从(A.2)到(A.5):
x=2σx2rcos⁡θy=2σx2rsin⁡θx˙=2σx2(r˙cos⁡θ−rsin⁡θθ˙)y˙=2σx2(r˙sin⁡θ+rcos⁡θθ˙)\begin{aligned} &x=\sqrt{2\sigma_x^2}r\cos\theta\\ &y=\sqrt{2\sigma_x^2}r\sin\theta\\ &\dot x=\sqrt{2\sigma_x^2}(\dot r\cos\theta-r\sin\theta \dot \theta)\\ &\dot y=\sqrt{2\sigma_x^2}(\dot r\sin\theta+r\cos\theta \dot \theta) \end{aligned}​x=2σx2​​rcosθy=2σx2​​rsinθx˙=2σx2​​(r˙cosθ−rsinθθ˙)y˙​=2σx2​​(r˙sinθ+rcosθθ˙)​
因此
dxdy=2σx2rdrdθdx˙dy˙=2σx2rdr˙dθ˙+∗∗∗dxdydx˙dy˙=(2σx2)2r2drdθdr˙dθ˙\begin{aligned} &dxdy={2\sigma_x^2}rdrd\theta\\ &d\dot xd\dot y={2\sigma_x^2}rd\dot rd \dot \theta+***\\ &dxdyd\dot xd\dot y=({2\sigma_x^2})^2r^2drd\theta d\dot rd \dot \theta \end{aligned}​dxdy=2σx2​rdrdθdx˙dy˙​=2σx2​rdr˙dθ˙+∗∗∗dxdydx˙dy˙​=(2σx2​)2r2drdθdr˙dθ˙​
这里 ∗∗∗***∗∗∗ 表示前面已出现过的微分项,对最后的微分外积没有贡献。将变量代换到 (A.2)得到 (A.5)。
公式(A.5)到 (A.7)
∫02πdθ∫−∞∞e−1Kr2θ˙2dθ˙=2ππKr\int_0^{2\pi}d\theta\int_{-\infty}^{\infty} e^{-{1\over K}r^2\dot\theta^2}d\dot \theta=2\pi {\sqrt{\pi K}\over r}∫02π​dθ∫−∞∞​e−K1​r2θ˙2dθ˙=2πrπK​​
根据 (B.1)
∣R∣=(σx2σx˙2σx¨2−σx˙6)2|R|=\left(\sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6\right)^2∣R∣=(σx2​σx˙2​σx¨2​−σx˙6​)2
矩阵 R 是块对角阵,块的拟
R1−1=1σx2σx˙2σx¨2−σx˙6(σx˙2σx¨20σx˙40σx2σx¨2−σx˙40σx˙40σx2σx˙2)R_1^{-1}={1\over \sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6}\begin{pmatrix}\sigma_{\dot x}^2\sigma_{\ddot x}^2&0& \sigma_{\dot x}^4\\ 0& \sigma_{x}^2\sigma_{\ddot x}^2- \sigma_{\dot x}^4& 0 \\ \sigma_{\dot x}^4&0& \sigma_x^2\sigma_{\dot x}^2 \end{pmatrix}R1−1​=σx2​σx˙2​σx¨2​−σx˙6​1​⎝⎛​σx˙2​σx¨2​0σx˙4​​0σx2​σx¨2​−σx˙4​0​σx˙4​0σx2​σx˙2​​⎠⎞​

