最新版OpenCV2.4.7中,cv::resize函数有五种插值算法:最近邻、双线性、双三次、基于像素区域关系、兰索斯插值。下面用for循环代替cv::resize函数来说明其详细的插值实现过程,其中部分代码摘自于cv::resize函数中的源代码。

每种插值算法的前部分代码是相同的,如下:

  1. cv::Mat matSrc, matDst1, matDst2;
  2. matSrc = cv::imread("lena.jpg", 2 | 4);
  3. matDst1 = cv::Mat(cv::Size(800, 1000), matSrc.type(), cv::Scalar::all(0));
  4. matDst2 = cv::Mat(matDst1.size(), matSrc.type(), cv::Scalar::all(0));
  5. double scale_x = (double)matSrc.cols / matDst1.cols;
  6. double scale_y = (double)matSrc.rows / matDst1.rows;

1、最近邻:公式,

  1. for (int i = 0; i < matDst1.cols; ++i)
  2. {
  3. int sx = cvFloor(i * scale_x);
  4. sx = std::min(sx, matSrc.cols - 1);
  5. for (int j = 0; j < matDst1.rows; ++j)
  6. {
  7. int sy = cvFloor(j * scale_y);
  8. sy = std::min(sy, matSrc.rows - 1);
  9. matDst1.at<cv::Vec3b>(j, i) = matSrc.at<cv::Vec3b>(sy, sx);
  10. }
  11. }
  12. cv::imwrite("nearest_1.jpg", matDst1);
  13. cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 0);
  14. cv::imwrite("nearest_2.jpg", matDst2);

2、双线性:由相邻的四像素(2*2)计算得出,公式,

  1. uchar* dataDst = matDst1.data;
  2. int stepDst = matDst1.step;
  3. uchar* dataSrc = matSrc.data;
  4. int stepSrc = matSrc.step;
  5. int iWidthSrc = matSrc.cols;
  6. int iHiehgtSrc = matSrc.rows;
  7. for (int j = 0; j < matDst1.rows; ++j)
  8. {
  9. float fy = (float)((j + 0.5) * scale_y - 0.5);
  10. int sy = cvFloor(fy);
  11. fy -= sy;
  12. sy = std::min(sy, iHiehgtSrc - 2);
  13. sy = std::max(0, sy);
  14. short cbufy[2];
  15. cbufy[0] = cv::saturate_cast<short>((1.f - fy) * 2048);
  16. cbufy[1] = 2048 - cbufy[0];
  17. for (int i = 0; i < matDst1.cols; ++i)
  18. {
  19. float fx = (float)((i + 0.5) * scale_x - 0.5);
  20. int sx = cvFloor(fx);
  21. fx -= sx;
  22. if (sx < 0) {
  23. fx = 0, sx = 0;
  24. }
  25. if (sx >= iWidthSrc - 1) {
  26. fx = 0, sx = iWidthSrc - 2;
  27. }
  28. short cbufx[2];
  29. cbufx[0] = cv::saturate_cast<short>((1.f - fx) * 2048);
  30. cbufx[1] = 2048 - cbufx[0];
  31. for (int k = 0; k < matSrc.channels(); ++k)
  32. {
  33. *(dataDst+ j*stepDst + 3*i + k) = (*(dataSrc + sy*stepSrc + 3*sx + k) * cbufx[0] * cbufy[0] +
  34. *(dataSrc + (sy+1)*stepSrc + 3*sx + k) * cbufx[0] * cbufy[1] +
  35. *(dataSrc + sy*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[0] +
  36. *(dataSrc + (sy+1)*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[1]) >> 22;
  37. }
  38. }
  39. }
  40. cv::imwrite("linear_1.jpg", matDst1);
  41. cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 1);
  42. cv::imwrite("linear_2.jpg", matDst2);

