计算MCS、调制阶数、编码速率、频谱效率关系表格

参考网址:http://4g-lte-world.blogspot.tw/2012/12/transport-block-size-code-rate-protocol.html

参考网址:http://blog.richliu.com/2013/10/22/1545/

(1)前提:

因此,efficiency可简化为下式:

TBS=传输块的大小(表7.1.7.2.1-1)

CRC=附加的用于检错的比特数量=24

RE=分给PDSCH或PUSCH信道的Resource elaments数量(认为全部RE中,有90%用于共享信道)

Bits per RE=调制阶数

(2)举例

若eNB根据CQI分配该PUSCH传输的配置为:MCS index=20,2个RB。则有:

1)表7.1.7.1-1,TBS index=18

2)表7.1.7.2.1-1 计算TBS(传输块大小,单位bits)

3)计算code rate

Bits per RE=调制阶数=(MCS index=20)6阶=6

4)计算efficiency

(3)

计算RB数=12时,MCS

对应表

MCS index

modulation

code rate×1024

efficiency

0

QPSK

99.329806

0.194003527

1

QPSK

126.4197531

0.24691358

2

QPSK

153.5097002

0.299823633

3

QPSK

198.659612

0.388007055

4

QPSK

243.8095238

0.476190476

5

QPSK

297.989418

0.582010582

6

QPSK

352.1693122

0.687830688

7

QPSK

424.4091711

0.828924162

8

QPSK

478.5890653

0.934744268

9

QPSK

532.7689594

1.040564374

10

16QAM

266.3844797

1.040564374

11

16QAM

297.989418

1.164021164

12

16QAM

343.1393298

1.340388007

13

16QAM

388.2892416

1.51675485

14

16QAM

442.4691358

1.728395062

15

16QAM

496.64903

1.940035273

16

16QAM

514.7089947

2.010582011

17

64QAM

343.1393298

2.010582011

18

64QAM

367.2192828

2.151675485

19

64QAM

415.3791887

2.433862434

20

64QAM

451.4991182

2.645502646

21

64QAM

487.6190476

2.857142857

22

64QAM

523.7389771

3.068783069

23

64QAM

565.8788948

3.315696649

24

64QAM

609.5238095

3.571428571

25

64QAM

657.6837155

3.85361552

26

64QAM

681.7636684

3.994708995

27

64QAM

705.8436214

4.135802469

28

64QAM

826.2433862

4.841269841


参考文章附于此处

(1)CQI and MCS

LTE UE 會使用 CQI (Channel Quality Indicator) 動態調整 MCS 以降低傳輸錯誤率.

UE 測量 PRB (Physical Resource Block)的接收功率和干擾得到 SINR 值, 在 BLER 值不超過 10%. 將測量值轉換成 CQI. eNodeB 會根據 CQI 值選擇最合適的 MCS.
CQI 報告是由 eNodeB 主動發起, 可以是定時或是不定時.

不同的 CQI Index 有不同的 Code Rate.
如下表

CQI

Modulation

Bits/Symbol

REs/PRB

N_RB

MCS

TBS

Code Rate

1

QPSK

2

138

20

0

536

0.101449

2

QPSK

2

138

20

0

536

0.101449

3

QPSK

2

138

20

2

872

0.162319

4

QPSK

2

138

20

5

1736

0.318841

5

QPSK

2

138

20

7

2417

0.442210

6

QPSK

2

138

20

9

3112

0.568116

7

16QAM

4

138

20

12

4008

0.365217

8

16QAM

4

138

20

14

5160

0.469565

9

16QAM

4

138

20

16

6200

0.563768

10

64QAM

6

138

20

20

7992

0.484058

11

64QAM

6

138

20

23

9912

0.600000

12

64QAM

6

138

20

25

11448

0.692754

13

64QAM

6

138

20

27

12576

0.760870

14

64QAM

6

138

20

28

14688

0.888406

15

64QAM

6

138

20

28

14688

0.88840

MCS

Table 7.1.7.1-1: Modulation and TBS index table for PDSCH

MCS Index Modulation Order TBS Index
0 2 0
1 2 1
2 2 2
3 2 3
4 2 4
5 2 5
6 2 6
7 2 7
8 2 8
9 2 9
10 4 9
11

4

10
12 4 11
13 4 12
14 4 13
15 4 14
16 4 15
17 6 15
18 6 16
19 6 17
20 6 18
21 6 19
22 6 20
23 6 21
24 6 22
25 6 23
26 6 24
27 6 25
28 6 26
29 2 reserved
30 4
31 6

TBS Index (部份)

Table 7.1.7.2.1-1: Transport block size table (dimension 27×110)

