报道:人工智能前沿讲习  

作者:知乎—机器学习小谈

地址:https://zhuanlan.zhihu.com/p/368755357

本文以 A Survey on Neural Network Interpretability 读后感为主,加上自身的补充,浅谈神经网络的可解释性。

论文:https://arxiv.org/abs/2012.14261

本文按照以下的章节进行组织:

  1. 人工智能可解释性的背景意义

  2. 神经网络可解释性的分类

  3. 总结

01

人工智能可解释性的背景意义

1.1 什么是可解释性

Interpretability (of a DNN) is the ability to provide explanations in understandable terms to a human. F Doshi-Velez & B Kim, 2017

  • 解释(Explanations),是指需要用某种语言来描述和注解

理想情况下,严谨的数学符号-逻辑规则是最好的解释(D Pedreschi et al., 2019)。实际上人们往往不强求“完整的解释”,只需要关键信息和一些先验知识

  • 可解释的边界(Explainable Boundary),是指可解释性能够提供解释的程度

来自XAI的:对于不同的听众,解释的深度也有所不同,应该是需求而定。例如:为什么你这么聪明?因为我喜欢吃鱼。为什么吃鱼会聪明?因为鱼类富含DHA。为什么DHA聪明?...... 因为根据不同的人群,我们的可解释的工作也不一样。例如给大众解释吃鱼能够聪明就行了,因为吃鱼能够聪明我们很多人已经从小到大耳熟能详了。如果我们给专业人士解释DHA为什么会是大脑聪明,我们身边很多人也答不出来,这已经远超出我们计算机这个领域了。当然,可解释的这种边界越深,这个模型的能力也越强。

  • 可理解的术语(Understandable Terms),是指构成解释的基本单元

不同领域的模型解释需要建立在不同的领域术语之上,不可能或者目前难以用数学逻辑符号来解释。例如计算机视觉中的image patches,NLP中的单词等。而可理解的术语可以理解为计算机跟我们人类能够沟通的语言。以前我们很多研究关于人类跟计算机表达的语言例如计算机指令,现在是反过来计算机根据现有的模型给我们解释

1.2 为什么需要可解释性

  • 高可靠性的要求

a)神经网络在实践中经常有难以预测的错误(进一步的研究是对抗样本攻击与防御),这对于要求可靠性较高的系统很危险

b)可解释性有助于发现潜在的错误;也可以通过debug而改进模型

  • 伦理/法规的要求

AI医疗:目前一般只作为辅助性的工具,是因为一个合格的医疗系统必须是透明的、可理解的、可解释的,可以获得医生和病人的信任。

司法决策:面对纷繁复杂的事实类型,除了法律条文,还需要融入社会常识、人文因素等。因此,AI在司法决策的事后,必须要给出法律依据和推理过程。

  • 作为其他科学研究的工具

科学研究可以发现新知识,可解释性正是用以揭示背后原理。

02

神经网络可解释性的分类

2.1 按照逻辑规则解释(Rule as Explanation)

图左是一颗关于判断西瓜好坏的决策树,经过DFS后,我们可以抽取出右图的规则。而对于神经网络,我们是否也可以类似决策树这样做呢?

答案是肯定的。

第一种方法是分解法,遍历所有特征的排列组合

分解法最简单,但是缺点也是显而易见的,就是时间复杂度太高,虽然KT算法有所优化,但是指数形式的复杂度还是难以投入实际使用。于是我们引入第二种方法:教育法[1]

DecText-决策树抽取器,主要采用经过黑箱子的数据来抽取黑箱子的规则,并且与其他决策树不同的是,该方法除了使用标记数据还可以使用未标记数据以及随机数据,只要经过神经网络黑箱子都可以获得标签。对比仅用训练集,由于传统决策树进行生成叶子比生成其根的可信度还要低(因为能用于划分界限的数据越来越少)。所以DecText有一个优势就是可以利用更多的无标记数据甚至随机数据进行补充。但是一般论文也不会提及到自身设计的大多数缺点。例如,这里我认为有两大缺点。一、无标记数据或者随机数据其实有很多是超过解释的意义,例如人脸识别,如果我们倒入一些不及格的人脸甚至随机的图像,决策树也会对这些图像进行开枝散叶,降低了真正解释人脸的枝叶的占比。二、决策树不能表达太深的网络,决策树越深,性能会急剧下降,可解释性也越差。

