关注上方深度学习技术前沿”,选择“星标公众号”

资源干货,第一时间送达!

转载自:AI科技评论

DeepMind 作为《自然》期刊的大户,最近在《自然·物理》发表了一篇论文,讲述了如何利用图神经网络研究玻璃态变化的问题。

玻璃,是我们常见却非常陌生的东西。尽管人类制造玻璃已经有2000多年的历史,但却对其物理性质了解不足。

在电子显微镜下面,一块我们平常看来光滑的玻璃,却看起来杂乱无章。原因在于,玻璃是从液态经过迅速冷却后变成的固体;我们知道液体的分子是杂乱分布的,因为液态分子没有足够的时间形成格子状的晶体,于是玻璃虽为固体,却仍冻结在液态的分子排布状态。

然而,粒子如何根据距离相互影响,以及这种影响如何随时间变化,依旧是玻璃动力学中一个尚未解决的核心问题。

在前几天刚刚去世诺贝尔奖得主菲利普 · 安德森(Philip W. Anderson)曾指出:

固体理论中最深奥、最有趣的未解决的问题可能是关于玻璃的性质和玻璃转变的理论。

而DeepMind发表的这篇文章称其研究了一款人工智能系统(本质上是图神经网络),可以预测玻璃分子在液态和固态之间的运动变化过程。

DeepMind发言人表示:“我们在「玻璃动力学」(Glassy Dynamics)建模过程中所验证的心得和技术,可以应用到其他科学的核心问题中,也能够帮助揭开周围世界新事物的神秘面纱。”

1

模拟玻璃的实际意义

玻璃相变(glass transition)在自然界是一种普遍存在的现象,不仅仅表现在窗(硅)玻璃中。在其他地方,例如在熨烫衣服时聚合物受热后,在熨斗重力作用下,会发生定向移动。一些胶体悬浮液(如冰淇淋),颗粒状材料(如沙堆),生物系统(细胞迁移)和社会行为(交通堵塞)都会发生类似的玻璃相变现象。

这本质上就是,在局部约束下,某个元素抑制了其他元素运动的系统变化。我们称这种变化为干扰相变(jamming transition)。

这种变化比较复杂,且相关性较大,以异质的方式在空间中进行传播,是一种大规模、集体的重新排列。

玻璃是这种复杂系统最典型的代表,因此也是最好的研究对象。

事实上,玻璃确实还比较神秘——尽管人类制造硅玻璃已经有几千年的历史,但是对于其背后的物理联系仍然琢磨不透,例如冷却过程中为什么年度会上亿倍地增长,这个问题如今还是未知。

另一方面,玻璃也是能够很好将机器学习和物理问题结合的一个点,因为它比较容易模拟,也比较容易输入到基于样本的机器学习模型中。而且,最为关键的是,我们可以去分析模型本身,从而能够了解玻璃的本质。

2

用图神经网络建模玻璃动力学

玻璃的建模,可以由一系列具有短程排斥势(Repulsive Potential)的粒子来模拟。这种势(更准确说应该是电势)会随粒子之间距离的增大而缩小,大到一定程度就可以认为等于零。于是可以认为只有相互靠近的粒子之间才有相互作用。

于是我们可以把这种粒子之间的关联性和局部性,建模成图结构的网络,然后用图神经网络的技术来预测玻璃的物理性质。

在DeepMind的这篇文章中,他们先根据三维输入创建一个图,其中用节点代表粒子,用边代表粒子之间的相互作用,并给它们之间的相对距离打上标签。

然后将图作为输入来训练图神经网络。如下图所示,对每个节点进行预测,并从中找到一个实值。

模型框架:a)在三维输入中,将相对距离小于2的节点连接起来,从而形成一个图形。b)图网络根据之前的嵌入和相邻节点的嵌入更新边缘,然后根据更新之后的边缘更新节点。c)整个图神经网络由一个编码器、一个解码器、几个核心应用组成。d)从编码器到更新节点的二维图示。

预测得到实值会用在计算机模拟中来观察玻璃体,从而获得的粒子移动规律。值得一提的是,这里使用的是平均初始速度和平均移动距离。

从上图可以看出,此网络架构是一种典型的图网络架构,里面包含多个神经网络。据DeepMind介绍,模型在具体运行过程中,先使用编码器网络将节点和边缘标签嵌入到高维向量空间中,然后对嵌入节点和边缘标签进行迭代更新:在所有的边缘使用同一网络并行更新之后,节点也根据其相邻的边缘嵌入和之前的嵌入进行更新。通常上述过程重复七次,便能够让局部信息在整个图网络中传播。

最后,使用解码器网络提取每个粒子的移动规律,其中解码器网络具有所有必须的属性:固有的关联性,图节点和边的排列下的不变性,以局部操作的组合方式更新嵌入。这里解码器的参数,是用随机梯度下降法得到的。