x=2σx2rcos⁡θy=2σx2rsin⁡θx˙=2σx2(r˙cos⁡θ−rsin⁡θθ˙)y˙=2σx2(r˙sin⁡θ+rcos⁡θθ˙)x¨=2σx2(r¨cos⁡θ−r˙sin⁡θθ˙−r˙sin⁡θθ˙−rcos⁡θθ˙2−rsin⁡θθ¨)y¨=2σx2(r¨sin⁡θ+r˙cos⁡θθ˙+r˙cos⁡θθ˙−rsin⁡θθ˙2+rcos⁡θθ¨)\begin{aligned} &x=\sqrt{2\sigma_x^2}r\cos\theta\\ &y=\sqrt{2\sigma_x^2}r\sin\theta\\ &\dot x=\sqrt{2\sigma_x^2}(\dot r\cos\theta-r\sin\theta \dot \theta)\\ &\dot y=\sqrt{2\sigma_x^2}(\dot r\sin\theta+r\cos\theta \dot \theta)\\ &\ddot x=\sqrt{2\sigma_x^2}(\ddot r\cos\theta-\dot r\sin\theta \dot \theta- \dot r\sin\theta \dot \theta-r\cos\theta \dot \theta^2-r\sin\theta \ddot \theta)\\ &\ddot y=\sqrt{2\sigma_x^2}(\ddot r\sin\theta+\dot r\cos\theta \dot \theta+ \dot r\cos\theta \dot \theta-r\sin\theta \dot \theta^2+r\cos\theta \ddot \theta) \end{aligned}​x=2σx2​​rcosθy=2σx2​​rsinθx˙=2σx2​​(r˙cosθ−rsinθθ˙)y˙​=2σx2​​(r˙sinθ+rcosθθ˙)x¨=2σx2​​(r¨cosθ−r˙sinθθ˙−r˙sinθθ˙−rcosθθ˙2−rsinθθ¨)y¨​=2σx2​​(r¨sinθ+r˙cosθθ˙+r˙cosθθ˙−rsinθθ˙2+rcosθθ¨)​
因此
dxdydx˙dy˙=(2σx2)2r2drdθdr˙dθ˙dx¨dy¨=2σx2rdr¨dθ¨+∗∗∗dxdydx˙dy˙dx¨dy¨=(2σx2)3r3drdθdr˙dd˙r¨dθ¨θ\begin{aligned} &dxdyd\dot xd\dot y=({2\sigma_x^2})^2r^2drd\theta d\dot rd \dot \theta\\ &d\ddot xd\ddot y=2\sigma_x^2 rd\ddot rd\ddot \theta+***\\ &dxdyd\dot xd\dot yd\ddot xd\ddot y=({2\sigma_x^2})^3r^3drd\theta d\dot rd \dot d\ddot rd\ddot \theta\theta\end{aligned}​dxdydx˙dy˙​=(2σx2​)2r2drdθdr˙dθ˙dx¨dy¨​=2σx2​rdr¨dθ¨+∗∗∗dxdydx˙dy˙​dx¨dy¨​=(2σx2​)3r3drdθdr˙dd˙r¨dθ¨θ​
这里 ∗∗∗***∗∗∗ 表示前面已出现过的微分项,对最后的微分外积没有贡献。
令 X=(x,x˙,x¨,y,y˙,y¨)′X=(x,\dot x, \ddot x, y,\dot y, \ddot y)'X=(x,x˙,x¨,y,y˙​,y¨​)′, 概率密度函数为
f(x,x˙,x¨,y,y˙,y¨)=1(2π)3∣R∣e−12X′R−1X(1)f(x,\dot x, \ddot x, y,\dot y, \ddot y)={1\over (2\pi)^3\sqrt{|R|}}e^{-{1\over 2}X'R^{-1}X}\tag 1f(x,x˙,x¨,y,y˙​,y¨​)=(2π)3∣R∣​1​e−21​X′R−1X(1)
X′R−1XX'R^{-1}XX′R−1X 包含以下项:
