2d = Conv2D(kernel_size=(1, 2))
step = 30
lr = 0.01
for i in range(step):Y_hat = conv2d(X)l = ((Y_hat - Y) ** 2).sum()l.backward()# 梯度下降conv2d.weight.data -= lr * conv2d.weight.gradconv2d.bias.data -= lr * conv2d.bias.grad# 梯度清零conv2d.weight.grad.zero_()conv2d.bias.grad.zero_()if (i + 1) % 5 == 0:print('Step %d, loss %.3f' % (i + 1, l.item()))print(conv2d.weight.data)
print(conv2d.bias.data)#Step 5, loss 4.569
#Step 10, loss 0.949
#Step 15, loss 0.228
#Step 20, loss 0.060
#Step 25, loss 0.016
#Step 30, loss 0.004
#tensor([[ 1.0161, -1.0177]])
#tensor([0.0009])

互相关运算与卷积运算 卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。 特征图与感受野 二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素xx的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做xx的感受野(receptive field)。 以图1为例,输入中阴影部分的四个元素是输出中阴影部分元素的感受野。我们将图中形状为2×2的输出记为Y,将Y与另一个形状为2×2的核数组做互相关运算,输出单个元素z。那么,z在Y上的感受野包括Y的全部四个元素,在输入上的感受野包括其中全部9个元素。可见,我们可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。

填充和步幅 我们介绍卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。

填充 填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素),图2里我们在原输入高和宽的两侧分别添加了值为0的元素。

图2 在输入的高和宽两侧分别填充了0元素的二维互相关计算

步幅

在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。此前我们使用的步幅都是1,图3展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。

多输入通道和多输出通道 之前的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是h和w(像素),那么它可以表示为一个3×h×w的多维数组,我们将大小为3的这一维称为通道(channel)维。

多输入通道 卷积层的输入可以包含多个通道,图4展示了一个含2个输入通道的二维互相关计算的例子。

1x1卷积层

最后讨论形状为1×1的卷积核,我们通常称这样的卷积运算为1×1卷积,称包含这种卷积核的卷积层为1×1卷积层。图5展示了使用输入通道数为3、输出通道数为2的1×1卷积核的互相关计算。

1×1卷积核可在不改变高宽的情况下,调整通道数。1×1卷积核不识别高和宽维度上相邻元素构成的模式,其主要计算发生在通道维上。假设我们将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么1×1卷积层的作用与全连接层等价。

卷积层与全连接层的对比¶

二维卷积层经常用于处理图像,与此前的全连接层相比,它主要有两个优势:

一是全连接层把图像展平成一个向量,在输入图像上相邻的元素可能因为展平操作不再相邻,网络难以捕捉局部信息。而卷积层的设计,天然地具有提取局部信息的能力。

卷积层的简洁实现

我们使用Pytorch中的nn.Conv2d类来实现二维卷积层,主要关注以下几个构造函数参数:

X = torch.rand(4, 2, 3, 5)
print(X.shape)conv2d = nn.Conv2d(in_channels=2, out_channels=3, kernel_size=(3, 5), stride=1, padding=(1, 2))
Y = conv2d(X)
print('Y.shape: ', Y.shape)
print('weight.shape: ', conv2d.weight.shape)
print('bias.shape: ', conv2d.bias.shape)#torch.Size([4, 2, 3, 5])
#Y.shape:  torch.Size([4, 3, 3, 5])
#weight.shape:  torch.Size([3, 2, 3, 5])
#bias.shape:  torch.Size([3])

池化

二维池化层

池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。图6展示了池化窗口形状为2×2的最大池化。

二维平均池化的工作原理与二维最大池化类似,但将最大运算符替换成平均运算符。池化窗口形状为p×q的池化层称为p×q池化层,其中的池化运算叫作p×q池化。

池化层也可以在输入的高和宽两侧填充并调整窗口的移动步幅来改变输出形状。池化层填充和步幅与卷积层填充和步幅的工作机制一样。

在处理多通道输入数据时,池化层对每个输入通道分别池化,但不会像卷积层那样将各通道的结果按通道相加。这意味着池化层的输出通道数与输入通道数相等。

池化层的简洁实现

我们使用Pytorch中的nn.MaxPool2d实现最大池化层,关注以下构造函数参数:

  • kernel_size – the size of the window to take a max over
  • stride – the stride of the window. Default value is kernel_size
  • padding – implicit zero padding to be added on both sides
X = torch.arange(32, dtype=torch.float32).view(1, 2, 4, 4)
pool2d = nn.MaxPool2d(kernel_size=3, padding=1, stride=(2, 1))
Y = pool2d(X)
print(X)
print(Y)tensor([[[[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[12., 13., 14., 15.]],[[16., 17., 18., 19.],[20., 21., 22., 23.],[24., 25., 26., 27.],[28., 29., 30., 31.]]]])
tensor([[[[ 5.,  6.,  7.,  7.],[13., 14., 15., 15.]],[[21., 22., 23., 23.],[29., 30., 31., 31.]]]])
#平均池化层使用的是nn.AvgPool2d,使用方法与nn.MaxPool2d相同。

欢迎大家指正和留言评论

pytorch卷积神经网络_知识干货-动手学深度学习(pytorch)-06 卷积神经网络基础相关推荐

  1. 梯度消失和梯度爆炸_知识干货-动手学深度学习-05 梯度消失和梯度爆炸以及Kaggle房价预测...