1 2 3 4 5 6 7 8 9 10

0

16

32

56

88

120

152

176

208

224

256

1

24

56

88

144

176

208

224

256

328

344

2

32

72

144

176

208

256

296

328

376

424

3

40

104

176

208

256

328

392

440

504

568

4

56

120

208

256

328

408

488

552

632

696

5

72

144

224

328

424

504

600

680

776

872

6

328

176

256

392

504

600

712

808

936

1032

7

104

224

328

472

584

712

840

968

1096

1224

8

120

256

392

536

680

808

968

1096

1256

1384

9

136

296

456

616

776

936

1096

1256

1416

1544

10

144

328

504

680

872

1032

1224

1384

1544

1736

11

176

376

584

776

1000

1192

1384

1608

1800

2024

12

208

440

680

904

1128

1352

1608

1800

2024

2280

13

224

488

744

1000

1256

1544

1800

2024

2280

2536

14

256

552

840

1128

1416

1736

1992

2280

2600

2856

15

280

600

904

1224

1544

1800

2152

2472

2728

3112

16

328

632

968

1288

1608

1928

2280

2600

2984

3240

17

336

696

1064

1416

1800

2152

2536

2856

3240

3624

18

376

776

1160

1544

1992

2344

2792

3112

3624

4008

19

408

840

1288

1736

2152

2600

2984

3496

3880

4264

20

440

904

1384

1864

2344

2792

3240

3752

4136

4584

21

488

1000

1480

1992

2472

2984

3496

4008

4584

4968

22

520

1064

1608

2152

2664

3240

3752

4264

4776

5352

23

552

1128

1736

2280

2856

3496

4008

4584

5160

5736

24

584

1192

1800

2408

2984

3624

4264

4968

5544

5992

25

616

1256

1864

2536

3112

3752

4392

5160

5736

6200

26

712

1480

2216

2984

3752

4392

5160

5992

6712

7480

依公式

Transport block size is 776 bits for ITBS = 18 and NPRB=2

code rate = (TBS + CRC) / (RE x Bits per RE)

code rate = (776 + 24) / (302 * 6 ) = 0.4

詳情請見

http://4g-lte-world.blogspot.tw/2012/12/transport-block-size-code-rate-protocol.html

以下引用自書LTE 關鍵技術與無線性能
覺得整理的還不錯



Ref.
3GPP 36.213 : 最主要的 Document.
http://www.sharetechnote.com/html/Handbook_LTE_CQI.html

(2)Transport Block Size and Code rate

Since the size of transport block is not fixed, often a question comes to mind as to how transport block size is calculated in LTE.
Back Ground
If we only consider "Uplink direction" and we assume that the UE is already attached to the network, then data is first received by PDCP (Packet data compression protocol) layer. This layer performs compression and ciphering / integrity if applicable. This layer will pass on the data to the next layer i.e. RLC Layer which will concatenate it to one RLC PDU.
RLC layer will concatenate or segment the data coming from PDCP layer into correct block size and forward it to the MAC layer with its own header. Now MAC layer selects the modulation and coding scheme configures the physical layer. The data is now in the shape of transport block size and needed to be transmitted in 1ms subframe.

Transport Block size

Now how much bits are transferred in this 1ms transport block size? 
It depends on the MCS (modulation and coding scheme) and the number of resource blocks assigned to the UE. We have to refer to the Table 7.1.7.1-1 and Table 7.1.7.2.1-1 from 3GPP 36.213
Lets assume that eNB assigns MCS index 20 and 2 resource blocks (RBs) on the basis of CQI and other information for downlink transmission on PDSCH. Now the value of TBS index is 18 as seen in Table 7.1.7.1-1
After knowing the value of TBS index we need to refer to the Table 7.1.7.2.1-1 to find the accurate size of transport block (Only portion of the table is shown here while for the complete range of values refer to 3gpp document 36.213  http://www.quintillion.co.jp/3GPP/Specs/36213-920.pdf )

Now from the Table 7.1.7.2.1-1 the value of Transport block size is 776 bits for ITBS = 18 and NPRB=

Code Rate

In simple words, code rate can be defined as how effectively data can be transmitted in 1ms transport block or in other words, it is the ratio of actual amount of bits transmitted to the maximum amount of bits that could be transmitted in one transport block
code rate = (TBS + CRC) / (RE x Bits per RE)
where
TBS = Transport block size as we calculated from Table 7.1.7.2.1-1
CRC = Cyclic redundancy check i.e. Number of bits appended for error detection
RE = Resource elements assigned to PDSCH or PUSCH
Bits per RE = Modulation scheme used

While we know the values of TBS, CRC and bits per RE (modulation order), it is not easy to calculate the exact amount of RE used for PDSCH or PUSCH since some of the REs are also used by control channels like PDCCH, PHICH etc
In our case, lets assume that 10% of RE's are assigned for control channels then
TBS = 776
CRC = 24
RE = 2 (RB) x 12 (subcarriers) x 7 (assuming 7 ofdm symbols) x 2 (slots per subframe) x 0.9 (10% assumption as above) = 302 REs
Bits per RE = 6 (Modulation order from table 7.1.7.1-1)
So
code rate = (776 + 24) / (302 * 6 ) = 0.4

LTE上行链路反馈MCS(计算MCS、调制阶数、编码速率、频谱效率关系表格)相关推荐

  1. LTE QPSK 16QAM星座图、调制符号与bit序列映射关系

    1. 星座图 在MATLAB中,constellation是一个系统对象,调用constellation可以计算和画出星座图. 语法: out = constellation(input); 返回星座 ...