1σx2σx˙2σx¨2−σx˙6[σx˙2σx¨2x2+σx˙4xx¨+(σx2σx¨2−σx˙4)x˙2+σx˙4xx¨+σx2σx˙2x¨2]1σx2σx˙2σx¨2−σx˙6[σx˙2σx¨2y2+σx˙4yy¨+(σx2σx¨2−σx˙4)y˙2+σx˙4yy¨+σx2σx˙2y¨2]\begin{aligned} & {1\over \sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6}[\sigma_{\dot x}^2\sigma_{\ddot x}^2x^2+\sigma_{\dot x}^4x\ddot x+(\sigma_{x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^4)\dot x^2+\sigma_{\dot x}^4x\ddot x+\sigma_{x}^2\sigma_{\dot x}^2\ddot x^2]\\ & {1\over \sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6}[\sigma_{\dot x}^2\sigma_{\ddot x}^2y^2+\sigma_{\dot x}^4y\ddot y+(\sigma_{x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^4)\dot y^2+\sigma_{\dot x}^4y\ddot y+\sigma_{x}^2\sigma_{\dot x}^2\ddot y^2] \end{aligned}​σx2​σx˙2​σx¨2​−σx˙6​1​[σx˙2​σx¨2​x2+σx˙4​xx¨+(σx2​σx¨2​−σx˙4​)x˙2+σx˙4​xx¨+σx2​σx˙2​x¨2]σx2​σx˙2​σx¨2​−σx˙6​1​[σx˙2​σx¨2​y2+σx˙4​yy¨​+(σx2​σx¨2​−σx˙4​)y˙​2+σx˙4​yy¨​+σx2​σx˙2​y¨​2]​
变量代换
x2+y2=2σx2r2x˙2+y˙2=2σx2(r˙2+r2θ˙2)x¨2+y¨2=2σx2(r¨2+4r˙2θ˙2+r2θ˙4+r2θ¨2−rr¨θ˙2+4rr˙θ˙θ¨)xx¨+yy¨=2σx2(rr¨−r2θ˙2)\begin{aligned} &x^2+y^2=2\sigma_x^2r^2\\ &\dot x^2+\dot y^2=2\sigma_x^2(\dot r^2+r^2\dot\theta^2)\\ &\ddot x^2+\ddot y^2=2\sigma_x^2(\ddot r^2+4\dot r^2\dot\theta^2+r^2\dot\theta^4+r^2\ddot\theta^2-r\ddot r\dot \theta^2+4r\dot r\dot\theta\ddot\theta)\\ &x\ddot x+y\ddot y=2\sigma_x^2(r\ddot r-r^2\dot\theta^2) \end{aligned}​x2+y2=2σx2​r2x˙2+y˙​2=2σx2​(r˙2+r2θ˙2)x¨2+y¨​2=2σx2​(r¨2+4r˙2θ˙2+r2θ˙4+r2θ¨2−rr¨θ˙2+4rr˙θ˙θ¨)xx¨+yy¨​=2σx2​(rr¨−r2θ˙2)​
根据定义M=σx˙4σx2σx¨2−σx˙4,K=σx˙2σx2,ϕ=θ˙KM ={\sigma_{\dot x}^4\over \sigma_{x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^4}, \quad K={\sigma_{\dot x}^2\over \sigma_{x}^2}, \quad \phi={\dot\theta\over \sqrt K}M=σx2​σx¨2​−σx˙4​σx˙4​​,K=σx2​σx˙2​​,ϕ=K​θ˙​
(:论文中的ϕ=Kθ˙\phi=\sqrt K\dot\thetaϕ=K​θ˙ 应该是笔误)
得到
σx2σx˙2σx¨2σx2σx˙2σx¨2−σx˙6=M+1σx2σx˙4σx2σx˙2σx¨2−σx˙6=MKσx2(σx2σx¨2−σx˙4)σx2σx˙2σx¨2−σx˙6=1Kσx4σx˙2σx2σx˙2σx¨2−σx˙6=MK2\begin{aligned} & {\sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2\over \sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6}=M+1\\ & {\sigma_x^2\sigma_{\dot x}^4\over \sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6}={M\over