3、双三次:由相邻的4*4像素计算得出,公式类似于双线性

  1. int iscale_x = cv::saturate_cast<int>(scale_x);
  2. int iscale_y = cv::saturate_cast<int>(scale_y);
  3. for (int j = 0; j < matDst1.rows; ++j)
  4. {
  5. float fy = (float)((j + 0.5) * scale_y - 0.5);
  6. int sy = cvFloor(fy);
  7. fy -= sy;
  8. sy = std::min(sy, matSrc.rows - 3);
  9. sy = std::max(1, sy);
  10. const float A = -0.75f;
  11. float coeffsY[4];
  12. coeffsY[0] = ((A*(fy + 1) - 5*A)*(fy + 1) + 8*A)*(fy + 1) - 4*A;
  13. coeffsY[1] = ((A + 2)*fy - (A + 3))*fy*fy + 1;
  14. coeffsY[2] = ((A + 2)*(1 - fy) - (A + 3))*(1 - fy)*(1 - fy) + 1;
  15. coeffsY[3] = 1.f - coeffsY[0] - coeffsY[1] - coeffsY[2];
  16. short cbufY[4];
  17. cbufY[0] = cv::saturate_cast<short>(coeffsY[0] * 2048);
  18. cbufY[1] = cv::saturate_cast<short>(coeffsY[1] * 2048);
  19. cbufY[2] = cv::saturate_cast<short>(coeffsY[2] * 2048);
  20. cbufY[3] = cv::saturate_cast<short>(coeffsY[3] * 2048);
  21. for (int i = 0; i < matDst1.cols; ++i)
  22. {
  23. float fx = (float)((i + 0.5) * scale_x - 0.5);
  24. int sx = cvFloor(fx);
  25. fx -= sx;
  26. if (sx < 1) {
  27. fx = 0, sx = 1;
  28. }
  29. if (sx >= matSrc.cols - 3) {
  30. fx = 0, sx = matSrc.cols - 3;
  31. }
  32. float coeffsX[4];
  33. coeffsX[0] = ((A*(fx + 1) - 5*A)*(fx + 1) + 8*A)*(fx + 1) - 4*A;
  34. coeffsX[1] = ((A + 2)*fx - (A + 3))*fx*fx + 1;
  35. coeffsX[2] = ((A + 2)*(1 - fx) - (A + 3))*(1 - fx)*(1 - fx) + 1;
  36. coeffsX[3] = 1.f - coeffsX[0] - coeffsX[1] - coeffsX[2];
  37. short cbufX[4];
  38. cbufX[0] = cv::saturate_cast<short>(coeffsX[0] * 2048);
  39. cbufX[1] = cv::saturate_cast<short>(coeffsX[1] * 2048);
  40. cbufX[2] = cv::saturate_cast<short>(coeffsX[2] * 2048);
  41. cbufX[3] = cv::saturate_cast<short>(coeffsX[3] * 2048);
  42. for (int k = 0; k < matSrc.channels(); ++k)
  43. {
  44. matDst1.at<cv::Vec3b>(j, i)[k] = abs((matSrc.at<cv::Vec3b>(sy-1, sx-1)[k] * cbufX[0] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx-1)[k] * cbufX[0] * cbufY[1] +
  45. matSrc.at<cv::Vec3b>(sy+1, sx-1)[k] * cbufX[0] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx-1)[k] * cbufX[0] * cbufY[3] +
  46. matSrc.at<cv::Vec3b>(sy-1, sx)[k] * cbufX[1] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx)[k] * cbufX[1] * cbufY[1] +
  47. matSrc.at<cv::Vec3b>(sy+1, sx)[k] * cbufX[1] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx)[k] * cbufX[1] * cbufY[3] +
  48. matSrc.at<cv::Vec3b>(sy-1, sx+1)[k] * cbufX[2] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx+1)[k] * cbufX[2] * cbufY[1] +
  49. matSrc.at<cv::Vec3b>(sy+1, sx+1)[k] * cbufX[2] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx+1)[k] * cbufX[2] * cbufY[3] +
  50. matSrc.at<cv::Vec3b>(sy-1, sx+2)[k] * cbufX[3] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx+2)[k] * cbufX[3] * cbufY[1] +
  51. matSrc.at<cv::Vec3b>(sy+1, sx+2)[k] * cbufX[3] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx+2)[k] * cbufX[3] * cbufY[3] ) >> 22);
  52. }
  53. }
  54. }
  55. cv::imwrite("cubic_1.jpg", matDst1);
  56. cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 2);
  57. cv::imwrite("cubic_2.jpg", matDst2);

