转自: http://zhuzhenzhong123.blog.163.com/blog/static/19886275201191792611666/

几乎每一种外设都是通过读写设备上的寄存器来进行的,通常包括控制寄存器、状态寄存器和数据寄存器三大类,外设的寄存器通常被连续地编址。根据CPU体系结构的不同,CPU对IO端口的编址方式有两种:
  (1)I/O映射方式(I/O-mapped)
  典型地,如X86处理器为外设专门实现了一个单独的地址空间,称为"I/O地址空间"或者"I/O端口空间",CPU通过专门的I/O指令(如X86的IN和OUT指令)来访问这一空间中的地址单元。

  (2)内存映射方式(Memory-mapped)
  RISC指令系统的CPU(如ARM、PowerPC等)通常只实现一个物理地址空间,外设I/O端口成为内存的一部分。此时,CPU可以象访问一个内存单元那样访问外设I/O端口,而不需要设立专门的外设I/O指令。
  但是,这两者在硬件实现上的差异对于软件来说是完全透明的,驱动程序开发人员可以将内存映射方式的I/O端口和外设内存统一看作是"I/O内存"资源。
  一般来说,在系统运行时,外设的I/O内存资源的物理地址是已知的,由硬件的设计决定。但是CPU通常并没有为这些已知的外设I/O内存资源的物理地址预定义虚拟地址范围,驱动程序并不能直接通过物理地址访问I/O内存资源,而必须将它们映射到核心虚地址空间内(通过页表),然后才能根据映射所得到的核心虚地址范围,通过访内指令访问这些I/O内存资源。Linux在io.h头文件中声明了函数ioremap(),用来将I/O内存资源的物理地址映射到核心虚地址空间(3GB-4GB)中,原型如下:

void * ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags);

  iounmap函数用于取消ioremap()所做的映射,原型如下:

void iounmap(void * addr);

  这两个函数都是实现在mm/ioremap.c文件中。
  在将I/O内存资源的物理地址映射成核心虚地址后,理论上讲我们就可以象读写RAM那样直接读写I/O内存资源了。为了保证驱动程序的跨平台的可移植性,我们应该使用Linux中特定的函数来访问I/O内存资源,而不应该通过指向核心虚地址的指针来访问。如在x86平台上,读写I/O的函数如下所示:

#define readb(addr) (*(volatile unsigned char *) __io_virt(addr))
#define readw(addr) (*(volatile unsigned short *) __io_virt(addr))
#define readl(addr) (*(volatile unsigned int *) __io_virt(addr))
#define writeb(b,addr) (*(volatile unsigned char *) __io_virt(addr) = (b))
#define writew(b,addr) (*(volatile unsigned short *) __io_virt(addr) = (b))
#define writel(b,addr) (*(volatile unsigned int *) __io_virt(addr) = (b))
#define memset_io(a,b,c) memset(__io_virt(a),(b),(c))
#define memcpy_fromio(a,b,c) memcpy((a),__io_virt(b),(c))
#define memcpy_toio(a,b,c) memcpy(__io_virt(a),(b),(c))

  最后,我们要特别强调驱动程序中mmap函数的实现方法。用mmap映射一个设备,意味着使用户空间的一段地址关联到设备内存上,这使得只要程序在分配的地址范围内进行读取或者写入,实际上就是对设备的访问。
  笔者在Linux源代码中进行包含"ioremap"文本的搜索,发现真正出现的ioremap的地方相当少。所以笔者追根索源地寻找I/O操作的物理地址转换到虚拟地址的真实所在,发现Linux有替代ioremap的语句,但是这个转换过程却是不可或缺的。
  譬如我们再次摘取S3C2410这个ARM芯片RTC(实时钟)驱动中的一小段:

static void get_rtc_time(int alm, struct rtc_time *rtc_tm)
{
 spin_lock_irq(&rtc_lock);
 if (alm == 1) {
  rtc_tm->tm_year = (unsigned char)ALMYEAR & Msk_RTCYEAR;
  rtc_tm->tm_mon = (unsigned char)ALMMON & Msk_RTCMON;
  rtc_tm->tm_mday = (unsigned char)ALMDAY & Msk_RTCDAY;
  rtc_tm->tm_hour = (unsigned char)ALMHOUR & Msk_RTCHOUR;
  rtc_tm->tm_min = (unsigned char)ALMMIN & Msk_RTCMIN;
  rtc_tm->tm_sec = (unsigned char)ALMSEC & Msk_RTCSEC;
 }
 else {
  read_rtc_bcd_time:
  rtc_tm->tm_year = (unsigned char)BCDYEAR & Msk_RTCYEAR;
  rtc_tm->tm_mon = (unsigned char)BCDMON & Msk_RTCMON;
  rtc_tm->tm_mday = (unsigned char)BCDDAY & Msk_RTCDAY;
  rtc_tm->tm_hour = (unsigned char)BCDHOUR & Msk_RTCHOUR;
  rtc_tm->tm_min = (unsigned char)BCDMIN & Msk_RTCMIN;
  rtc_tm->tm_sec = (unsigned char)BCDSEC & Msk_RTCSEC;
  if (rtc_tm->tm_sec == 0) {
   /* Re-read all BCD registers in case of BCDSEC is 0.
   See RTC section at the manual for more info. */
   goto read_rtc_bcd_time;
  }
 }
 spin_unlock_irq(&rtc_lock);
 BCD_TO_BIN(rtc_tm->tm_year);
 BCD_TO_BIN(rtc_tm->tm_mon);
 BCD_TO_BIN(rtc_tm->tm_mday);
 BCD_TO_BIN(rtc_tm->tm_hour);
 BCD_TO_BIN(rtc_tm->tm_min);
 BCD_TO_BIN(rtc_tm->tm_sec);
 /* The epoch of tm_year is 1900 */
 rtc_tm->tm_year += RTC_LEAP_YEAR - 1900;
 /* tm_mon starts at 0, but rtc month starts at 1 */
 rtc_tm->tm_mon--;
}

  I/O操作似乎就是对ALMYEAR、ALMMON、ALMDAY定义的寄存器进行操作,那这些宏究竟定义为什么呢?

#define ALMDAY bRTC(0x60)
#define ALMMON bRTC(0x64)
#define ALMYEAR bRTC(0x68)

  其中借助了宏bRTC,这个宏定义为:

#define bRTC(Nb) __REG(0x57000000 + (Nb))

  其中又借助了宏__REG,而__REG又定义为:

# define __REG(x) io_p2v(x)

  最后的io_p2v才是真正"玩"虚拟地址和物理地址转换的地方:

#define io_p2v(x) ((x) | 0xa0000000)

  __REG对应的有个__PREG:

# define __PREG(x) io_v2p(x)

  io_p2v对应的有个io_v2p:

#define io_v2p(x) ((x) & ~0xa0000000)

  可见有没有出现ioremap是次要的,关键问题是有无虚拟地址和物理地址的转换!

  下面的程序在启动的时候保留一段内存,然后使用ioremap将它映射到内核虚拟空间,同时又用remap_page_range映射到用户虚拟空间,这样一来,内核和用户都能访问。如果在内核虚拟地址将这段内存初始化串"abcd",那么在用户虚拟地址能够读出来:

/************mmap_ioremap.c**************/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/wrapper.h> /* for mem_map_(un)reserve */
#include <asm/io.h> /* for virt_to_phys */
#include <linux/slab.h> /* for kmalloc and kfree */
MODULE_PARM(mem_start, "i");
MODULE_PARM(mem_size, "i");
static int mem_start = 101, mem_size = 10;
static char *reserve_virt_addr;
static int major;
int mmapdrv_open(struct inode *inode, struct file *file);
int mmapdrv_release(struct inode *inode, struct file *file);
int mmapdrv_mmap(struct file *file, struct vm_area_struct *vma);
static struct file_operations mmapdrv_fops =
{
 owner: THIS_MODULE, mmap: mmapdrv_mmap, open: mmapdrv_open, release:
 mmapdrv_release,
};
int init_module(void)
{
 if ((major = register_chrdev(0, "mmapdrv", &mmapdrv_fops)) < 0)
 {
  printk("mmapdrv: unable to register character device/n");
  return ( - EIO);
 }
 printk("mmap device major = %d/n", major);
 printk("high memory physical address 0x%ldM/n", virt_to_phys(high_memory) /
1024 / 1024);
 reserve_virt_addr = ioremap(mem_start *1024 * 1024, mem_size *1024 * 1024);
 printk("reserve_virt_addr = 0x%lx/n", (unsigned long)reserve_virt_addr);
 if (reserve_virt_addr)
 {
  int i;
  for (i = 0; i < mem_size *1024 * 1024; i += 4)
  {
   reserve_virt_addr[i] = 'a';
   reserve_virt_addr[i + 1] = 'b';
   reserve_virt_addr[i + 2] = 'c';
   reserve_virt_addr[i + 3] = 'd';
  }
 }
 else
 {
  unregister_chrdev(major, "mmapdrv");
  return - ENODEV;
 }
 return 0;
}
/* remove the module */
void cleanup_module(void)
{
 if (reserve_virt_addr)
  iounmap(reserve_virt_addr);
 unregister_chrdev(major, "mmapdrv");
 return ;
}
int mmapdrv_open(struct inode *inode, struct file *file)
{
 MOD_INC_USE_COUNT;
 return (0);
}
int mmapdrv_release(struct inode *inode, struct file *file)
{
 MOD_DEC_USE_COUNT;
 return (0);
}
int mmapdrv_mmap(struct file *file, struct vm_area_struct *vma)
{
 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
 unsigned long size = vma->vm_end - vma->vm_start;
 if (size > mem_size *1024 * 1024)
 {
  printk("size too big/n");
  return ( - ENXIO);
 }
 offset = offset + mem_start * 1024 * 1024;
 /* we do not want to have this area swapped out, lock it */
 vma->vm_flags |= VM_LOCKED;
 if (remap_page_range(vma, vma->vm_start, offset, size, PAGE_SHARED))
 {
  printk("remap page range failed/n");
  return - ENXIO;
 }
 return (0);
}

  remap_page_range函数的功能是构造用于映射一段物理地址的新页表,实现了内核空间用户空间的映射,其原型如下:

int remap_page_range(vma_area_struct *vma, unsigned long from, unsigned long to, unsigned long size, pgprot_tprot);

  使用mmap最典型的例子是显示卡的驱动,将显存空间直接从内核映射到用户空间将可提供显存的读写效率。

(在内核驱动程序的初始化阶段,通过ioremap()将物理地址映射到内核虚拟空间;在驱动程序的mmap系统调用中,使用remap_page_range()将该块ROM映射到用户虚拟空间。这样内核空间和用户空间都能访问这段被映射后的虚拟地址。)

ioremap 与 mmap相关推荐

  1. linux 内存映射-ioremap和mmap函数

    最近开始学习Linux驱动程序,将内存映射和ioremap,mmap函数相关资料进行了整理 一,内存映射  对于提供了MMU(存储管理器,辅助操作系统进行内存管理,提供虚实地址转换等硬件支持)的处理器 ...

  2. ioremap和mmap的区别

    ioremap()和mmap 1.明确:不管是在用户空间还是在内核空间,软件一律不能去直接访问设备的物理地址: 2.在内核驱动中如果要访问设备的物理地址,需要利用ioremap将设备的物理地址映射到内 ...

  3. ioremap 与 mmap【转】

    转自:http://blog.csdn.net/junllee/article/details/7415732 内存映射 对于提供了MMU(存储管理器,辅助操作系统进行内存管理,提供虚实地址转换等硬件 ...