Tree Regulartion[2]提出了树正则的方法,来抑制了树的深度。

树正则通过引入深度损失正则项,在优化时候会抑制树的深度。而树的深度则是通过一个简单的预估网络进行预估,需要的参数就是主网络的参数。

2.2 按照语义进行解释

类比人类开始对细胞解释的时候,无法一下子直接从细胞本身理解这个细胞的类别或者功能,但是可以从细胞群或者组织(例如表皮细胞组织)来从宏观角度了解细胞的作用。神经网络亦是如此。例如卷积神经网络,浅层的卷积网络往往关注更基础的图像信息例如纹理、颜色等,而越往上层则越能抽象出更丰富的语义,例如人脸识别的眼睛、鼻子等。其中经典代表就是计算机视觉中的经典方法-可视化[3]

可视化的方法非常多,比如说有一个华人的博士就可视化了CNN,把每一层都展示得非常清楚,只需要在网页上点击对于的神经元,就可以看到工作流程。右边是一位维也纳的小哥,本来搞unity3D特效开发的,他把整个CNN网络用3d的形式可视化了出来。

cnn_visual

featuremap_layout

另外一种主动的按照语义进行解释的代表作:可解释卷积神经网络[4](Interpretable convolutional neural networks.)与传统的卷积神经网络不同的是,ICNN的每一个卷积核尽量只代表一种概念,例如,传统的卷积核对猫的头或者脚都有较大的激活值,而ICNN只能选择最大的一种。

2.3 通过示例解释

这种方法容易理解,是一种直观方法:寻找和待解释的样本最“相似”的一个训练样本,典型的代表作 Understanding black-box predictions via inflfluence functions,[5]

2.4 按照属性解释

按照属性解释目前内容上最。如前面提及到,决策树等透明模型难以模仿复杂的神经网络,那怎么解决呢?针对此问题研究的代表作有:Why should i trust you?: Explaining the predictions of any classififier[6]

由于LIME不介入模型的内部,需要不断的扰动样本特征,这里所谓的样本特征就是指图片中一个一个的像素了。但如果LIME采样的特征空间太大的话,效率会非常低,而一张普通图片的像素少说也有上万个。若直接把每个像素视为一个特征,采样的空间过于庞大,严重影响效率;如果少采样一些,最终效果又会比较差。所以针对图像任务使用LIME时还需要一些特别的技巧,也就是考虑图像的空间相关和连续的特性。不考虑一些极小特例的情况下,图片中的物体一般都是由一个或几个连续的像素块构成,所谓像素块是指具有相似纹理、颜色、亮度等特征的相邻像素构成的有一定视觉意义的不规则像素块,我们称之为超像素。

下面提供一些主动干预型的方法,如Dual-net[7]

其他的还有:用意想空间的对话系统[8]

这种解释的类型是最有深度而且也是用户最容易理解的。但是对AI模型和训练难度也更高了。目前这方面的研究屈指可数。

03

可解释性总结

参考

“Extracting Decision Trees From Trained Neural Networks”. SIGKDD. July 23-26,2002 https://dl.acm.org/doi/10.1145/775047.775113M. Wu, S. Parbhoo, M. C. Hughes, R. Kindle, L. A. Celi, M. Zazzi, V. Roth, and F. Doshi-Velez, “Regional tree regularization for interpretability in deep neural networks.” in AAAI, 2020, pp. 6413–6421. https://arxiv.org/abs/1908.04494K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visualising image classification models and saliency maps,” arXiv preprint arXiv:1312.6034, 2013.Q. Zhang, Y. Nian Wu, and S.-C. Zhu, “Interpretable convolutional neural networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.P. W. Koh and P. Liang, “Understanding black-box predictions via influence functions,” in Proceedings of the 34th International Conference on Machine Learning-Volume 70, 2017.M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?: Explaining the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016.M. Wojtas and K. Chen, “Feature importance ranking for deep learning,” Advances in Neural Information Processing Systems, vol. 33, 2020.Open Domain Dialogue Generation with Latent Images Z Yang, W Wu, H Hu, C Xu, Z Li - arXiv p

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

神经网络的可解释性综述相关推荐

  1. 神经网络的可解释性综述!

    ↑↑↑关注后"星标"Datawhale 每日干货 & 每月组队学习,不错过 Datawhale干货 作者:机器学习小谈,来源:图灵人工智能 地址|https://zhuan ...