4、基于像素区域关系:共分三种情况,图像放大时类似于双线性插值,图像缩小(x轴、y轴同时缩小)又分两种情况,此情况下可以避免波纹出现。

  1. cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 3);
  2. cv::imwrite("area_2.jpg", matDst2);
  3. double inv_scale_x = 1. / scale_x;
  4. double inv_scale_y = 1. / scale_y;
  5. int iscale_x = cv::saturate_cast<int>(scale_x);
  6. int iscale_y = cv::saturate_cast<int>(scale_y);
  7. bool is_area_fast = std::abs(scale_x - iscale_x) < DBL_EPSILON && std::abs(scale_y - iscale_y) < DBL_EPSILON;
  8. if (scale_x >= 1 && scale_y >= 1) //zoom out
  9. {
  10. if (is_area_fast) //integer multiples
  11. {
  12. for (int j = 0; j < matDst1.rows; ++j)
  13. {
  14. int sy = j * scale_y;
  15. for (int i = 0; i < matDst1.cols; ++i)
  16. {
  17. int sx = i * scale_x;
  18. matDst1.at<cv::Vec3b>(j, i) = matSrc.at<cv::Vec3b>(sy, sx);
  19. }
  20. }
  21. cv::imwrite("area_1.jpg", matDst1);
  22. return 0;
  23. }
  24. for (int j = 0; j < matDst1.rows; ++j)
  25. {
  26. double fsy1 = j * scale_y;
  27. double fsy2 = fsy1 + scale_y;
  28. double cellHeight = cv::min(scale_y, matSrc.rows - fsy1);
  29. int sy1 = cvCeil(fsy1), sy2 = cvFloor(fsy2);
  30. sy2 = std::min(sy2, matSrc.rows - 1);
  31. sy1 = std::min(sy1, sy2);
  32. float cbufy[2];
  33. cbufy[0] = (float)((sy1 - fsy1) / cellHeight);
  34. cbufy[1] = (float)(std::min(std::min(fsy2 - sy2, 1.), cellHeight) / cellHeight);
  35. for (int i = 0; i < matDst1.cols; ++i)
  36. {
  37. double fsx1 = i * scale_x;
  38. double fsx2 = fsx1 + scale_x;
  39. double cellWidth = std::min(scale_x, matSrc.cols - fsx1);
  40. int sx1 = cvCeil(fsx1), sx2 = cvFloor(fsx2);
  41. sx2 = std::min(sx2, matSrc.cols - 1);
  42. sx1 = std::min(sx1, sx2);
  43. float cbufx[2];
  44. cbufx[0] = (float)((sx1 - fsx1) / cellWidth);
  45. cbufx[1] = (float)(std::min(std::min(fsx2 - sx2, 1.), cellWidth) / cellWidth);
  46. for (int k = 0; k < matSrc.channels(); ++k)
  47. {
  48. matDst1.at<cv::Vec3b>(j, i)[k] = (uchar)(matSrc.at<cv::Vec3b>(sy1, sx1)[k] * cbufx[0] * cbufy[0] +
  49. matSrc.at<cv::Vec3b>(sy1 + 1, sx1)[k] * cbufx[0] * cbufy[1] +
  50. matSrc.at<cv::Vec3b>(sy1, sx1 + 1)[k] * cbufx[1] * cbufy[0] +
  51. matSrc.at<cv::Vec3b>(sy1 + 1, sx1 + 1)[k] * cbufx[1] * cbufy[1]);
  52. }
  53. }
  54. }
  55. cv::imwrite("area_1.jpg", matDst1);
  56. return 0;
  57. }
  58. //zoom in,it is emulated using some variant of bilinear interpolation
  59. for (int j = 0; j < matDst1.rows; ++j)
  60. {
  61. int sy = cvFloor(j * scale_y);
  62. float fy = (float)((j + 1) - (sy + 1) * inv_scale_y);
  63. fy = fy <= 0 ? 0.f : fy - cvFloor(fy);
  64. short cbufy[2];
  65. cbufy[0] = cv::saturate_cast<short>((1.f - fy) * 2048);
  66. cbufy[1] = 2048 - cbufy[0];
  67. for (int i = 0; i < matDst1.cols; ++i)
  68. {
  69. int sx = cvFloor(i * scale_x);
  70. float fx = (float)((i + 1) - (sx + 1) * inv_scale_x);
  71. fx = fx < 0 ? 0.f : fx - cvFloor(fx);
  72. if (sx < 0) {
  73. fx = 0, sx = 0;
  74. }
  75. if (sx >= matSrc.cols - 1) {
  76. fx = 0, sx = matSrc.cols - 2;
  77. }
  78. short cbufx[2];
  79. cbufx[0] = cv::saturate_cast<short>((1.f - fx) * 2048);
  80. cbufx[1] = 2048 - cbufx[0];
  81. for (int k = 0; k < matSrc.channels(); ++k)
  82. {
  83. matDst1.at<cv::Vec3b>(j, i)[k] = (matSrc.at<cv::Vec3b>(sy, sx)[k] * cbufx[0] * cbufy[0] +
  84. matSrc.at<cv::Vec3b>(sy + 1, sx)[k] * cbufx[0] * cbufy[1] +
  85. matSrc.at<cv::Vec3b>(sy, sx + 1)[k] * cbufx[1] * cbufy[0] +
  86. matSrc.at<cv::Vec3b>(sy + 1, sx + 1)[k] * cbufx[1] * cbufy[1]) >> 22;
  87. }
  88. }
  89. }
  90. cv::imwrite("area_1.jpg", matDst1);

