GPU端到端目标检测YOLOV3全过程(下)

Ubuntu18.04系统下最新版GPU环境配置

·
安装显卡驱动

·
安装Cuda 10.0

·
安装cuDNN

1.安装显卡驱动

(1)这里采用的是PPA源的安装方式,首先添加Graphic
Drivers的PPA源,打开终端输入以下指令代码(添加PPA源并更新):

sudo add-apt-repository ppa:graphics-drivers/ppasudo apt-get update

(2)使用命令行自动查看合适的驱动版本,系统会自动查找并给出推荐的驱动版本,键入如下代码:

ubuntu-drivers devices· 1

运行以上代码结果如下图所示:

上面的结果给出了可供选择的驱动版本,其中推荐的是最高版本nvidia-driver-440,下面通过命令行进行安装该版本驱动;

(3)在终端键入以下代码安装对应驱动(这里输入上面系统推荐的驱动版本):

sudo apt-get install nvidia-driver-440· 1

安装如图:

(4)驱动安装完成后使之生效需要重启计算机,可手动重启也可输入如下命令:

sudo reboot· 1

(5)待重启完成可检测驱动是否安装成功,在终端输入以下代码:

sudo nvidia-smi· 1

如果安装成功会出现如下图的信息显示,这里可以看到显卡的型号及显存利用情况等信息,如我这里是个人电脑的两块1080显卡:

  1. 安装Cuda 10.0

(1)点击进入英伟达驱动安装指引网站,在网站页面上选择要安装的Cuda版本,这里建议安装Cuda 10.0版本(Cuda 10.1和Cuda 9可能会出问题,安装过程可能会麻烦些),如下图所示点击选择Cuda 10.0会跳转至具体选择界面;

(2)在上面跳出的界面中依次选择“Linux”、“x86_64”、“Ubuntu”、“18.04”、“deb(local)”选项,会展开Cuda 10.0的安装指导页面,在网站页面上选择的对应的系统、平台和版本等信息如下图所示:

(3)选择对应版本之后页面下方会提示下载对应的Cuda安装文件,如下图点击下载链接下载(该文件较大可能下载时间较长);

(4)等待上一步中的文件下载完成后按照网站上给出的安装方法进行安装,如下图所示:

首先打开刚刚下载文件所在的文件夹,右击‘在终端打开’(或者cd到该文件夹下),其中上图中第二行命令中“”应改成对应的Cuda版本(可在/var/路径下查找)这里是cuda-repo-10-0-local-10.0.130-410.48,因此在打开的终端应输入的命令如下:

sudo dpkg -i cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64.debsudo apt-key add /var/cuda-repo-10-0-local-10.0.130-410.48/7fa2af80.pubsudo apt-get updatesudo apt-get install cuda

(4)以上步骤完成,需要重启电脑,待重启完成后测试一下Cuda是否安装成功,依次输入如下代码:

第一步,进入例子文件cd /usr/local/cuda-10.0/samples/1_Utilities/deviceQuery# 第二步,执行make命令sudo make# 第三步./deviceQuery

如果出现下图类似的GPU信息显示,则说明安装成功

  1. 安装cuDNN

(1)与Cuda的安装相似,首先进入英伟达开发者网站点击下载cuDNN,这时网页会跳出注册的界面点击“Join”注册一个账号(想要下载cuDNN,这一步是必须的)。注册登录完成后,再次点击下载就会跳转至如下下载页面:

注册登录完成后,再次点击下载就会跳转至如下下载页面:

点击上图红框位置展开更多下载选项,选择与自己Cuda版本对应的cuDNN版本点击下载(如下图所示),这时会弹出具体下载选项;

如下图所示在弹出的具体下载选项中选择红色框标注的三个文件,以此点击进行下载

(2)以上文件下载完成后,进入下载文件所在文件夹并在该文件夹下打开终端(或终端输入cd命令转到该文件目录下),在终端以此输入以下命令(命令中的文件名应与具体下载的文件名字一致):

sudo dpkg -i libcudnn7_7.5.1.10-1+cuda10.0_amd64.debsudo dpkg -i libcudnn7-dev_7.5.1.10-1+cuda10.0_amd64.debsudo dpkg -i libcudnn7-doc_7.5.1.10-1+cuda10.0_amd64.deb· 1· 2· 3

