浅析linux下替代usbhound的usb总线sniffer抓包模块usbmon安装和使用

操作系统: ubuntu 8.10

内核版本: 2.6.27-7-generic

ubuntu 8.10内置了debugfs,也提供了/lib/modules/2.6.27-7-generic/kernel/drivers/usb/mon/usbmon.ko模块,

然后使用如下2行语句加载usbmon.ko模块

luther@gliethttp:~$ sudo mount -t debugfs none_debugs /sys/kernel/debug

luther@gliethttp:~$ sudo modprobe usbmon

luther@gliethttp:~$ ls /sys/kernel/debug/usbmon/

0s  0u  1s  1t  1u  2s  2t  2u  3s  3t  3u  4s  4t  4u  5s  5t  5u  6s  6t  6u  7s  7t  7u

如果使用其他操作系统没有usbmon.ko,可以自己编译一个,编译方法如下

1.查看当前内核版本

luther@gliethttp:~$ uname -r

2.去下载相应版本内核

3.解压后进入drivers/usb/mon/

执行编译操作

luther@gliethttp:~/linux-2.6.27.7/drivers/usb/mon$ make -C /lib/modules/`uname -r`/build M=`pwd` modules

4.插入模块

luther@gliethttp:~/linux-2.6.27.7/drivers/usb/mon$ mount -t debugfs none_debugs /sys/kernel/debug

luther@gliethttp:~/linux-2.6.27.7/drivers/usb/mon$ insmod ./usbmon.ko

luther@gliethttp:~/linux-2.6.27.7/drivers/usb/mon$ ls /sys/kernel/debug/usbmon/

0s  0u  1s  1t  1u  2s  2t  2u  3s  3t  3u  4s  4t  4u  5s  5t  5u  6s  6t  6u  7s  7t  7u

下面对数据格式进行分析:[luther.gliethttp]

static void mon_text_read_head_u(struct mon_reader_text *rp,

struct mon_text_ptr *p, const struct mon_event_text *ep)

{

char udir, utype;

udir = (ep->is_in ? 'i' : 'o');

switch (ep->xfertype) {

case USB_ENDPOINT_XFER_ISOC:    utype = 'Z'; break;

case USB_ENDPOINT_XFER_INT:    utype = 'I'; break;

case USB_ENDPOINT_XFER_CONTROL:    utype = 'C'; break;

default: /* PIPE_BULK */  utype = 'B';

}

p->cnt += snprintf(p->pbuf + p->cnt, p->limit - p->cnt,

"%lx %u %c %c%c:%d:%03u:%u",

ep->id, ep->tstamp, ep->type,

utype, udir, ep->busnum, ep->devnum, ep->epnum);

}

mon_text_read_head_u一共合成如下8个数据域[luther.gliethttp]

1.urb标志,用来表示一个urb

2.时间戳

3.事件类型(S-submission, C-Callback, E-submission error)

4.端点类型I(中断),C(控制),B(Bulk)和Z(ISOC)

5.数据方向(i或者o)

6.bus总线号

7.该bus总线分配到的设备地址[luther.gliethttp]

8.端点号,对于in端点,为异或^0x80,即去掉第8位1值的数据,比如0x81,那么这里数据为0x81 ^ 0x80 = 1;[luther.gliethttp]

接下来的数据根据不同的端点类型将做不同的格式显示

I(中断) : ep->status和ep->interval 显示端点的状态和端点interval中断间隔值[luther.gliethttp]

C(控制) : 如果事件类型为S,那么显示s bmRequestType bRequest wValue wIndex wLength

如果事件类型非S,即C,那么只显示ep->status

B(Bulk) : ep->status 只显示状态

Z(ISOC) : 如果事件类型为S,那么显示ep->status, ep->interval, ep->start_frame

如果事件类型非S,那么显示ep->status, ep->interval, ep->start_frame, ep->error_count

同时显示ep->numdesc,dp->status, dp->offset, dp->length等信息,是组合最多的一个输出[luther.gliethttp]

接下来的数据就是ep->length长度了[luther.gliethttp].

再接下来就是mon_text_read_data填充数据了[luther.gliethttp].

1.如果数据长度ep->length为0,那么直接填入一个'\n'换行.

2.如果确实有数据部分,那么先追入' =',然后在=等号后面追加实际数据内容.