5、兰索斯插值:由相邻的8*8像素计算得出,公式类似于双线性

  1. int iscale_x = cv::saturate_cast<int>(scale_x);
  2. int iscale_y = cv::saturate_cast<int>(scale_y);
  3. for (int j = 0; j < matDst1.rows; ++j)
  4. {
  5. float fy = (float)((j + 0.5) * scale_y - 0.5);
  6. int sy = cvFloor(fy);
  7. fy -= sy;
  8. sy = std::min(sy, matSrc.rows - 5);
  9. sy = std::max(3, sy);
  10. const double s45 = 0.70710678118654752440084436210485;
  11. const double cs[][2] = {{1, 0}, {-s45, -s45}, {0, 1}, {s45, -s45}, {-1, 0}, {s45, s45}, {0, -1}, {-s45, s45}};
  12. float coeffsY[8];
  13. if (fy < FLT_EPSILON) {
  14. for (int t = 0; t < 8; t++)
  15. coeffsY[t] = 0;
  16. coeffsY[3] = 1;
  17. } else {
  18. float sum = 0;
  19. double y0 = -(fy + 3) * CV_PI * 0.25, s0 = sin(y0), c0 = cos(y0);
  20. for (int t = 0; t < 8; ++t)
  21. {
  22. double dy = -(fy + 3 -t) * CV_PI * 0.25;
  23. coeffsY[t] = (float)((cs[t][0] * s0 + cs[t][1] * c0) / (dy * dy));
  24. sum += coeffsY[t];
  25. }
  26. sum = 1.f / sum;
  27. for (int t = 0; t < 8; ++t)
  28. coeffsY[t] *= sum;
  29. }
  30. short cbufY[8];
  31. cbufY[0] = cv::saturate_cast<short>(coeffsY[0] * 2048);
  32. cbufY[1] = cv::saturate_cast<short>(coeffsY[1] * 2048);
  33. cbufY[2] = cv::saturate_cast<short>(coeffsY[2] * 2048);
  34. cbufY[3] = cv::saturate_cast<short>(coeffsY[3] * 2048);
  35. cbufY[4] = cv::saturate_cast<short>(coeffsY[4] * 2048);
  36. cbufY[5] = cv::saturate_cast<short>(coeffsY[5] * 2048);
  37. cbufY[6] = cv::saturate_cast<short>(coeffsY[6] * 2048);
  38. cbufY[7] = cv::saturate_cast<short>(coeffsY[7] * 2048);
  39. for (int i = 0; i < matDst1.cols; ++i)
  40. {
  41. float fx = (float)((i + 0.5) * scale_x - 0.5);
  42. int sx = cvFloor(fx);
  43. fx -= sx;
  44. if (sx < 3) {
  45. fx = 0, sx = 3;
  46. }
  47. if (sx >= matSrc.cols - 5) {
  48. fx = 0, sx = matSrc.cols - 5;
  49. }
  50. float coeffsX[8];
  51. if (fx < FLT_EPSILON) {
  52. for ( int t = 0; t < 8; t++ )
  53. coeffsX[t] = 0;
  54. coeffsX[3] = 1;
  55. } else {
  56. float sum = 0;
  57. double x0 = -(fx + 3) * CV_PI * 0.25, s0 = sin(x0), c0 = cos(x0);
  58. for (int t = 0; t < 8; ++t)
  59. {
  60. double dx = -(fx + 3 -t) * CV_PI * 0.25;
  61. coeffsX[t] = (float)((cs[t][0] * s0 + cs[t][1] * c0) / (dx * dx));
  62. sum += coeffsX[t];
  63. }
  64. sum = 1.f / sum;
  65. for (int t = 0; t < 8; ++t)
  66. coeffsX[t] *= sum;
  67. }
  68. short cbufX[8];
  69. cbufX[0] = cv::saturate_cast<short>(coeffsX[0] * 2048);
  70. cbufX[1] = cv::saturate_cast<short>(coeffsX[1] * 2048);