执行如下图

(3)同样地安装完成后需要测试一下是否安装成功,在终端输入以下代码:

cp -r /usr/src/cudnn_samples_v7/ $HOMEcd $HOME/cudnn_samples_v7/mnistCUDNNmake clean && make./mnistCUDNN

最终如果有提示信息:“Test passed !”,则说明安装成功,如图所示:

至此cuDNN的安装就宣告完成,到这里意味着深度学习GPU的环境支持已设置完毕,接下来可以进行深度学习框架如TensorFlow的安装了。

ubuntu安装GPU版的TensorFlow

版本对应关系:
https://blog.csdn.net/qq_27825451/article/details/89082978

安装显卡版本的必须要前面的安装步骤pip3 install tensorflow-gpu

失败就去官网下载
https://tensorflow.google.cn/install/pip

然后sudo pip3 install
tensorflow…whl

测试代码:

import tensorflow as tf with tf.Session() as sess: with tf.device(’/gpu:0’): a = tf.constant([1,2],name=‘a’) b = tf.constant([1,2],name=‘b’) res = a+b print(res)

ubuntu安装gpu版的PyTorch

安装命令:
https://pytorch.org/get-started/locally/

pip install torch torchvision

测试代码:

import torchtorch.cuda.is_aviliable()

2 yolov3搭建GPU环境

2.1
软件环境及插件

·
Ubuntu 16.04.5

·
wget

2.2
安装步骤

【(1) 获取图像检测训练模型】

git clone https://github.com/pjreddie/darknet

· 1

【(2) GPU参数配置】

进入darknet目录cd darknet# 打开Makefile文件vim Makefile

【(3) 修改Makefile文件】

使用GPU,设为1GPU=1# 启用CUDNN,设为1CUDNN=1

【(4) 编译】

makemake clean(清除编译)

【(5) 获取训练模型权重】

wget https://pjreddie.com/media/files/yolov3.weights

【(6) 测试】

【(7) 结果】

【(8) GPU处理耗时】

./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg

具体来说(基于YOLOV3)

yolo_v3结构图

1:输入一张任意大小图片,保持长宽比不变的情况下,缩放至 w 或 h
达到416,再覆盖在416416的新图上,作为网络的输入。即网络的输入是一张416416,3通道的RGB图。

2:运行网络。YOLO的CNN网络把图片分成 SS 个网格(yolov3多尺度预测,输出3层,每层
S * S个网格,分别为 13
13 ,26 26 ,5252),然后每个单元格负责去检测那些中心点落在该格子内的目标,如图所示。
每个单元格需要预测 3*(4+1+B)个值。如果将输入图片划分为 SS 网格,那么每层最终预测值为 SS3(4+1+B) 大小的张量。 B:类别数(coco集为80类),即B=80.
3 为每层anchorbox数量,4 为边界框大小和位置(x , y , w , h )1 为置信度。

3: 通过NMS,非极大值抑制,筛选出框boxes,输出框class_boxes和置信度class_box_scores,再生成类别信息classes,生成最终的检测数据框,并返回。

YOLOv3在feature map上对每个位置进行bbox预测。图中,t为预测值,但是,注意这些值都是相对当前grid的相对值,分别是(tx,ty,tw,th)。最终的预测bbox为:bx,by,bw,bh,这是在image的bbox。

loss
function

在目标检测任务里,有几个关键信息是需要确定的: (x,y),(w,h),class,confidence(x,y)

根据关键信息的特点可以分为上述四类,损失函数应该由各自特点确定。最后加到一起就可以组成最终的loss_function了,也就是一个loss_function搞定端到端的训练。

xy_loss
= K.sum(xy_loss) / mf
wh_loss = K.sum(wh_loss) / mf
confidence_loss = K.sum(confidence_loss) / mf
class_loss = K.sum(class_loss) / mf
loss += xy_loss + wh_loss + confidence_loss + class_loss