3.如果没有数据部分,比如那么将ep->data_flag作为char类型打印出来[luther.gliethttp]

ep->data_flag共有5种数值,由mon_text_get_data()函数返回

3.1 L -- 表示期待数据长度为0

3.2 < -- 表示有数据要上传,后面有需要接收的数据,后面会有IN动作,

表示in类型,后面还有In读取操作需要读取数据,

同时为S-submission或者E-submission error

3.3 > -- 表示数据部分已经成功下发

表示out类型,同时为C-Callback

3.4 Z -- 表示transfer_buffer为NULL

3.5 0 -- 表示成功获取data.

static inline char mon_text_get_data(struct mon_event_text *ep, struct urb *urb,

int len, char ev_type, struct mon_bus *mbus)

{

if (len <= 0)

return 'L';

if (len >= DATA_MAX)

len = DATA_MAX;

if (ep->is_in) {

if (ev_type != 'C')

return '    } else {

if (ev_type != 'S')

return '>';

}

/*

* The check to see if it's safe to poke at data has an enormous

* number of corner cases, but it seems that the following is

* more or less safe.

*

* We do not even try to look at transfer_buffer, because it can

* contain non-NULL garbage in case the upper level promised to

* set DMA for the HCD.

*/

if (urb->dev->bus->uses_dma &&

(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {

return mon_dmapeek(ep->data, urb->transfer_dma, len);

}

if (urb->transfer_buffer == NULL)

return 'Z';    /* '0' would be not as pretty. */

memcpy(ep->data, urb->transfer_buffer, len);

return 0;

}

luther@gliethttp:~$ lsusb

Bus 007 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Bus 005 Device 002: ID 0461:4d22 Primax Electronics, Ltd

Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Bus 001 Device 002: ID 413c:2105 Dell Computer Corp.

Bus 001 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

可以看到Bus 001 Device 002: ID 413c:2105 Dell Computer Corp.

我的Dell键盘就位于bus总线1,

我们捕获一下Caps Lock按键和Num Lock按键

luther@gliethttp:~$ sudo cat /sys/kernel/debug/usbmon/1u

f794ea80 373903961 C Ii:1:002:1 0:16 8 = 00000000 00000000

f794ea80 373904003 S Ii:1:002:1 -115:16 8 <

f794ea80 375647970 C Ii:1:002:1 0:16 8 = 00003900 00000000

f794ea80 375648013 S Ii:1:002:1 -115:16 8 <

f794e200 375648186 S Co:1:002:0 s 21 09 0200 0000 0001 1 = 03

f794e200 375651967 C Co:1:002:0 0 1 >  数据0x03已经成功下发

f794ea80 375791967 C Ii:1:002:1 0:16 8 = 00000000 00000000

f794ea80 375792005 S Ii:1:002:1 -115:16 8 <

f794ea80 376511970 C Ii:1:002:1 0:16 8 = 00005300 00000000

f794ea80 376512007 S Ii:1:002:1 -115:16 8 <

f794e200 376512216 S Co:1:002:0 s 21 09 0200 0000 0001 1 = 02

f794e200 376515970 C Co:1:002:0 0 1 >数据0x02已经成功下发

f794ea80 376591971 C Ii:1:002:1 0:16 8 = 00000000 00000000

f794ea80 376592007 S Ii:1:002:1 -115:16 8 <

f794ea80 378719980 C Ii:1:002:1 0:16 8 = 01000000 00000000

f794ea80 378720015 S Ii:1:002:1 -115:16 8 <

f794ea80 378911979 C Ii:1:002:1 0:16 8 = 01000600 00000000

f794ea80 378912016 S Ii:1:002:1 -115:16 8 <

下面来自kernel文档usbmon.txt

linux-2.6.27.7/Documentation/usbmon.txt

* Introduction

The name "usbmon" in lowercase refers to a facility in kernel which is

used to collect traces of I/O on the USB bus. This function is analogous

to a packet socket used by network monitoring tools such as tcpdump(1)

or Ethereal. Similarly, it is expected that a tool such as usbdump or

USBMon (with uppercase letters) is used to examine raw traces produced

by usbmon.

The usbmon reports requests made by peripheral-specific drivers to Host

Controller Drivers (HCD). So, if HCD is buggy, the traces reported by

usbmon may not correspond to bus transactions precisely. This is the same

situation as with tcpdump.