  71. cbufX[2] = cv::saturate_cast<short>(coeffsX[2] * 2048);
  72. cbufX[3] = cv::saturate_cast<short>(coeffsX[3] * 2048);
  73. cbufX[4] = cv::saturate_cast<short>(coeffsX[4] * 2048);
  74. cbufX[5] = cv::saturate_cast<short>(coeffsX[5] * 2048);
  75. cbufX[6] = cv::saturate_cast<short>(coeffsX[6] * 2048);
  76. cbufX[7] = cv::saturate_cast<short>(coeffsX[7] * 2048);
  77. for (int k = 0; k < matSrc.channels(); ++k)
  78. {
  79. matDst1.at<cv::Vec3b>(j, i)[k] = abs((matSrc.at<cv::Vec3b>(sy-3, sx-3)[k] * cbufX[0] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx-3)[k] * cbufX[0] * cbufY[1] +
  80. matSrc.at<cv::Vec3b>(sy-1, sx-3)[k] * cbufX[0] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx-3)[k] * cbufX[0] * cbufY[3] +
  81. matSrc.at<cv::Vec3b>(sy+1, sx-3)[k] * cbufX[0] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx-3)[k] * cbufX[0] * cbufY[5] +
  82. matSrc.at<cv::Vec3b>(sy+3, sx-3)[k] * cbufX[0] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx-3)[k] * cbufX[0] * cbufY[7] +
  83. matSrc.at<cv::Vec3b>(sy-3, sx-2)[k] * cbufX[1] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx-2)[k] * cbufX[1] * cbufY[1] +
  84. matSrc.at<cv::Vec3b>(sy-1, sx-2)[k] * cbufX[1] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx-2)[k] * cbufX[1] * cbufY[3] +
  85. matSrc.at<cv::Vec3b>(sy+1, sx-2)[k] * cbufX[1] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx-2)[k] * cbufX[1] * cbufY[5] +
  86. matSrc.at<cv::Vec3b>(sy+3, sx-2)[k] * cbufX[1] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx-2)[k] * cbufX[1] * cbufY[7] +
  87. matSrc.at<cv::Vec3b>(sy-3, sx-1)[k] * cbufX[2] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx-1)[k] * cbufX[2] * cbufY[1] +
  88. matSrc.at<cv::Vec3b>(sy-1, sx-1)[k] * cbufX[2] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx-1)[k] * cbufX[2] * cbufY[3] +
  89. matSrc.at<cv::Vec3b>(sy+1, sx-1)[k] * cbufX[2] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx-1)[k] * cbufX[2] * cbufY[5] +
  90. matSrc.at<cv::Vec3b>(sy+3, sx-1)[k] * cbufX[2] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx-1)[k] * cbufX[2] * cbufY[7] +
  91. matSrc.at<cv::Vec3b>(sy-3, sx)[k] * cbufX[3] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx)[k] * cbufX[3] * cbufY[1] +
  92. matSrc.at<cv::Vec3b>(sy-1, sx)[k] * cbufX[3] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx)[k] * cbufX[3] * cbufY[3] +
  93. matSrc.at<cv::Vec3b>(sy+1, sx)[k] * cbufX[3] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx)[k] * cbufX[3] * cbufY[5] +