  4. linux内存操作--ioremap和mmap

    对于一个系统来讲,会有非常多的外设,那么这些外设的管理都是通过CPU完毕.那么CPU在这个过程中是怎样找到外设的呢? 虽然在一个系统中会有诸多的外设,在每一个外设的接口电路中会有多个port.可是假设 ...

  5. C语言常用函数详细总结附示例(快速掌握)

    目录 一.简介 二.常用函数 2.1 strncpy 2.2 strcmp: 2.3 memset 2.4 strlen 2.5 memcpy 2.6 ioremap 2.7 mmap 三.其他c语言 ...

  6. ioremap、phys_to_virt和mmap

    知识背景:虚拟内存系统通过将虚拟内存分割为称作虚拟页(Virtual Page,VP)大小固定的块,一般情况下,每个虚拟页的大小默认是4096字节.同样的,物理内存也被分割为物理页(Physical ...

  7. 内核request_mem_region 和 ioremap的理解

    几乎每一种外设都是通过读写设备上的寄存器来进行的,通常包括控制寄存器.状态寄存器和数据寄存器三大类,外设的寄存器通常被连续地编址.根据CPU体系结构的不同,CPU对IO端口的编址方式有两种: (1)I ...

  8. Linux内核中ioremap映射的透彻理解

    几乎每一种外设都是通过读写设备上的寄存器来进行的,通常包括控制寄存器.状态寄存器和数据寄存器三大类,外设的寄存器通常被连续地编址.根据CPU体系结构的不同,CPU对IO端口的编址方式有两种: (1)I ...

  9. 内存映射MMAP和DMA【转】

    转自:http://blog.csdn.net/zhoudengqing/article/details/41654293 版权声明:本文为博主原创文章,未经博主允许不得转载. 这一章介绍Linux内 ...

最新文章

  1. 由于代码已经过优化或者本机框架位于调用堆栈之上,无法计算表达式的值 解决方案...
  2. 浅谈ATP CHECK zz
  3. 请问投稿中要求上传的author_SCI 这些投稿状态都是什么意思?审稿人这些“暗语”如何应对?下...
  4. Mybatis中强大的功能元素:resultMap
  5. ubuntu14.04下安装cudnn5.1.3,opencv3.0,编译caffe及配置matlab和python接口过程记录
  6. java中trim_java中string.trim()函数的作用实例及源码
  7. 一文详解深度相机之TOF成像
  8. 极域电子书包课堂管理系统怎么控屏_极域电子教室使用说明
  9. nod32 下载几账户翻译
  10. Allegro 常见问题
  11. lrzsz的交叉编译与使用
  12. 用python写一个股票提醒、并用邮件方式发送出去
  13. EWM 过账期间修改(Posting only possible in periods***)
  14. IMX6Q上蓝牙设备测试
  15. 计算机英语趣味知识,看段子,学英语,懂点计算机知识才能看懂哦!
  16. 如何在Excel中将文件大小中有GB、MB的信息转化成统一格式
  17. 编译原理(三)语法分析:3.二义性与二义性的消除
  18. 学前儿童社会教育 渝粤题库整理
  19. 我同学——应聘阿里巴巴之经过
  20. GitLab的使用之Git-biz push失败问题整理

热门文章

  1. SpringSecurity问题分析之AccessDeniedException: Access is denied 源码分析
  2. day26 SpringBootWeb案例(二)阿里云OSS与配置文件yml
  3. window10右下角有一块区域用鼠标点着没反应
  4. 简单舒服新UI制作神器微信小程序源码下载
  5. 斗地主命令版本php,闲来无事,写一个命令行版的斗地主
  6. Microsoft Graph Toolkit 新版发布 - 新的 Microsoft Teams 身份验证提供程序和文件上传功能
  7. php yii2学习笔记(一) 创建动作和视图
  8. 主机字节序和网络字节序
  9. python中静态变量_Python中的静态变量和方法
  10. linux cr换行符,回车符CR和换行符LF