* How to use usbmon to collect raw text traces

Unlike the packet socket, usbmon has an interface which provides traces

in a text format. This is used for two purposes. First, it serves as a

common trace exchange format for tools while more sophisticated formats

are finalized. Second, humans can read it in case tools are not available.

To collect a raw text trace, execute following steps.

1. Prepare

Mount debugfs (it has to be enabled in your kernel configuration), and

load the usbmon module (if built as module). The second step is skipped

if usbmon is built into the kernel.

# mount -t debugfs none_debugs /sys/kernel/debug

# modprobe usbmon

#

Verify that bus sockets are present.

# ls /sys/kernel/debug/usbmon

0s  0t  0u  1s  1t  1u  2s  2t  2u  3s  3t  3u  4s  4t  4u

#

Now you can choose to either use the sockets numbered '0' (to capture packets on

all buses), and skip to step #3, or find the bus used by your device with step #2.

2. Find which bus connects to the desired device

Run "cat /proc/bus/usb/devices", and find the T-line which corresponds to

the device. Usually you do it by looking for the vendor string. If you have

many similar devices, unplug one and compare two /proc/bus/usb/devices outputs.

The T-line will have a bus number. Example:

T:  Bus=03 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#=  2 Spd=12  MxCh= 0

D:  Ver= 1.10 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs=  1

P:  Vendor=0557 ProdID=2004 Rev= 1.00

S:  Manufacturer=ATEN

S:  Product=UC100KM V2.00

Bus=03 means it's bus 3.

3. Start 'cat'

# cat /sys/kernel/debug/usbmon/3u > /tmp/1.mon.out

to listen on a single bus, otherwise, to listen on all buses, type:

# cat /sys/kernel/debug/usbmon/0u > /tmp/1.mon.out

This process will be reading until killed. Naturally, the output can be

redirected to a desirable location. This is preferred, because it is going

to be quite long.

4. Perform the desired operation on the USB bus

This is where you do something that creates the traffic: plug in a flash key,

copy files, control a webcam, etc.

5. Kill cat

Usually it's done with a keyboard interrupt (Control-C).

At this point the output file (/tmp/1.mon.out in this example) can be saved,

sent by e-mail, or inspected with a text editor. In the last case make sure

that the file size is not excessive for your favourite editor.

* Raw text data format

Two formats are supported currently: the original, or '1t' format, and

the '1u' format. The '1t' format is deprecated in kernel 2.6.21. The '1u'

format adds a few fields, such as ISO frame descriptors, interval, etc.

It produces slightly longer lines, but otherwise is a perfect superset

of '1t' format.

If it is desired to recognize one from the other in a program, look at the

"address" word (see below), where '1u' format adds a bus number. If 2 colons

are present, it's the '1t' format, otherwise '1u'.

Any text format data consists of a stream of events, such as URB submission,

URB callback, submission error. Every event is a text line, which consists

of whitespace separated words. The number or position of words may depend

on the event type, but there is a set of words, common for all types.

Here is the list of words, from left to right:

- URB Tag. This is used to identify URBs is normally a kernel mode address

of the URB structure in hexadecimal.

- Timestamp in microseconds, a decimal number. The timestamp's resolution

depends on available clock, and so it can be much worse than a microsecond

(if the implementation uses jiffies, for example).

- Event Type. This type refers to the format of the event, not URB type.

Available types are: S - submission, C - callback, E - submission error.

- "Address" word (formerly a "pipe"). It consists of four fields, separated by

colons: URB type and direction, Bus number, Device address, Endpoint number.

Type and direction are encoded with two bytes in the following manner:

Ci Co   Control input and output

Zi Zo   Isochronous input and output

Ii Io   Interrupt input and output

Bi Bo   Bulk input and output

Bus number, Device address, and Endpoint are decimal numbers, but they may

have leading zeros, for the sake of human readers.

- URB Status word. This is either a letter, or several numbers separated

by colons: URB status, interval, start frame, and error count. Unlike the

"address" word, all fields save the status are optional. Interval is printed

only for interrupt and isochronous URBs. Start frame is printed only for

isochronous URBs. Error count is printed only for isochronous callback

events.

The status field is a decimal number, sometimes negative, which represents

a "status" field of the URB. This field makes no sense for submissions, but

is present anyway to help scripts with parsing. When an error occurs, the

field contains the error code.

In case of a submission of a Control packet, this field contains a Setup Tag

instead of an group of numbers. It is easy to tell whether the Setup Tag is

present because it is never a number. Thus if scripts find a set of numbers

in this word, they proceed to read Data Length (except for isochronous URBs).