    梯度消失和梯度爆炸 考虑到环境因素的其他问题 Kaggle房价预测 梯度消失和梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion). 当神经网络的层数较多 ...

  2. 【动手学深度学习PyTorch版】12 卷积层

    上一篇移步[动手学深度学习PyTorch版]11 使用GPU_水w的博客-CSDN博客 目录 一.卷积层 1.1从全连接到卷积 ◼ 回顾单隐藏层MLP ◼ Waldo在哪里? ◼ 原则1-平移不变性 ...

  3. 【动手学深度学习PyTorch版】13 卷积层的填充和步幅

    上一篇移步[动手学深度学习PyTorch版]12 卷积层_水w的博客-CSDN博客 目录 一.卷积层的填充和步幅 1.1 填充 1.2 步幅 1.3 总结 二.代码实现填充和步幅(使用框架) 一.卷积 ...

  4. 【动手学深度学习PyTorch版】27 数据增强

    上一篇请移步[动手学深度学习PyTorch版]23 深度学习硬件CPU 和 GPU_水w的博客-CSDN博客 目录 一.数据增强 1.1 数据增强(主要是关于图像增强) ◼ CES上的真实的故事 ◼ ...

  5. 动手学深度学习Pytorch Task01

    深度学习目前以及未来都有良好的发展前景.正值疫情期间,报名参加了动手学深度学习pytorch版的公开课,希望在以后的学习生活中能够灵活运用学到的这些知识. 第一次课主要包含三个部分:线性回归.soft ...

  6. 伯禹公益AI《动手学深度学习PyTorch版》Task 05 学习笔记

    伯禹公益AI<动手学深度学习PyTorch版>Task 05 学习笔记 Task 05:卷积神经网络基础:LeNet:卷积神经网络进阶 微信昵称:WarmIce 昨天打了一天的<大革 ...

  7. 【动手学深度学习PyTorch版】19 网络中的网络 NiN

    上一篇请移步[动手学深度学习PyTorch版]18 使用块的网络 VGG_水w的博客-CSDN博客 目录 一.网络中的网络 NiN 1.1 NiN ◼ 全连接层的问题 ◼ 大量的参数会带来很多问题 ◼ ...

  8. 【动手学深度学习PyTorch版】23 深度学习硬件CPU 和 GPU

    上一篇请移步[动手学深度学习PyTorch版]22续 ResNet为什么能训练出1000层的模型_水w的博客-CSDN博客 目录 一.深度学习硬件CPU 和 GPU 1.1 深度学习硬件 ◼ 计算机构 ...

  9. 【动手学深度学习PyTorch版】15 池化层

    上一篇请移步[动手学深度学习PyTorch版]14 卷积层里的多输入多输出通道_水w的博客-CSDN博客 目录 一.池化层 1.1 池化层 ◼池化层原因 ◼ 二维最大池化 1.2 填充.步幅与多个通道 ...

最新文章

  1. 模板 - 最小树形图(朱刘算法)
  2. visual c++ for .net(新语法)
  3. idea 使用maven构建项目时,target bytecode version经常自动变化
  4. SAP Spartacus B2B ListComponent响应回车事件的实现
  5. xamarin和mysql_Xamarin.Android 使用 SQLiteOpenHelper 进行数据库操作
  6. 基于MeanShift的目标跟踪算法及实现(转载)
  7. 【flink】RocksDB介绍以及Flink对RocksDB的支持
  8. java查询线程状态命令_JAVA 线程死锁,以及linux 命令和jstack 命令 查看线程死锁状态信息...
  9. educoder MongoDB 实验——数据库优化
  10. linux查看所有目录
  11. win10系统下Consul持久化
  12. PS学习-剪切蒙版制作艺术字
  13. 解决Win7系统无法睡眠问题
  14. Pandas 学习笔记二
  15. qt项目转Xcode项目(Xcode开发qt)
  16. 离散数学3_第1章__一些重要的重言蕴涵式__推理定律
  17. MakeItTalk: 让图像开口说话!
  18. 计算机网络安全的对策有哪些,计算机网络安全措施有哪些
  19. 【工作经验分享】,大厂面试经验分享
  20. LaTeX学习日记(持续更新)

热门文章

  1. linux 备份mysql_linux下备份MYSQL数据库的方法
  2. controller接收json数据_这篇SpringBoot整合JSON的学习笔记,建议收藏起来,写的太细了
  3. 计算机没有cpu会怎么样,电脑cpu不好会怎么样
  4. java智能提示_【Java】智能提示的设置
  5. leetcode刷题:除自身以外数组的乘积
  6. 蔡明机器人对比_公开承认整容成“魔咒”,蔡明撞脸大半个娱乐圈的漂亮女明星!...
  7. layui弹窗自适应变大_layui弹窗宽度固定高度自适应界面
  8. python对日期型数据排序_如何对日期执行数学运算并用Python对它们进行排序?
  9. 计算机科学技术主业人才培养模式,计算机科学和技术专业人才培养模式改革和创新.doc...
  10. SpringBoot 工程目录 整合mybatis-neo4j(注解类型)-增删改查