  2. 程序阅读_全面详解LTE:MATLAB建模仿真与实现_自学笔记(1)调制与编码_程序阅读

    程序阅读_全面详解LTE:MATLAB建模仿真与实现_自学笔记(1)调制与编码_程序阅读 在粗浅地掌握了LTE知识后,从今天开始对<全面详解LTE:MATLAB建模仿真与实现>一书的学习. ...

  3. matlab实现子载波分配,一种lte上行链路分步式动态子载波分配方法

    一种lte上行链路分步式动态子载波分配方法 [技术领域] [0001] 本发明涉及移动通信技术资源分配领域,尤其是一种LTE上行链路动态子载波分 配方法. [背景技术] [0002] 目前LTE作为最 ...

  4. 4ask调制与解调的matlab_LTE中的调制和编码

    LTE的调制方式 LTE中使用的调制方式包括QPSK.16QAM记忆64QAM.QPSK需要2bits数据来编码4中不同的调制符号:16QAM使用4bits二进制信号来编码16中不同的调制符号:64Q ...

  5. C++实现设计一个圆形类(Circle),和一个点类(Point), 计算并判断点和圆的位置关系

    题目要求 设计一个圆形类(Circle),和一个点类(Point), 计算并判断点和圆的位置关系. 无分区版 : #include <iostream> using namespace s ...

  6. VOS中开启媒体转发功能后,计算几种常用编码所需占用的带宽量

    VOS中开启媒体转发功能后,计算几种常用编码所需占用的带宽量 计算方法如下: 带宽 = 包长度 × 每秒包数 = 包长度 × (1 / 打包周期) =(Ethernet 头 + IP 头 + UDP ...

  7. 计算共表达蛋白编码基因

    题目回顾 计算与差异表达lncRNA共表达的蛋白编码基因(同时用斯皮尔曼相关及皮尔森相关),比较两种方法得到的显著共表达蛋白编码基因列表的差异. 在计算共表达蛋白编码基因之前,我们已经得到了差异表达的 ...

  8. LTE上行链路学习笔记(1)

    物理信道 LTE的上行物理信道对应于一组资源单元的集合,用于承载源自高层的消息.规范定义了如下的上行信道: 物理上行共享信道:PUSCH 物理上行控制信道:PUCCH 物理随机接入信道:PARCH 物 ...

  9. 无线通信——调制与编码

    基础概念 载波:是一个特定频率的无线电波,载波需要被调制才能传输有效信号,如433M,900M,2.4G,5G等指的就是载波的频率 码片:一个载波周期对应一个码片,码片速率即为载波频率 符号(Symb ...

最新文章

  1. Spring Hibernate使用TransactionInterceptor声明式事务配置
  2. echarts的词云图表类型有哪些_数据可视化之常见12种图表类型分析
  3. 一步一步写算法(之 A*算法)
  4. 洛谷——P1317 低洼地
  5. XP-在恢复时返回到欢迎屏幕
  6. 计算机毕业设计ssm校园办公管理系统
  7. (2.1)【经典木马-冰河木马】详细介绍,原理、使用方法
  8. C++/Qt获取屏幕尺寸和放大比例
  9. matlab中一个显示根号的技巧
  10. 【PS功能学习】10:蒙版带你领略台前幕后的故事
  11. linux脚本while死循环,shell编程之while死循环
  12. Compile、Make和Build的区别
  13. 微软的现实困难:产品需要再次变“酷”
  14. 简单几行代码带你爬取王者荣耀皮肤
  15. 火狐浏览器打开发现是2345的网站-----解决方法
  16. 转区系统开放艾欧尼亚转入服务器,【英雄联盟】转区系统开放艾欧尼亚转入服务...
  17. Android图片加载框架 Glide 4 的用法
  18. wireshark数据包流量分析
  19. 在服务器系统Windows 2003安装Avira AntiVir小红伞免费个人版
  20. MAC visio的替代品Omnigraffle+激活许可证

热门文章

  1. 如何只用CSS做到完全居中
  2. 弯管机编程软件电脑版_音乐编程电脑版
  3. php 查询mysql 乱码,如何做php查询mysql乱码
  4. 项目 mvp_MVP峰会照片博客
  5. 马云与史玉柱经典语录
  6. 【转】ANSYS Workbench中的径向与周向载荷_51CAE_新浪博客
  7. 以原始套接字的方式 截获流经本机网卡的IP数据包
  8. 浮点数的输入以及浮点数运算
  9. 2023年七大最佳勒索软件解密工具
  10. 11个免费的数据可视化工具推荐