If they find something else, like a letter, they read the setup packet before

reading the Data Length or isochronous descriptors.

- Setup packet, if present, consists of 5 words: one of each for bmRequestType,

bRequest, wValue, wIndex, wLength, as specified by the USB Specification 2.0.

These words are safe to decode if Setup Tag was 's'. Otherwise, the setup

packet was present, but not captured, and the fields contain filler.

- Number of isochronous frame descriptors and descriptors themselves.

If an Isochronous transfer event has a set of descriptors, a total number

of them in an URB is printed first, then a word per descriptor, up to a

total of 5. The word consists of 3 colon-separated decimal numbers for

status, offset, and length respectively. For submissions, initial length

is reported. For callbacks, actual length is reported.

- Data Length. For submissions, this is the requested length. For callbacks,

this is the actual length.

- Data tag. The usbmon may not always capture data, even if length is nonzero.

The data words are present only if this tag is '='.

- Data words follow, in big endian hexadecimal format. Notice that they are

not machine words, but really just a byte stream split into words to make

it easier to read. Thus, the last word may contain from one to four bytes.

The length of collected data is limited and can be less than the data length

report in Data Length word.

Here is an example of code to read the data stream in a well known programming

language:

class ParsedLine {

int data_len;        /* Available length of data */

byte data[];

void parseData(StringTokenizer st) {

int availwords = st.countTokens();

data = new byte[availwords * 4];

data_len = 0;

while (st.hasMoreTokens()) {

String data_str = st.nextToken();

int len = data_str.length() / 2;

int i;

int b;    // byte is signed, apparently?! XXX

for (i = 0; i < len; i++) {

// data[data_len] = Byte.parseByte(

//     data_str.substring(i*2, i*2 + 2),

//     16);

b = Integer.parseInt(

data_str.substring(i*2, i*2 + 2),

16);

if (b >= 128)

b *= -1;

data[data_len] = (byte) b;

data_len++;

}

}

}

}

Examples:

An input control transfer to get a port status.

d5ea89a0 3575914555 S Ci:1:001:0 s a3 00 0000 0003 0004 4 <

d5ea89a0 3575914560 C Ci:1:001:0 0 4 = 01050000

An output bulk transfer to send a SCSI command 0x5E in a 31-byte Bulk wrapper

to a storage device at address 5:

dd65f0e8 4128379752 S Bo:1:005:2 -115 31 = 55534243 5e000000 00000000 00000600 00000000 00000000 00000000 000000

dd65f0e8 4128379808 C Bo:1:005:2 0 31 >

* Raw binary format and API

The overall architecture of the API is about the same as the one above,

only the events are delivered in binary format. Each event is sent in

the following structure (its name is made up, so that we can refer to it):

struct usbmon_packet {

u64 id;            /*  0: URB ID - from submission to callback */

unsigned char type;    /*  8: Same as text; extensible. */

unsigned char xfer_type; /*    ISO (0), Intr, Control, Bulk (3) */

unsigned char epnum;    /*     Endpoint number and transfer direction */

unsigned char devnum;    /*     Device address */

u16 busnum;        /* 12: Bus number */

char flag_setup;    /* 14: Same as text */

char flag_data;        /* 15: Same as text; Binary zero is OK. */

s64 ts_sec;        /* 16: gettimeofday */

s32 ts_usec;        /* 24: gettimeofday */

int status;        /* 28: */

unsigned int length;    /* 32: Length of data (submitted or actual) */

unsigned int len_cap;    /* 36: Delivered length */

unsigned char setup[8];    /* 40: Only for Control 'S' */

};                /* 48 bytes total */

These events can be received from a character device by reading with read(2),

with an ioctl(2), or by accessing the buffer with mmap.

The character device is usually called /dev/usbmonN, where N is the USB bus

number. Number zero (/dev/usbmon0) is special and means "all buses".

However, this feature is not implemented yet. Note that specific naming

policy is set by your Linux distribution.

If you create /dev/usbmon0 by hand, make sure that it is owned by root

and has mode 0600. Otherwise, unpriviledged users will be able to snoop

keyboard traffic.

The following ioctl calls are available, with MON_IOC_MAGIC 0x92:

MON_IOCQ_URB_LEN, defined as _IO(MON_IOC_MAGIC, 1)

This call returns the length of data in the next event. Note that majority of

events contain no data, so if this call returns zero, it does not mean that

no events are available.