网络结构说明。

前言:yolo v3的结构是融合了googlenet的inception以及resnet的shortcut。

结构重点是resnet和googlenet,还有一点需要强调的是:最终输出是一个三分类,分别对于大物体(5252),中物体(2626),小物体(1313)进行检测,在train.py文件中,因为输入的图像大小是416416,然后,分别除以【32,16,8】,得到相应尺寸。

用红色做了注释。residual使用残差结构。什么是残差结构?举个例子在第一层残差结构(其输出为208208128),其输入为20820864,经过3211和6433的卷积后,其生成的特征图与输入叠加起来。其结构如下:


其叠加后的特征图作为新的输入输入下一层。YOLO主体是由许多这种残差模块组成,减小了梯度爆炸的风险,加强了网络的学习能力。

多尺度:

yolov3采用多尺度预测。【(1313)(2626)(52*52)】

•小尺度:(13*13的feature map)

·
网络接收一张(416416)的图,经过5个步长为2的卷积来进行降采样(416 / 2ˆ5 = 13).输出(1313)。

•中尺度 : (26*26的feature map)

·
从小尺度中的倒数第二层的卷积层上采样(x2,up sampling)再与最后一个13x13大小的特征图相加,输出(26*26)。

•大尺度: (52*52的feature map)

YOLO有3个尺度的输出,分别在52×52,26×26,13×13。都是奇数,使得网格会有个中心位置。同时YOLO输出为3个尺度,每个尺度之间还有联系。比如说,13×13这个尺度输出用于检测大型目标,对应的26×26为中型的,52×52用于检测小型目标。

示例:

YOLO: Real-Time
Object Detection

You only look
once (YOLO) is a state-of-the-art, real-time object detection system. On a
Pascal Titan X it processes images at 30 FPS and has a mAP of 57.9% on COCO
test-dev.

Comparison to Other Detectors

YOLOv3 is
extremely fast and accurate. In mAP measured at .5 IOU YOLOv3 is on par with
Focal Loss but about 4x faster. Moreover, you can easily tradeoff between speed
and accuracy simply by changing the size of the model, no retraining required!

Performance on the COCO Dataset

the predicted
probabilities.

Our model has
several advantages over classifier-based systems. It looks at the whole image
at test time so its predictions are informed by global context in the image. It
also makes predictions with a single network evaluation unlike systems like R-CNN which require thousands
for a single image. This makes it extremely fast, more than 1000x faster than
R-CNN and 100x faster than Fast R-CNN. See our paper for more details on the
full system.

What’s New in Version 3?

YOLOv3 uses a
few tricks to improve training and increase performance, including: multi-scale
predictions, a better backbone classifier, and more. The full details are in
our paper!

Detection Using A Pre-Trained Model

This post will
guide you through detecting objects with the YOLO system using a pre-trained
model. If you don’t already have Darknet installed, you should do that first. Or instead of reading
all that just run:

git clone https://github.com/pjreddie/darknetcd darknetmake

Easy!

You already have
the config file for YOLO in the cfg/ subdirectory. You will have to
download the pre-trained weight file here (237 MB). Or just run this:

wget https://pjreddie.com/media/files/yolov3.weights

Then run the
detector!

./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg

You will see
some output like this:

layer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BFLOPs 1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BFLOPs … 105 conv 255 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 255 0.353 BFLOPs 106 detectiontruth_thresh: Using default '1.000000’Loading weights from yolov3.weights…Done!data/dog.jpg: Predicted in 0.029329 seconds.dog: 99%truck: 93%bicycle: 99%

Darknet prints
out the objects it detected, its confidence, and how long it took to find them.
We didn’t compile Darknet with OpenCV so it can’t display the
detections directly. Instead, it saves them in predictions.png. You can open
it to see the detected objects. Since we are using Darknet on the CPU it takes
around 6-12 seconds per image. If we use the GPU version it would be much
faster.