K}\\ & {\sigma_x^2(\sigma_x^2\sigma_{\ddot x}^2-\sigma_{\dot x}^4)\over \sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6}={1\over K}\\ & {\sigma_x^4\sigma_{\dot x}^2\over \sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6}={M\over K^2} \end{aligned}​σx2​σx˙2​σx¨2​−σx˙6​σx2​σx˙2​σx¨2​​=M+1σx2​σx˙2​σx¨2​−σx˙6​σx2​σx˙4​​=KM​σx2​σx˙2​σx¨2​−σx˙6​σx2​(σx2​σx¨2​−σx˙4​)​=K1​σx2​σx˙2​σx¨2​−σx˙6​σx4​σx˙2​​=K2M​​
12X′R−1X=12σx2[(M+1)(x2+y2)+2MK(xx¨+yy¨)+1K(x˙2+y˙2)+MK2(x¨2+y¨2)]=(M+1)r2+2MK(rr¨−r2θ˙2)+1K(r˙2+r2θ˙2)+MK2(r¨2+4r˙2θ˙2+r2θ˙4+r2θ¨2−rr¨θ˙2+4rr˙θ˙θ¨)=[(M+1)+(1−2M)ϕ2+Mϕ4]r2+2MK(1−ϕ2)rr¨+1K(r˙2+MKr¨2)+MK2(4r˙2θ˙2+r2θ¨2+4rr˙θ˙θ¨)(2)\begin{aligned} {1\over 2}X'R^{-1}X&={1\over 2\sigma_x^2}[(M+1)(x^2+y^2)+2{M\over K}(x\ddot x+y\ddot y)+{1\over K}(\dot x^2+\dot y^2)+{M\over K^2}(\ddot x^2+\ddot y^2)]\\ & =(M+1)r^2+{2M\over K}(r\ddot r-r^2\dot\theta^2)+{1\over K}(\dot r^2+r^2\dot\theta^2) \\&\quad\quad+{M\over K^2}(\ddot r^2+4\dot r^2\dot\theta^2+r^2\dot\theta^4+r^2\ddot\theta^2-r\ddot r\dot \theta^2+4r\dot r\dot\theta\ddot\theta)\\ & =[(M+1)+(1-2M)\phi^2+M\phi^4] r^2+{2M\over K}(1-\phi^2)r\ddot r+{1\over K}(\dot r^2+{M\over K}\ddot r^2) \\&\quad\quad+{M\over K^2}(4\dot r^2\dot\theta^2+r^2\ddot\theta^2+4r\dot r\dot\theta\ddot\theta)\end{aligned}\tag 221​X′R−1X​=2σx2​1​[(M+1)(x2+y2)+2KM​(xx¨+yy¨​)+K1​(x˙2+y˙​2)+K2M​(x¨2+y¨​2)]=(M+1)r2+K2M​(rr¨−r2θ˙2)+K1​(r˙2+r2θ˙2)+K2M​(r¨2+4r˙2θ˙2+r2θ˙4+r2θ¨2−rr¨θ˙2+4rr˙θ˙θ¨)=[(M+1)+(1−2M)ϕ2+Mϕ4]r2+K2M​(1−ϕ2)rr¨+K1​(r˙2+KM​r¨2)+K2M​(4r˙2θ˙2+r2θ¨2+4rr˙θ˙θ¨)​(2)
对最后一部分积分
∫−∞∞e−MK2(4r˙2θ˙2+r2θ¨2+4rr˙θ˙θ¨)dθ¨=KπrM(3)\int_{-\infty}^{\infty}e^{-{M\over K^2}(4\dot r^2\dot\theta^2+r^2\ddot\theta^2+4r\dot r\dot\theta\ddot\theta)}d\ddot\theta={K\sqrt \pi\over r \sqrt M} \tag 3∫−∞∞​e−K2M​(4r˙2θ˙2+r2θ¨2+4rr˙θ˙θ¨)dθ¨=rM​Kπ​​(3)
将(2)(3)及积分变量雅可比代入(1)得到公式(B.2)