  94. matSrc.at<cv::Vec3b>(sy+3, sx)[k] * cbufX[3] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx)[k] * cbufX[3] * cbufY[7] +
  95. matSrc.at<cv::Vec3b>(sy-3, sx+1)[k] * cbufX[4] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+1)[k] * cbufX[4] * cbufY[1] +
  96. matSrc.at<cv::Vec3b>(sy-1, sx+1)[k] * cbufX[4] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+1)[k] * cbufX[4] * cbufY[3] +
  97. matSrc.at<cv::Vec3b>(sy+1, sx+1)[k] * cbufX[4] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+1)[k] * cbufX[4] * cbufY[5] +
  98. matSrc.at<cv::Vec3b>(sy+3, sx+1)[k] * cbufX[4] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+1)[k] * cbufX[4] * cbufY[7] +
  99. matSrc.at<cv::Vec3b>(sy-3, sx+2)[k] * cbufX[5] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+2)[k] * cbufX[5] * cbufY[1] +
  100. matSrc.at<cv::Vec3b>(sy-1, sx+2)[k] * cbufX[5] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+2)[k] * cbufX[5] * cbufY[3] +
  101. matSrc.at<cv::Vec3b>(sy+1, sx+2)[k] * cbufX[5] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+2)[k] * cbufX[5] * cbufY[5] +
  102. matSrc.at<cv::Vec3b>(sy+3, sx+2)[k] * cbufX[5] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+2)[k] * cbufX[5] * cbufY[7] +
  103. matSrc.at<cv::Vec3b>(sy-3, sx+3)[k] * cbufX[6] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+3)[k] * cbufX[6] * cbufY[1] +
  104. matSrc.at<cv::Vec3b>(sy-1, sx+3)[k] * cbufX[6] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+3)[k] * cbufX[6] * cbufY[3] +
  105. matSrc.at<cv::Vec3b>(sy+1, sx+3)[k] * cbufX[6] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+3)[k] * cbufX[6] * cbufY[5] +
  106. matSrc.at<cv::Vec3b>(sy+3, sx+3)[k] * cbufX[6] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+3)[k] * cbufX[6] * cbufY[7] +
  107. matSrc.at<cv::Vec3b>(sy-3, sx+4)[k] * cbufX[7] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+4)[k] * cbufX[7] * cbufY[1] +
  108. matSrc.at<cv::Vec3b>(sy-1, sx+4)[k] * cbufX[7] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+4)[k] * cbufX[7] * cbufY[3] +
  109. matSrc.at<cv::Vec3b>(sy+1, sx+4)[k] * cbufX[7] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+4)[k] * cbufX[7] * cbufY[5] +
  110. matSrc.at<cv::Vec3b>(sy+3, sx+4)[k] * cbufX[7] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+4)[k] * cbufX[7] * cbufY[7] ) >> 22);// 4194304
  111. }
  112. }
  113. }
  114. cv::imwrite("Lanczos_1.jpg", matDst1);
  115. cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 4);
  116. cv::imwrite("Lanczos_2.jpg", matDst2);