I’ve included
some example images to try in case you need inspiration. Try data/eagle.jpg,
data/dog.jpg,
data/person.jpg,
or data/horses.jpg!

The detect
command is shorthand for a more general version of the command. It is
equivalent to the command:

./darknet detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights data/dog.jpg

You don’t need
to know this if all you want to do is run detection on one image but it’s
useful to know if you want to do other things like run on a webcam (which you
will see later on).

Multiple Images

Instead of
supplying an image on the command line, you can leave it blank to try multiple
images in a row. Instead you will see a prompt when the config and weights are
done loading:

./darknet detect cfg/yolov3.cfg yolov3.weightslayer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BFLOPs 1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BFLOPs … 104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BFLOPs 105 conv 255 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 255 0.353 BFLOPs 106 detectionLoading weights from yolov3.weights…Done!Enter Image Path:

Enter an image
path like data/horses.jpg
to have it predict boxes for that image.

Once it is done
it will prompt you for more paths to try different images. Use Ctrl-C
to exit the program once you are done.

Changing The Detection Threshold

By default, YOLO
only displays objects detected with a confidence of .25 or higher. You can
change this by passing the -thresh flag to the yolo
command. For example, to display all detection you can set the threshold to 0:

./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg -thresh 0

Which produces:

![][all]

So that’s
obviously not super useful but you can set it to different values to control
what gets thresholded by the model.

Tiny YOLOv3

We have a very
small model as well for constrained environments, yolov3-tiny. To use this model,
first download the weights:

wget https://pjreddie.com/media/files/yolov3-tiny.weights

Then run the
detector with the tiny config file and weights:

./darknet detect cfg/yolov3-tiny.cfg yolov3-tiny.weights data/dog.jpg

Real-Time Detection on a Webcam

Running YOLO on
test data isn’t very interesting if you can’t see the result. Instead of
running it on a bunch of images let’s run it on the input from a webcam!

To run this demo
you will need to compile Darknet with CUDA and OpenCV. Then run the command:

./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights

YOLO will
display the current FPS and predicted classes as well as the image with
bounding boxes drawn on top of it.

You will need a
webcam connected to the computer that OpenCV can connect to or it won’t work.
If you have multiple webcams connected and want to select which one to use you
can pass the flag -c to pick (OpenCV uses webcam 0 by
default).

You can also run
it on a video file if OpenCV can read the video:

./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights

That’s how we
made the YouTube video above.

Training YOLO on VOC

You can train
YOLO from scratch if you want to play with different training regimes,
hyper-parameters, or datasets. Here’s how to get it working on the Pascal VOC
dataset.

Get The Pascal VOC Data

To train YOLO
you will need all of the VOC data from 2007 to 2012. You can find links to the
data here. To get all the data,
make a directory to store it all and from that directory run:

wget https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tarwget https://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tarwget https://pjreddie.com/media/files/VOCtest_06-Nov-2007.tartar xf VOCtrainval_11-May-2012.tartar xf VOCtrainval_06-Nov-2007.tartar xf VOCtest_06-Nov-2007.tar

There will now
be a VOCdevkit/
subdirectory with all the VOC training data in it.

Generate Labels for VOC

Now we need to
generate the label files that Darknet uses. Darknet wants a .txt
file for each image with a line for each ground truth object in the image that
looks like:

Where x, y, width,
and height
are relative to the image’s width and height. To generate these file we will
run the voc_label.py
script in Darknet’s scripts/ directory. Let’s just download it again because
we are lazy.

wget https://pjreddie.com/media/files/voc_label.pypython voc_label.py

After a few minutes,
this script will generate all of the requisite files. Mostly it generates a lot
of label files in VOCdevkit/VOC2007/labels/ and VOCdevkit/VOC2012/labels/.
In your directory you should see:

ls2007_test.txt VOCdevkit2007_train.txt voc_label.py2007_val.txt VOCtest_06-Nov-2007.tar2012_train.txt VOCtrainval_06-Nov-2007.tar2012_val.txt VOCtrainval_11-May-2012.tar

The text files
like 2007_train.txt
list the image files for that year and image set. Darknet needs one text file
with all of the images you want to train on. In this example, let’s train with
everything except the 2007 test set so that we can test our model. Run:

cat 2007_train.txt 2007_val.txt 2012_*.txt > train.txt

Now we have all
the 2007 trainval and the 2012 trainval set in one big list. That’s all we have
to do for data setup!