f(r,r˙,r¨)=∫02πdθ∫−∞∞(2σx2)3r3(2π)3∣R∣KπrMe−Tdθ˙=∫−∞∞2r2M(Kπ)3/2e−Tdϕ\begin{aligned}f(r,\dot r, \ddot r)=\int_0^{2\pi}d\theta\int_{-\infty}^\infty{(2\sigma_x^2)^3r^3\over (2\pi)^3\sqrt{|R|}}{K\sqrt \pi\over r \sqrt M}e^{-T}d\dot\theta=\int_{-\infty}^\infty{2r^2 \sqrt M\over (K\pi)^{3/2}}e^{-T}d\phi\\ \end{aligned}f(r,r˙,r¨)=∫02π​dθ∫−∞∞​(2π)3∣R∣​(2σx2​)3r3​rM​Kπ​​e−Tdθ˙=∫−∞∞​(Kπ)3/22r2M​​e−Tdϕ​
这里 T=[(M+1)+(1−2M)ϕ2+Mϕ4]r2+2MK(1−ϕ2)rr¨+1K(r˙2+MKr¨2)T=[(M+1)+(1-2M)\phi^2+M\phi^4] r^2+{2M\over K}(1-\phi^2)r\ddot r+{1\over K}(\dot r^2+{M\over K}\ddot r^2)T=[(M+1)+(1−2M)ϕ2+Mϕ4]r2+K2M​(1−ϕ2)rr¨+K1​(r˙2+KM​r¨2).
从公式(B.2)到(B.5)
∫−∞0−r¨e−2MK(1−ϕ2)ur¨−MK2r¨2dr¨=∫−∞0−r¨e−M(r¨2K+(1−ϕ2)u)2eM(1−ϕ2)2u2dr¨=eM(1−ϕ2)2u2∫−∞0−r¨e−M(r¨2K+(1−ϕ2)u)2dr¨=eM(1−ϕ2)2u2K2M∫−∞M(1−ϕ2)u[−M(r¨2K+(1−ϕ2)u)+M(1−ϕ2)u]⋅e−M(r¨2K+(1−ϕ2)u)2d[M(r¨2K+(1−ϕ2)u)]=eM(1−ϕ2)2u2K2M∫−∞M(1−ϕ2)u−xe−x2+M(1−ϕ2)ue−x2dx\begin{aligned}\int_{-\infty}^0 -\ddot re^{-{2M\over K}(1-\phi^2)u\ddot r-{M\over K^2}\ddot r^2}d\ddot r=& \int_{-\infty}^0 -\ddot re^{-M({\ddot r^2\over K}+(1-\phi^2)u)^2}e^{M(1-\phi^2)^2u^2}d\ddot r\\ =e^{M(1-\phi^2)^2u^2} &\int_{-\infty}^0 -\ddot re^{-M({\ddot r^2\over K}+(1-\phi^2)u)^2}d\ddot r\\ ={e^{M(1-\phi^2)^2u^2}K^2\over M} &\int_{-\infty}^{\sqrt M(1-\phi^2)u} \left[-\sqrt M({\ddot r^2\over K}+(1-\phi^2)u)+\sqrt M(1-\phi^2)u\right]\\&\cdot e^{-M({\ddot r^2\over K}+(1-\phi^2)u)^2}d\left[\sqrt M({\ddot r^2\over K}+(1-\phi^2)u)\right]\\ ={e^{M(1-\phi^2)^2u^2}K^2\over M} &\int_{-\infty}^{\sqrt M(1-\phi^2)u}-xe^{-x^2}+\sqrt M(1-\phi^2)ue^{-x^2}dx \end{aligned}∫−∞0​−r¨e−K2M​(1−ϕ2)ur¨−K2M​r¨2dr¨==eM(1−ϕ2)2u2=MeM(1−ϕ2)2u2K2​=MeM(1−ϕ2)2u2K2​​∫−∞0​−r¨e−M(Kr¨2​+(1−ϕ2)u)2eM(1−ϕ2)2u2dr¨∫−∞0​−r¨e−M(Kr¨2​+(1−ϕ2)u)2dr¨∫−∞M​(1−ϕ2)u​[−M​(Kr¨2​+(1−ϕ2)u)+M​(1−ϕ2)u]⋅e−M(Kr¨2​+(1−ϕ2)u)2d[M​(Kr¨2​+(1−ϕ2)u)]∫−∞M​(1−ϕ2)u​−xe−x2+M​(1−ϕ2)ue−x2dx​
以上两部分积分为
K2M−K2eM(ϕ2−1)2u2MπM(ϕ2−1)u⋅erfc(M(ϕ2−1)u){K^2\over M}-{K^2e^{M(\phi^2-1)^2u^2}\over M}\sqrt {\pi M}(\phi^2-1)u\cdot\mathrm{erfc} (\sqrt M(\phi^2-1)u) MK2​−MK2eM(ϕ2−1)2u2​πM​(ϕ2−1)u⋅erfc(M​(ϕ2−1)u)
得到公式(B.5)。