MON_IOCG_STATS, defined as _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)

The argument is a pointer to the following structure:

struct mon_bin_stats {

u32 queued;

u32 dropped;

};

The member "queued" refers to the number of events currently queued in the

buffer (and not to the number of events processed since the last reset).

The member "dropped" is the number of events lost since the last call

to MON_IOCG_STATS.

MON_IOCT_RING_SIZE, defined as _IO(MON_IOC_MAGIC, 4)

This call sets the buffer size. The argument is the size in bytes.

The size may be rounded down to the next chunk (or page). If the requested

size is out of [unspecified] bounds for this kernel, the call fails with

-EINVAL.

MON_IOCQ_RING_SIZE, defined as _IO(MON_IOC_MAGIC, 5)

This call returns the current size of the buffer in bytes.

MON_IOCX_GET, defined as _IOW(MON_IOC_MAGIC, 6, struct mon_get_arg)

This call waits for events to arrive if none were in the kernel buffer,

then returns the first event. Its argument is a pointer to the following

structure:

struct mon_get_arg {

struct usbmon_packet *hdr;

void *data;

size_t alloc;        /* Length of data (can be zero) */

};

Before the call, hdr, data, and alloc should be filled. Upon return, the area

pointed by hdr contains the next event structure, and the data buffer contains

the data, if any. The event is removed from the kernel buffer.

MON_IOCX_MFETCH, defined as _IOWR(MON_IOC_MAGIC, 7, struct mon_mfetch_arg)

This ioctl is primarily used when the application accesses the buffer

with mmap(2). Its argument is a pointer to the following structure:

struct mon_mfetch_arg {

uint32_t *offvec;    /* Vector of events fetched */

uint32_t nfetch;    /* Number of events to fetch (out: fetched) */

uint32_t nflush;    /* Number of events to flush */

};

The ioctl operates in 3 stages.

First, it removes and discards up to nflush events from the kernel buffer.

The actual number of events discarded is returned in nflush.

Second, it waits for an event to be present in the buffer, unless the pseudo-

device is open with O_NONBLOCK.

Third, it extracts up to nfetch offsets into the mmap buffer, and stores

them into the offvec. The actual number of event offsets is stored into

the nfetch.

MON_IOCH_MFLUSH, defined as _IO(MON_IOC_MAGIC, 8)

This call removes a number of events from the kernel buffer. Its argument

is the number of events to remove. If the buffer contains fewer events

than requested, all events present are removed, and no error is reported.

This works when no events are available too.

FIONBIO

The ioctl FIONBIO may be implemented in the future, if there's a need.

In addition to ioctl(2) and read(2), the special file of binary API can

be polled with select(2) and poll(2). But lseek(2) does not work.

* Memory-mapped access of the kernel buffer for the binary API

The basic idea is simple:

To prepare, map the buffer by getting the current size, then using mmap(2).

Then, execute a loop similar to the one written in pseudo-code below:

struct mon_mfetch_arg fetch;

struct usbmon_packet *hdr;

int nflush = 0;

for (;;) {

fetch.offvec = vec; // Has N 32-bit words

fetch.nfetch = N;   // Or less than N

fetch.nflush = nflush;

ioctl(fd, MON_IOCX_MFETCH, &fetch);   // Process errors, too

nflush = fetch.nfetch;       // This many packets to flush when done

for (i = 0; i < nflush; i++) {

hdr = (struct ubsmon_packet *) &mmap_area[vec[i]];

if (hdr->type == '@')     // Filler packet

continue;

caddr_t data = &mmap_area[vec[i]] + 64;

process_packet(hdr, data);

}

}

Thus, the main idea is to execute only one ioctl per N events.

Although the buffer is circular, the returned headers and data do not cross

the end of the buffer, so the above pseudo-code does not need any gathering.

阅读(3355) | 评论(0) | 转发(0) |

嵌入式 linux usbmon,浅析linux下替代usbhound的usb总线sniffer抓包模块usbmon安装和使用...相关推荐

  1. Linux下USB抓包工具UsbMon的使用和包数据格式解析

    Linux下USB抓包工具UsbMon的使用和包数据格式解析 一.UsbMon的使用步骤 1.挂载debugfs 2.加载usbmon模块 3.确认usbmon是否可用 4.确认usb设备挂在哪条总线 ...

