7月3日,3GPP宣布完成5G标准第二版规范R16。

那R16究竟讲了些什么?

考虑向垂直行业扩展是R16的重头戏,本文将R16主要功能分为“向垂直行业扩展”和“功能增强”两大类进行介绍。

向垂直行业扩展

5G+TSN

为了扩大潜在的工业互联网用例,比如工厂自动化、电网配电自动化等,R16支持5G与TSN(Time Sensitive Networking,时间敏感网络)集成。

什么是TSN?

传统以太网技术只能实现“尽力而为”的通信,无法满足工业制造应用的高可靠、低时延需求,因此,面向工业自动化需将传统“尽力而为”的以太网升级为可提供“确定性”服务。

同时,现有的工业协议众多,彼此孤立,各种协议使用不同的“语言”,一方面给实时通信带来了难度,另一方面难以实现统一集成,增加了维护和运营成本。

在这样的背景下,TSN应运而生,它由IEEE定义标准,可基于标准以太网技术提供确定性服务,并提供标准化统一的、经济的解决方案。

5G+TSN,即5G系统与TSN网络集成,基于5G uRLLC的低时延高可靠能力,满足TSN架构的四大严苛的功能需求:时间同步、低时延传输、高可靠性和资源管理。5G与TSN融合后,可通过5G NR无线替代工厂内的有线网络,让工业生产更加柔性化。

uRLLC增强

为了支持工业领域的低时延、高可靠通信需求,在3GPP R15版本中,主要通过更大的子载波间隔(numerology)、Mini-slots、快速HARQ-ACK、Pre-scheduling等技术来降低空口时延,并通过PDCP复制传输、增强数据与控制信道的传输系统参数等技术来提升传输可靠性。

R16版本将通过PDCCH监视功能、支持多个HARQ-ACK、无序PUSCH调度、UE优先级和多路复用等多个功能来进一步增强uRLLC。

比如在可靠性增强方面,R15支持两条支路的PDCP层分集传输,即数据包在PDCP层复制,再通过在两条无线链路上传输相同的数据的方式,来抵御无线环境恶化带来的影响,保障通信链路的可靠性。为了进一步增强可靠性,R16对 PDCP复制机制进行了增强,最高可支持4路复制数据传输,同时增强了对激活/去激活PDCP复制的控制。

非公共网络(NPN)

NPN,Non-Public Network,就是基于3GPP 5G系统架构的专用网络,它将5G扩展到传统的公共移动网络之外,对于使能垂直行业数字化转型至关重要。

NPN包括两种部署方式:独立部署和非独立部署,即SNPN(独立的非公共网络)和PNI-NPN(公共网络集成NPN)。

在非独立部署模式下,垂直行业可基于5G网络切片技术与运营商共享RAN、共享核心网控制面,或共享整个端到端5G公网(即端到端网络切片)等来建设5G专网。

在独立部署模式下,垂直行业独立部署从基站到核心网到云平台的整个5G网络,可以与运营商的5G公网隔离。这意味着,工厂或园区内的设备信息、控制面信令流量、用户面数据流量等都不会出园区,可满足工业领域严苛的数据安全、低时延和高可靠需求。当然,对于园区内的语音、上网等非生产型业务,也可以通过防火墙与运营商公网互连。

那在独立部署模式下,垂直行业的频谱资源从哪里来呢?可以向运营商租用,也可以从监管机构申请,比如德国和日本就专门为垂直行业分配了专网频段,工业巨头们向政府申请并支付相应的费用就可以使用了。

NR-U

运营商的5G公网工作于授权频谱,它是提供广覆盖、高质量5G无线服务的基石,但5G公网也需要非授权频谱来补充容量,就像今天的LTE与Wi-Fi共存互补一样。

于是5G NR-U来了。

5G NR-U,全称5G NR in Unlicensed Spectrum,即工作于非授权频谱的5G NR。它将5G NR工作于5GHz和6GHz的非授权频段。