Ref.
H. Ochiai and H. Imai, “On the distribution of the peak-to-average power ratio in OFDM signals,” IEEE Trans. Commun., vol. 49, pp. 282–289, Feb. 2001.

PAPR论文阅读笔记2之On the distribution of the peak-to-average power ratio in OFDM signals相关推荐

  1. PAPR论文阅读笔记1之Performance Analysis of Deliberately Clipped OFDM Signals

    论文里的公式(11) Pout=(1−e−γ2)PinP_{\textrm{out}}=(1-e^{-\gamma^2})P_{\textrm{in}}Pout​=(1−e−γ2)Pin​ 根据公式( ...

  2. 【论文阅读笔记】Efficient and Secure Federated Learning With Verifiable Weighted Average Aggregation

    个人阅读笔记,若有错误欢迎指正 期刊:2023 TNSE 论文链接: Efficient and Secure Federated Learning With Verifiable Weighted ...

  3. 论文阅读笔记——BlackIoT: IoT Botnet of High Wattage Devices Can Disrupt the Power Grid

    作者:Saleh Soltan, Prateek Mittal, and H. Vincent Poor 单位:Princeton University 会议:USENIX2018 论文:https: ...

  4. 全卷积(FCN)论文阅读笔记:Fully Convolutional Networks for Semantic Segmentation

    论文阅读笔记:Fully Convolutional Networks forSemantic Segmentation 这是CVPR 2015拿到best paper候选的论文. 论文下载地址:Fu ...

  5. DnCNN论文阅读笔记【MATLAB】

    DnCNN论文阅读笔记 论文信息: 论文代码:https://github.com/cszn/DnCNN Abstract 提出网络:DnCNNs 关键技术: Residual learning an ...

  6. Learning Multiview 3D point Cloud Registration论文阅读笔记

    Learning multiview 3D point cloud registration Abstract 提出了一种全新的,端到端的,可学习的多视角三维点云配准算法. 多视角配准往往需要两个阶段 ...

  7. FCGF论文阅读笔记

    FCGF论文阅读笔记 0. Abstract 从三维点云或者扫描帧中提取出几何特征是许多任务例如配准,场景重建等的第一步.现有的领先的方法都是将low-level的特征作为输入,或者在有限的感受野上提 ...

  8. PointConv论文阅读笔记

    PointConv论文阅读笔记 Abstract 本文发表于CVPR. 其主要内容正如标题,是提出了一个对点云进行卷积的Module,称为PointConv.由于点云的无序性和不规则性,因此应用卷积比 ...

  9. DCP(Deep Closest Point)论文阅读笔记以及详析

    DCP论文阅读笔记 前言 本文中图片仓库位于github,所以如果阅读的时候发现图片加载困难.建议挂个梯子. 作者博客:https://codefmeister.github.io/ 转载前请联系作者 ...

最新文章

  1. 中国科协、阿里云联合编纂云计算教材,为高校云计算人才培养注入强劲动力...
  2. 被误解的MVC和被神化的MVVM
  3. 近期工作:Updater Application Block (UAB)继续
  4. 惠普服务器显示灯闪红灯,惠普打印机指示灯闪烁什么意思? 惠普2130打印机故障灯大全图解...
  5. QuartusII和NiosII,FPGA板之间的关系
  6. java基础总结(小白向)
  7. 16.IDA-列出函数中存在的全部call
  8. 免费开源的thinkphp办公管理系统
  9. pdm vault 使用_如何使用Key Vault连接器更好地保护Logic Apps中的秘密
  10. SQL数据库高级查询命令(3)
  11. 语言程序设计赵山林电子版_【特别策划】崇州“老市长”赵抃系列之一:做官要像江水保持清白...
  12. Linux文本转语音合成教程,〔教程〕使用TTS将文本转语音输出
  13. 【LDAP】LDAP常用命令解析
  14. php跨域允许json,PHP中JSON的跨域调用
  15. 【算法笔记】扩展kmp算法(exkmp)
  16. C# Wke使用例子 (KyozyWke)
  17. 计算机恢复数据怎么恢复,电脑数据恢复,详细教您电脑数据如何恢复
  18. 显示upnp服务器 sonos,Kodi启用UPnP/DLNA及AirPlay 串流投屏设置教程
  19. 建立centos6的yum源服务器
  20. 一本通5.4练习1:涂抹果酱

热门文章

  1. 分享电音极速版助手APK和源代码
  2. 抛弃jQuery,深入原生的JavaScript
  3. MTK平台4G执法记录仪开发
  4. AtCoder Grand Contest 017 迟到记
  5. vue 中的打印 局部打印
  6. python3 - RC4 算法
  7. 哈夫曼树,二叉树结点个数计算
  8. layui 数据表格+分页
  9. webapck运行报错- css-loader minimize
  10. Java8日期处理方式,日常工作必备