Modify Cfg for Pascal Data

Now go to your
Darknet directory. We have to change the cfg/voc.data config file to
point to your data:

1 classes= 20 2 train = /train.txt 3 valid = 2007_test.txt 4 names = data/voc.names 5 backup = backup

You should
replace
with the directory where you put the VOC data.

Download Pretrained Convolutional Weights

For training we
use convolutional weights that are pre-trained on Imagenet. We use weights from
the darknet53 model. You can just
download the weights for the convolutional layers here (76 MB).

wget https://pjreddie.com/media/files/darknet53.conv.74

Train The Model

Now we can
train! Run the command:

./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg darknet53.conv.74

Training YOLO on COCO

You can train
YOLO from scratch if you want to play with different training regimes,
hyper-parameters, or datasets. Here’s how to get it working on the COCO dataset.

Get The COCO Data

To train YOLO
you will need all of the COCO data and labels. The script scripts/get_coco_dataset.sh
will do this for you. Figure out where you want to put the COCO data and
download it, for example:

cp scripts/get_coco_dataset.sh datacd databash get_coco_dataset.sh

Now you should
have all the data and the labels generated for Darknet.

Modify cfg for COCO

Now go to your
Darknet directory. We have to change the cfg/coco.data config file to
point to your data:

1 classes= 80 2 train = /trainvalno5k.txt 3 valid = /5k.txt 4 names = data/coco.names 5 backup = backup

You should
replace
with the directory where you put the COCO data.

You should also
modify your model cfg for training instead of testing. cfg/yolo.cfg
should look like this:

[net]# Testing# batch=1# subdivisions=1# Trainingbatch=64subdivisions=8…

Train The Model

Now we can
train! Run the command:

./darknet detector train cfg/coco.data cfg/yolov3.cfg darknet53.conv.74

If you want to
use multiple gpus run:

./darknet detector train cfg/coco.data cfg/yolov3.cfg darknet53.conv.74 -gpus 0,1,2,3

If you want to
stop and restart training from a checkpoint:

./darknet detector train cfg/coco.data cfg/yolov3.cfg backup/yolov3.backup -gpus 0,1,2,3

YOLOv3 on the Open Images dataset

wget https://pjreddie.com/media/files/yolov3-openimages.weights ./darknet detector test cfg/openimages.data cfg/yolov3-openimages.cfg yolov3-openimages.weights

What Happened to the Old YOLO Site?

If you are using
YOLO version 2 you can still find the site here: https://pjreddie.com/darknet/yolov2/

GPU端到端目标检测YOLOV3全过程(下)相关推荐

  1. GPU端到端目标检测YOLOV3全过程(上)

    GPU端到端目标检测YOLOV3全过程(上) Basic Parameters: Video: mp4, webM, avi Picture: jpg, png, gif, bmp Text: doc ...

  2. yolov3 指定gpu_GPU端到端目标检测YOLOV3全过程(中)

    GPU端到端目标检测YOLOV3全过程(中) 计算机视觉初级部分知识体系 总结了一下自己在 图像点(pixel值)运算 1. 直方图: 2. 线性/非线性变换: 3. 灰度均衡化/规定化: 4.H-S ...

  3. 移动端实时3D目标检测,谷歌开源出品,安卓下载就能用

    点上方蓝字计算机视觉联盟获取更多干货 在右上方 ··· 设为星标 ★,与你不见不散 编辑:Sophia 计算机视觉联盟  报道  | 公众号 CVLianMeng 转载于 :机器之心 AI博士笔记系列 ...