DeepMind还通过构建几个数据集来验证他们的模型,这些数据集对应于不同温度下、不同时间范围内的流动性预测。他们发现,在选择的时间尺度上,粒子会碰撞数千次,所以网络必须找到一种恰当的方法来刻画长期的动态过程。

3

将网络预测与物理联系起来

将图网络应用到模拟的三维玻璃上后,作者发现,这些图网络的表现远远优于现有的模型,包括从标准的受物理启发的基准,到最先进的机器学习模型。

图3:GNN 预测的移动率(颜色从最不活跃的蓝色到最活跃的红色)与三维盒子切片中最活跃的模拟粒子(点)的位置的比较。红色区域和点越对齐,表示性能越好。左边的平面对应着短时间尺度的预测,画面显示其网络实现了非常好的性能;右边的平面对应着比左边平面长28000倍的时间尺度,玻璃中的粒子开始扩展。动力学是异质的,粒子运动是局部相关的,但在宏观尺度上是异质的,然而该网络依旧能够做出与真实值模拟一致的预测。

通过比较预测的移动率(图3中的颜色梯度)和真实值模拟,他们发现,在短时间内,二者的一致性非常好,并且能够很好地匹配玻璃的松弛时间。

看着在松弛时间(真实玻璃的松弛时间为几千年)的时间尺度上的玻璃,就像在看着1皮秒(10的负12次方秒)上的液体:当粒子碰撞得足以开始丢失其初始位置的信息时,松弛时间会变得不那么精确。

在数字上,预测和模拟的真实值之间的关联性在非常短的时间尺度上为96%,而在玻璃的松弛时间上依旧高达64%(与此前最先进的模型相比,提高了40%)。

然而,作者并不只是简单地对玻璃建模,更重要的是理解其本质。因此,他们探索了哪些因素决定着模型是否成功,从而推断底层系统中哪些属性比较重要。

他们通过设计一个利用图网络特定架构的实验对此进行了研究。回想一下,反复应用边缘和节点的更新来定义任意给定的粒子周围的粒子壳:第一个壳由与“标记”粒子有一步之遥的所有粒子组成,第二个壳由与第一个壳由一步之遥的所有粒子组成,以此类推(见图2c 中不同的蓝色阴影部分)。

当模拟到第 n 个壳时,通过计算网络对中心粒子做出的预测的敏感性,能够计算出网络用来提取预测的区域有多大,而预测能够提供一个对物理系统中粒子相互影响的距离的估计。

图4:消融实验。在左边的实验中,一个中心粒子周围的第一个壳以外的所有粒子都被移除。在正确的实验中,通过增加第一个和第二个粒子壳之间的距离来扰动输入。

作者发现,在预测不久后或液相中将会发生什么时,第三个壳的剧烈变化(例如图4左中,所有的粒子都被移除)并没有改变网络对标记的粒子的预测。另一方面,在低温环境或对很久以后发生的事情进行预测时,在玻璃开始松弛后,即便是第五个壳的微小扰动(图4左),就会影响对标记的粒子的预测。

这些发现与关联长度会随着临近玻璃转变而增加的物理图像一致,其中关联长度计算的是粒子相互影响的距离。

关联长度的定义和研究,是物理学中相变研究的基石,也是研究玻璃时依旧存在的一个争论点。虽然这种“机器学到的”关联长度无法发直接转化为物理上可计算的量,但是它提供了令人信服的证据来证明:在临近玻璃转变过程中,系统中的空间关联会不断增加,而Deepmind 的这一网络,已经学会了提取这些关联。

4

结语

结果表明,图神经网络利用隐藏在粒子周围的结构,构建了一个强大的工具预测玻璃态系统的长期动态。

Deepmind 表示,希望他们的这项技术能够对预测其他涉及到玻璃的物理量有所帮助,并期待它能够给玻璃态系统理论学家带来更多的视角。对此,他们也正在开源模型和经过训练的网络来推动这一进展。

一般而言,图网络作为一个通用的工具,正在被应用到许多包括多体交互在内的其他物理系统、包括交通、人群模拟在内的环境以及宇宙学中。

这些应用中使用的网络分析方法,也给其他领域带来了更深的理解:图网络不仅能够给帮助研究者更好地预测范围内的系统,还能够表示对系统建模至关重要的物理关联。在这些工作中,玻璃态材料中的局部粒子之间的相互作用,一直都在随时间变化。

该工作的作者认为,他们的这一结果会促进研究者在将机器学习应用到物理科学时,采用结构化模型,而在他们的示例中,模型拥有分析神经网络的内部工作原理的能力,也体现了模型能够找到了一个与难以找到的物理量相关联的量。这就表明了,机器学习不仅可以用来做定量预测,还能够用来定性地理解物理系统。

这或许意味着,机器学习系统可能能够帮助研究人员推导出基本的物理理论,最终帮助扩展而非取代人类的理解。

via https://www.deepmind.com/blog/article/Towards-understanding-glasses-with-graph-neural-networks


直播预告……

点击「阅读原文」,直达直播地址????