  2. 使用Ubuntu下usb抓包工具(usbmon)进行数据抓取的一次记录

    前言 使用反汇编还原的库调试打印机网络作业设置,打印出来的日志与原库有出入,在usb传输处始终有偏差. 调用反汇编还原的库: DEBUG: Net_OnlyGetDataSizeFromReplyHd ...

  3. Ubuntu 下USB抓包工具—usbmon

    Ubuntu 下USB抓包工具-usbmon 目录:/lib/modules/3.13.0-24-generic/kernel/drivers/usb/mon/usbmon.ko(ubuntu16.0 ...

  4. 【WLAN】【测试】Linux下aircrack-ng的应用之空口抓包全解

    简介 aircrack-ng是一套完整的访问wifi网络安全的套件,主要用于命令行,主要包含以下工具: airmon-ng airodump-ng aireplay-ng aircrack-ng 主要 ...

  5. c++环境下qt+pcpp(winpcap)实现的网络抓包(sniff)程序

    一.软件的简介 1.1 开发技术简介 本软件是利用c++语言基于Qt与PcapPlusPlus(以下简称PcPP)库在vs2019中开发的一个单一的windows应用.Qt是一个良好的跨平台界面设计库 ...

  6. RK3399平台开发系列讲解(内核调试篇)2.9、USB抓包软件usbmon报文解析

  7. arm linux使用 usbmon 抓取usb总线数据包

    arm linux usb设备工作异常,需要跟踪监视 usb 总线上的数据包.可以使用 usbmon 工具.这需要在内核编译时选择支持 usbmon.可以编译到内核里面,也可以编译成模块单独使用. 1 ...

  8. Linux 环境下的抓包工具 - tcpdump

    Linux 环境下,通常通过 tcpdump 来进行抓包和分析.它是几乎所有 Linux 发行版本预装的数据包抓取和分析工具. 一.tcpdump 的用法 tcpdump [-aAbdDefhHIJK ...

  9. wireshark分析oracle报错,Linux下抓包工具tcpdump以及分析包的工具wireshark

    tcpdump是用来抓取数据的,wireshark则是用于分析抓取到的数据的. 一般需要安装,直接使用yum安装:yum -y install tcpdump即可. Tcpdump使用方法(1)关于类 ...

最新文章

  1. 现在的我为什么不泡技术论坛了
  2. 平板电脑怎么投屏到电视上_电脑屏幕投屏到平板、IPAD、艾派德
  3. @PropertySource@ImportResource@Bean
  4. “adb”不是内部或外部命令,也不是可运行的程序或批处理文件(Win)与(Mac)——终极解决方案
  5. java 包权限_Java基础(十二)之包和权限访问
  6. 如何把微信文章中的语音/音乐下载下来
  7. checking size of char… configure: error: cannot compute sizeof (char) 解决方法
  8. 前端学习(3155):react-hello-react之脚手架文件_public
  9. mysql内存报警_[MySQL生产环境] Innodb存储引擎内存报警问题处理过程_MySQL
  10. SQL工作笔记-达梦7存储过程中游标的使用(for循环 IF等)
  11. abp 上如何使用getstoredproccommand_多效唑,如何在柑橘上安全使用
  12. 从零开始刷Leetcode——数组(66.88)
  13. (转)解决nginx: [error] open() "/usr/local/nginx/logs/nginx.pid" failed错误
  14. 飞行的小鸟(Flybird)C语言小游戏C++简单小程序超简单
  15. smali 添加资源
  16. USGS SWB模型
  17. Oracle细节,plsql语法大全
  18. SC、ST、FC、LC光纤接头区别
  19. 如何甄选出一个优秀的软件供应商?by彭文华
  20. Pandas二次学习- 回炉重造(进阶)

热门文章

  1. 加密风险:数据安全盲点
  2. JAVA自学之路——马士兵
  3. 2021年河南西平高考成绩查询,三台西平中学2021年排名
  4. 【零基础】Python3学习课后练习题(十二)
  5. 9day 各文件的读取操作
  6. 最新版力克时尚PLM 4.0帮助时尚公司实现互联互通
  7. SSM springmvc spring mybatis Java 集代码生成器 后台框架源码
  8. 梯度下降求解一元二次函数
  9. Word出现向程序发送命令时出现问题解决方法。
  10. html中的搜索代码,Web自动化(3):网页自动搜索功能