5G NR-U包括两种模式:LAA NR-U(授权频谱辅助接入NR-U)和Stand-alone NR-U(独立NR-U)。

LAA NR-U依托于运营商的授权频谱,将运营商的NR授权频谱作为锚点来“聚合”非授权频段,以利用未授权频谱资源增强运营商网络容量和性能,尤其适用于一些人群集中的室内场所,比如体育馆和购物中心等。

Stand-alone NR-U不需要授权频谱做锚点,可完全独立地在非授权频谱上部署单个5G接入点或5G专网。这和今天企业自建Wi-Fi网络的模式一样,只不过使用的是5G NR技术。

5G LAN

5G局域网支持在一组接入终端间构建二层转发网络,并通过5G SMF与UPF的交互实现终端组内数据交换和用户面路径选择。5G LAN提供了组管理服务,使第三方(AF)可以创建、更新和删除组,以及处理网络中的5G虚拟网络(VN)配置数据和组成员UE的配置。

5G V2X

众所周知,蜂窝车联网(C-V2X)旨在把车连到网,以及把车与车、车与人、车与道路基础设施连成网,以实现车与外界的信息交换,包括了V2N(车辆与网络/云)、V2V(车辆与车辆)、V2I(车辆与道路基础设施)和V2P(车辆与行人)之间的连接性。

V2X消息可以通过Uu接口在基站和UE之间传输,也可通过Sidelink接口(也称为PC5)在UE之间的直接传输,即设备与设备之间直接通信。

为了将蜂窝网络扩展到汽车行业,3GPP在R14引入了LTE V2X,随后在R15对LTE V2X进行了功能增强,包括可在Sidelink接口上进行载波聚合、支持64QAM调制方式,进一步降低时延等。

进入5G时代,3GPP R16版本正式开始对基于5G NR的V2X技术进行研究,以通过5G NR更低的时延、更高的可靠性、更高的容量来提供更高级的V2X服务。

R16版本的NR V2X与LTE V2X互补和互通,定义支持25个V2X高级用例,其中主要包括四大领域:

•车辆组队行驶,其中领头的车辆向队列中的其他车辆共享信息,从而允许车队保持较小的车距行驶。

•通过扩展的传感器的协作通信,车辆、行人、基础设施单元和V2X应用服务器之间可交换传感器数据和实时视频,从而增强UE对周围环境的感知。

•通过交换传感器数据和驾驶意图来实现自动驾驶或半自动驾驶。

•支持远程驾驶,可帮助处于危险环境中的车辆进行远程驾驶。

NR定位

5G时代大量的应用需要精准定位,比如工业AGV、资产追踪等,尤其是室内精准定位,可卫星定位在室内无法使用,LTE和WiFi定位技术又不精准,为此,5G在R16版本中增加了定位功能,其利用MIMO多波束特性,定义了基于蜂窝小区的信号往返时间(RTT)、信号到达时间差(TDOA)、到达角测量法(AoA)、离开角测量法(AoD)等室内定位技术。

通过这些定位技术,对于对定位精度要求更为严格的一些商业用例,至少需达到以下要求:

•对于80%的UE,水平定位精度优于3米(室内)和10米(室外)。

•对于80%的UE,垂直定位精度优于3米(室内和室外)。

功能增强

2-STEP RACH

RACH,即随机接入信道,它是5G终端开机时向5G网络发出的第一条消息,因此对其进行优化设计非常重要。

在R15版本中,基于竞争的随机接入过程是一个四步过程(如下图)。四步随机接入过程需要在UE和基站之间进行两个往返周期,这不仅增加了等待时间,还导致了额外的控制信令开销。

在R16版本中,采用了两步随机接入的机制,其将前导preamble(Msg1)和Scheduled Transmission (Msg3)合并为MsgA,将Random Access Response(Msg2)和Contention Resolution消息(Msg4)合并为MsgB。