以上代码的实现结果与 cv::resize 函数相同,但是执行效率非常低,只是为了详细说明插值过程。 OpenCV 中默认采用 C++ Concurrency 进行优化加速,你也可以采用 TBB 、 OpenMP 等进行优化加速。

转载自:https://blog.csdn.net/fengbingchun/article/details/17335477

Opencv--resize函数五种插值算法实现相关推荐

  1. OpenCV中resize函数五种插值算法的实现过程

    最新版OpenCV2.4.7中,cv::resize函数有五种插值算法:最近邻.双线性.双三次.基于像素区域关系.兰索斯插值.下面用for循环代替cv::resize函数来说明其详细的插值实现过程,其 ...

  2. matlab中imresize函数的用法,为何 MATLAB imresize 函数和 OpenCV resize 函数结果不同

    为何 MATLAB imresize 函数和 OpenCV resize 函数结果不同?今年 4 月,我在依照 MATLAB 代码自己写一个卷积神经网络 C++ 实现的过程中,就发现了这个问题,不过那 ...

  3. matlab运行dxcv,MATLAB imresize 函数和 OpenCV resize 函数结果不同

    为何 MATLAB imresize 函数和 OpenCV resize 函数结果不同?今年 4 月,我在依照 MATLAB 代码自己写一个卷积神经网络 C++ 实现的过程中,就发现了这个问题,不过那 ...

  4. matlab imresize算法详解,为何 MATLAB imresize 函数和 OpenCV resize 函数结果不同

    为何 MATLAB imresize 函数和 OpenCV resize 函数结果不同?今年 4 月,我在依照 MATLAB 代码自己写一个卷积神经网络 C++ 实现的过程中,就发现了这个问题,不过那 ...

  5. OpenCV resize函数的用法

    resize函数参数列表及含义 void resize(InputArray src, OutputArray dst, Size dsize, double fx, double fy, int i ...

  6. python opencv resize函数_Python OpenCV中的resize()函数的使用

    改变图像大小意味着改变尺寸,无论是单独的高或宽,还是两者.也可以按比例调整图像大小. 这里将介绍resize()函数的语法及实例. 语法 函数原型 cv2.resize(src, dsize[, ds ...

  7. python opencv resize函数_python cv2.resize函数high和width注意事项说明

    在opencv中获取图片的尺寸的方法是: import cv2 img = cv2.imread(path) img.shape 返回的是三维数组(high, width, 3),当我们需要对图像进行 ...

  8. python opencv resize函数_OpenCV尺寸调整函数resize

    void resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation ...

  9. OpenCV代码提取:resize函数的实现

    之前在http://blog.csdn.net/fengbingchun/article/details/17335477 中有过对cv::resize函数五种插值算法的介绍.这里将OpenCV3.1 ...

最新文章

  1. 浅谈使用SQLBulkCopy批量数据入库
  2. why object family error message is filtered out
  3. JRebel for idea 有时候不生效
  4. python超市管理系统总汇总功能解说_控制台超市系统(Python)
  5. 畅捷教育系统服务器,畅捷教育云平台使用手册一、学生操作流程图-畅捷通.PDF...
  6. php百度网盘登录,php百度网盘同步_http200_mmdb
  7. 读取图像数据:通过append方法
  8. 全球开发者各出奇招:我们想这样适配iPhone X
  9. 疯狂的程序员1-40
  10. pytorch局部范围内禁用梯度计算,no_grad、enable_grad、set_grad_enabled使用举例
  11. 计算机图形学Bezier曲线试题,《计算机图形学》试题-C卷及参考答案
  12. 在cmd命令提示符里运行代码
  13. Spring Boot笔记—多线程系列(三)—配置参数详解
  14. 时尚主义,能让MM们尖叫的手机推荐
  15. user guide 说明
  16. 【numpy操作】numpy的函数
  17. 【TWVRP】基于matlab鲸鱼算法求解带时间窗开放式车辆路径问题【含Matlab源码 1986期】
  18. 佳博usb打印机开钱箱
  19. 分库分表真的适合你的系统吗?聊聊分库分表和NewSQL如何选择
  20. 关键词排名点击是什么意思?刷关键词排名点击好吗?

热门文章

  1. 面试精讲之面试考点及大厂真题 - 分布式专栏 20 降级组件Hystrix的功能特性
  2. 面试官系统精讲Java源码及大厂真题 - 27 Thread 源码解析
  3. 一份完整的 MySQL 开发规范,进大厂必看!
  4. 容器编排技术 -- Kubernetes Master-Node通信
  5. C语言,利用一维数组中选择法对成绩高低排序和输出对应的学号及利用顺序查找查找学生成绩
  6. qt creator源码全方面分析(3-1)
  7. HDU1466 计算直线的交点数
  8. 浅谈 TypeScript【上】-- Flow 静态类型检查工具
  9. 【性能测试】基本入门(包含mysql锁)
  10. 利用 assistant_如何使用Dialogflow对Google Assistant操作实施本地履行