  4. 深度学习-目标检测YOLOV3 YOLOv4原理详解

    2.YoloV3核心基础内容 2.1 网络结构可视化 Yolov3是目标检测Yolo系列非常非常经典的算法,不过很多同学拿到Yolov3或者Yolov4的cfg文件时,并不知道如何直观的可视化查看网络 ...

  5. Yolo:实时目标检测实战(下)

    Yolo:实时目标检测实战(下) YOLO:Real-Time Object Detection After a few minutes, this script will generate all ...

  6. 端到端半监督目标检测框架

    点击上方"视学算法",选择加"星标"或"置顶" 重磅干货,第一时间送达 作者丨SuperHui@知乎 来源丨https://zhuanlan ...

  7. 端到端半监督目标检测框架Instant-Teaching:

    点上方计算机视觉联盟获取更多干货 仅作学术分享,不代表本公众号立场,侵权联系删除 转载于:知乎,极市平台 AI博士笔记系列推荐 周志华<机器学习>手推笔记正式开源!可打印版本附pdf下载链 ...

  8. 无NMS SOTA!DATE:端到端全卷积目标检测的双重分配

    作者 | 小书童 编辑 | 集智书童 点击下方卡片,关注"自动驾驶之心"公众号 ADAS巨卷干货,即可获取 点击进入→自动驾驶之心[目标检测]技术交流群 后台回复[2D检测综述]获 ...

  9. Yolov7实战,实现网页端的实时目标检测

    关注并星标 从此不迷路 计算机视觉研究院 计算机视觉研究院专栏 作者:Edison_G 今天给大家分享的是yolov7网络实践,并且可以做成web端,只要你输入图像,选择对应模型就可以输出检测结果.让 ...

最新文章

  1. OpenCV2学习笔记(一)
  2. 让SpringMVC Restful API优雅地支持多版本
  3. 花体英文字帖pdf可打印_考研政治 | 马原24个主观题答题原理!PDF可打印!
  4. 牛客题霸 [输出二叉树的右视图] C++题解/答案
  5. android studio按钮槽函数,AndroidStudio按钮Button退出程序
  6. android R启动找不到super分区问题
  7. random是python标准库吗_python标准库介绍——27 random 模块详解
  8. MyBatis foreach语句批量插入数据
  9. Windows内核编程(二)-第一个内核程序
  10. 药房管理系统 药店管理系统 GITHUB
  11. 白盒测试哪种测试效果好_比较常用的白盒测试工具有哪些?
  12. 一汽丰田RAV4电路图2012至2013
  13. 互联网公益陷入信任危机,智慧公益能否力挽狂澜?
  14. python视频推荐知乎_用Python下载知乎视频,非常实用!
  15. SCI、SCI期刊与SCI论文的区别
  16. 使用cmd安装python的matplotlib库
  17. [OHIF-Viewers]医疗数字阅片-医学影像-Module: Panel-自定义面板-中-es6-Object.defineProperty()定义属性...
  18. Android实现 刮刮乐效果
  19. android 电视怎么投屏,手机怎么投屏到电视?原来这么简单
  20. linux系统宝塔安装nodejs,node安装,nodejs安装,Windows nodejs安装,Linux nodejs安装

热门文章

  1. 2022-2028年中国碘矿行业竞争格局分析及市场需求前景报告
  2. 2022-2028年中国EBA树脂(乙烯丙烯酸丁酯)产业竞争现状及发展前景规划报告
  3. 2022-2028年中国散热产业深度调研及投资前景预测报告(全卷)
  4. LeetCode简单题之将句子排序
  5. 台积电2nm与3nm制程
  6. 新材料,比钢硬一倍,但重量只有钢1/6
  7. Atomic Layer Deposition原子层沉积技术
  8. MindArmour差分隐私
  9. GPU编程和流式多处理器
  10. MinkowskiEngine基准测试