IAB

IAB,Integrated Access and Backhaul for NR,即5G NR集成无线接入和回传,其可通过扩展NR以支持无线回传来替代光纤回传

IAB尤其适用于5G毫米波。由于毫米波传输距离短,需要部署密集的微站,意味着需要挖沟架线敷设密集的光纤回传,而IAB通过无线回传替代光纤,可以大幅降低部署难度和成本。

在IAB技术下,接入链路可以与回传链路使用相同的频段,称为带内工作;也可采用不同的频段,称为带外工作。

移动性增强

在传统4G网络和5G R15版本中,移动终端从源小区切换到目标小区时,移动终端会在短时间内无法发送或接收数据。具体的讲,移动终端与目标小区建立连接之前通常会释放与源小区的连接,这会导致网络与移动终端之间存在约几十毫秒内的中断。

同时,在NR高频段波束赋形中,由于需进行波束扫描,可能会导致切换中断时间比LTE更长,且可能导致更多的无线链路故障,从而降低可靠性。

这是个大问题,5G智能制造、车联网、电网配网自动化等场景要求时延不过几毫秒,且对可靠性要求苛刻。

为了减少切换中断时间和提高可靠性,R16采用了Dual Active Protocol Stack (DAPS)技术对NR的移动性进行了增强,其允许移动终端在切换时始终保持与源小区连接,直到与目标小区开始进行收发数据为止。也就是说,在切换过程这段极短的时间里,移动终端同时从源小区和目标小区接收和发送数据。

双连接和载波聚合增强

R16增强了双连接和载波聚合功能,包括通过更早的测量报告减少载波聚合和双连接的建立和激活时间,最小化小区建立和激活所需的信令开销和等待时间,快速恢复MCG链路,支持不同numerologies的载波聚合小区的跨载波调度等等。

MIMO增强

R16增强了波束管理和CSI反馈,支持多个传输点(multi-TRP)到单个UE的传输,以及多个UE天线在上行链路的全功率传输,这些增强功能可提升速率,提升边缘覆盖,减少开销和提升链路可靠性。

UE节能

由于5G NR更灵活、带宽更大、速率更高,NR终端设备比LTE更耗电。为了减少终端功耗,R16引入了一些新的节能功能,比如Wakeup singal,增强跨时隙调度,自适应MIMO层数量,UE省电辅助信息等。

END

推荐阅读

  • 5G发展的五大动力和四大挑战

  • 5G车联网十大产业化趋势

  • 从《长安十二时辰》看车联网

  • 5G车联网产业发展的冷思考

  • 5G车联网标准的演进之路

  • 5G如何由浅入深赋能工业互联网

  • 一直想当5G老大的美国,现在进展怎样了?

  • 美国(V2X)发展现状与反思

  • 美国网联自动驾驶现状分析和启示

  • 5G:狂欢终将落幕 行业正待启航

  • 人车路网云五维协同发展5G车联网

  • 使能千行百业,网络切片你行吗?

  • 智能网联车载终端渗透率提升之道

  • 5G智能网联路侧设备覆盖率提升探索

  • 5G网络切片的七种武器(一)

  • 5G网络切片的七种武器(二)

  • 从“四跨”测试看车联网产业现状和趋势

  • 韩国5G商用情况解析

  • 韩国5G产品定价及营销策略剖析

  • 5G最新进展深度解析——全球市场篇

  • 5G网络切片的七种武器(三)

  • 5G最新进展深度解析—国内市场篇

  • 5G网络切片的七种武器(四)

  • 5G最新进展深度解析——技术应用篇

  • 5G最新进展深度解析—全集完整版

  • 日本5G商用进展分析报告

  • 5G车联网业务演进趋势探索

  • 5G网联切片的七种武器(五):切片商城

  • 智能网联(车联网)示范区发展现状分析—华东篇(上)

  • 智能网联(车联网)示范区发展现状分析—华东篇(下)

  • 智能网联(车联网)示范区发展现状分析—华中篇

  • 智能网联(车联网)示范区发展现状分析—华北篇

  • 智能网联(车联网)示范区发展现状分析—华南篇

  • 智能网联(车联网)示范区发展现状分析—西南篇

  • 车联网的春天,11部委联合发文推进车联网产业高速发展(附全文)