  2. 【综述专栏】神经网络的可解释性综述

    来源:知乎 作者:知乎-机器学习小谈 地址:https://zhuanlan.zhihu.com/p/368755357 本文以 A Survey on Neural Network Interpre ...

  3. 神经网络的可解释性综述【A Survey on Neural Network Interpretability】

    人工智能可解释性的背景意义 1.1 什么是可解释性 Interpretability (of a DNN) is the ability to provide explanations in unde ...

  4. 图神经网络的解释性综述!

    ↑↑↑关注后"星标"Datawhale每日干货 & 每月组队学习,不错过Datawhale干货 来源:纪厚业,北京邮电大学,图与推荐 编辑:数据派THU本文约1.5w字,干 ...

  5. LIVE 预告 | 南方科大张宇:神经网络可解释性综述

    深度学习的可解释性研究在近年来顶会的录取文献词云上频频上榜,越来越多的研究工作表明,打开深度学习的黑盒并不是那么遥不可及.这些工作令人们更加信赖深度学习算法生成的结果,也通过分析模型工作的机理,让新的 ...

  6. 收藏 | 图神经网络的解释性综述

    来源:图与推荐本文约1.5w字,干货满满,建议收藏本文对近期提出的 GNN 解释技术进行了系统的总结和分析,归纳对比了该问题的解决思路. 图神经网络的可解释性是目前比较值得探索的方向,今天解读的202 ...

  7. [万字长文] 图神经网络的解释性综述

    图神经网络的可解释性是目前比较值得探索的方向,今天解读的2021最新综述,其针对近期提出的 GNN 解释技术进行了系统的总结和分析,归纳对比了该问题的解决思路.作者还为GNN解释性问题提供了标准的图数 ...

  8. A Survey on Neural Network Interpretability (神经网络的可解释性研究综述)

    A Survey on Neural Network Interpretability 摘要 Ⅰ 引言 A 可解释性的(扩展)定义 B 可解释性的重要性 C 相关工作及贡献 D 综述组织结构 Ⅱ 分类 ...

  9. Paper:《Graph Neural Networks: A Review of Methods and Applications—图神经网络:方法与应用综述》翻译与解读

    Paper:<Graph Neural Networks: A Review of Methods and Applications-图神经网络:方法与应用综述>翻译与解读 目录 < ...

最新文章

  1. 周志华教授发表首届国际学习与推理联合大会IJCLR开场Keynote:探索从纯学习到学习+推理的AI...
  2. 手写识别python_Python徒手实现识别手写数字—图像识别算法(K最近邻)
  3. C语言访问内部ROM,C语言随笔2: rom ram 及其运行的过程
  4. python2和python3的不同点_Django python2和python3的区别
  5. 不会自动化UI测试?不会编程?没问题,会造句就行!
  6. c语言 复杂指针声明,C指针复杂声明
  7. 基于bootstrap的后台左侧导航菜单和点击二级菜单刷新二级页面时候菜单展开显示当前菜单...
  8. AI学习笔记(二)图像与视频
  9. 设计模式—原型模式及其扩展(思维导图)
  10. 2018蓝桥杯B组:第几个幸运数字(JAVA/C++)
  11. 8.1 模型压缩的方法
  12. anaconda r 语言_Centos7系统下R、 Rstudio及sparklyr的安装与配置
  13. 原文是:机器人工程师学习计划
  14. 【超硬核】- python 3分钟实现暴力破解wifi密码EXE应用
  15. wps2019将表格数据转换成工资条的操作方法
  16. java WinRM 远程连接 windows10 执行脚本
  17. IBM建立大中华区云计算中心供验证测试
  18. 【Java并发编程 四】Java的进程与线程
  19. HTML跨年代码[源码]
  20. 介绍一款软件卸载工具IObit

热门文章

  1. Visual Studio 2017工程项目的几个重要文件解析
  2. Emojify - v2 吴恩达老师深度学习第五课第二周编程作业2
  3. 【TPAMI2022】关联关系驱动的多模态分类
  4. 独家 | 一个好的事件跟踪字典是什么样的?
  5. 基于深度神经网络的图像缺损修复方法综述
  6. 【硬核书】树与网络上的概率
  7. 报名 | 飞速发展的个人消费信贷与风险控制讲座
  8. 机器学习各领域必读经典综述
  9. 【2020年3月】自然语言处理最新论文速递
  10. MIT开发的一款最新Chrome插件,功能远超OCR软件,可快速识别和复制图中文字