DeepMind 再发 Nature,图神经网络解决物理难题相关推荐

  1. 打破校史!这位参与发表学校首篇Science的博士小姐姐,近日一作再发Nature

    点击上方,选择星标或置顶,不定期资源大放送! 阅读大概需要13分钟 Follow小博主,每天更新前沿干货 本文来源:科研大匠综合自西南交大新闻网.官微.扬华研究生新闻中心 转载自:募格学术 导读: 1 ...

  2. 他读博期间连发3篇Science,28岁任武大教授后再发Nature!

    全世界只有3.14 % 的人关注了 爆炸吧知识 来源:募格课堂整合自武汉大学.武汉晚报.半月谈等 有这样一位学者,读博期间以一作身份发表3篇Science,28岁成为武汉大学化学与分子科学学院教授再发 ...

  3. 微软熊辰炎:如何利用图神经网络解决半结构化数据问题?

    对于许多信息检索和知识图谱研究者来说,究竟应该使用抽象的结构化信息进行表示学习还是使用海量的文本信息始终是一个富有争议的话题.在本届智源大会上,来自微软研究院的高级研究员熊辰炎博士带来了题为" ...

  4. 宏基因组公共数据挖掘基因组集再发Nature

    文章速递 Title: A new genomic blueprint of the human gut microbiota DOI: 10.1038/s41586-019-0965-1 Journ ...

  5. 前所未有:用AI控制核聚变,DeepMind再登Nature

    点击上方"CSDN精品课",选择"置顶公众号" 第一时间获取精品编程教程 毫无疑问,DeepMind 正在加速将其 AI 算法应用于最前沿的科学问题上. 继此前 ...

  6. DeepMind再登Nature封面!推出AlphaTensor:强化学习发现矩阵乘法算法

    点击下方卡片,关注"CVer"公众号 AI/CV重磅干货,第一时间送达 转载自:机器之心 DeepMind 的 Alpha 系列 AI 智能体家族又多了一个成员--AlphaTen ...

  7. 第八篇!95后天才少年曹原再发Nature!

    来源:自科在线 编辑:nhyilin 2021年7月21日,"石墨烯驾驭者"曹原作为第一作者和通讯作者在国际顶尖学术期刊 Nature 发表了题为:Pauli-limit viol ...

  8. 易汉博承建的数据库再发Nature子刊

    数据资源是未来重要的战略资源.生物数据积累越来越多,高效规范地将其呈现出来有利于数据的进一步挖掘和利用,之前分享了我们承建的三篇NAR的数据库,包括中药数据.海洋天然产物数据和噬菌体预测工具等.这次介 ...

  9. GNN通俗笔记:图神经网络在推荐/广告中的应用

    原始视频:七月在线公开课<图神经网络在推荐广告场景中的应用>,课件可以打开视频页面下载 分享老师:推荐吴老师,推荐/广告算法专家,曾任部门算法负责人,年薪....不低 字幕校对:天保,全程 ...

最新文章

  1. (未完成...)Python3网络爬虫(2):利用urllib.urlopen向有道翻译发送数据并获得翻译结果...
  2. ASP.NET MVC下的异步Action的定义和执行原理
  3. Qt Creator在设备上预览
  4. Spring MVC X-Frame-Options
  5. 安装tomcat和jdk 步骤
  6. 笔记-Microsoft SQL Server 2008技术内幕:T-SQL语言基础-02 单表查询
  7. 移动组件到指定坐标_《我的世界》传送石碑组件 史蒂夫表示跑路的日子终于结束了...
  8. shell 整理(40)====破解加密的qq号
  9. android+eclipse工程,#Cocos2d+lua#android+Eclipse工程编译设置
  10. 图像分割(一)--综述
  11. 【笔记】运筹(中)——Rita_Aloha
  12. SpringBoot项目配置明文密码泄露问题处理
  13. C/C++学习路线总结与分享
  14. 儿童早教APP开发成品案例
  15. visual studio 2008 提示 “函数xxx 已有主体”
  16. 请写出至少五个块级元素_以下属于行内块元素的是()
  17. Kunbernetes从私有仓库nexus拉取镜像
  18. 仿知乎的问答社区PHP系统+支持响应式/打赏功能
  19. ios开发:UINavigationController反方向滑动push
  20. 性能测试指南 | 一些实用的排查命令(未完待续)

热门文章

  1. MVVM设计模式之精髓简化
  2. SQL2005禁用和启用索引
  3. Priority VS Bandwidth
  4. LinkedList方法(可实现栈和队列)
  5. python next用法
  6. 浅谈话题模型:LSA、PLSA、LDA
  7. 中国新冠统计20200128-20200227 统计于网络发布数据 便于数据同比分析规律 公开透明 加强防范 减少恐慌 数学来加持
  8. LSTM为何如此有效
  9. udacity车道线检测GIT库
  10. 16个实用终端命令CLI