  • 从“云监工”说起,盘点5G战疫背后的那些事儿

  • 深度报告:车联网迎来关键政策窗口,示范区建设如火如荼(附下载)

  • 智能网联(车联网)示范区发展现状分析—东北西北篇

  • 深度报告:科技风口,智能网联(附下载)

  • 5G网络切片的七种武器(六)

  • 深度调研车路协同智慧高速全国建设情况(上)

  • 深度报告 : 车联网——新基建重要方向,5G应用明珠

  • 深度报告:一文看懂通信新基建五大方向

  • 深度报告:疫情“震中”的欧洲,5G商用如何化“危”为“机”

  • 伴工信部加快5G发展东风,车联网规模部署时代一触即发

  • 深度调研车路协同智慧高速全国建设情况(中)

  • 信通院发布《工业互联网产业经济发展报告2020》(附下载)

  • 新基建缘何5G打头阵?

  • 深度报告(附下载):2020-2023中国高级自动驾驶产业发展趋势研究

  • 5G消息取得成功的四大关键和三种可能

  • 2020中国5G发展及行业应用探索报告(上)

  • 2020中国5G发展及行业应用探索报告(下)

  • 冻结在即,提前揭秘5G Rel-16标准重要组网技术

  • 深度调研车路协同智慧高速全国建设情况(下)

  • 一文读懂智慧高速车路协同现状与未来(附现状合集)

  • 完整视频,超多干货!车联网助力自动驾驶和智慧交通再提速

  • 5G技术成为中国新经济的主引擎

  • 深度报告:中国5G产业链五大发展趋势2020

  • 城市级智能网联示范区情况全扫描

  • 智能网联封闭测试场和开放道路测试政策情况全扫描

  • 5G移动通信技术基本介绍(附92页PDF下载)

  • 揭秘边缘计算新晋“网红”——5G MEC深度解读第一弹

  • 5G将如何改变建筑业

  • 2020年全球无线市场竞争格局分析报告

  • 2019年-2020年7月城市级智能网联招投标项目情况全扫描

  • 城市级智能网联示范区建设内容、建设路径、最新趋势及挑战

  • 2020中国车联网商业模式分析报告

  • 一图读懂3GPP R16(附思维导图下载)

  • 智能网联汽车产业链全景图 2020

关于我们

「5G行业应用」是聚集TMT行业资深专家的研究咨询平台,致力于在5G时代为企业和个人提供客观、深入和极具商业价值的市场研究和咨询服务,帮助企业利用5G实现战略转型和业务重构。本公众号专注提供5G行业最新动态及深度分析,覆盖通信、媒体、金融、汽车、交通、工业等领域。

一文读懂5G R16标准究竟讲了些什么相关推荐

  1. 一文读懂5G基站节能技术

    文章版权所有,未经授权请勿转载或使用 近年来,全球运营商营收整体不断下滑,OPEX支出却不断增加,其中基站电费在网络运营支出中占比超30%.5G基站由于更大的带宽.更多的通道数.器件集成度低等因素影响 ...

  2. 5G消息能取代IM?一文读懂5G消息的前世今生!

    本文引用了公众号"鲜枣课堂"的<5G消息(RCS),到底是什么?>和公众号"InfoQ"的<5G消息来了,它会干掉微信还是变成另一个飞信?&g ...

  3. 钛资本研究院:一文读懂5G发展现状及创业投资机会

    2019年6月6日,工信部给三大运营商及广电发放了5G牌照,相比业内推测的发放时间提前了4-6个月.这很大程度上与中美贸易战,华为.中兴等通信企业在全球拓展中遇到的安全.监控等问题,以及以5G为代表的 ...

  4. 256qam是什么意思_一文读懂5G的信号调制方式!5G比4G的快的主要原因就是256QAM

    说到调制,我想很多同学马上会联想到这些关键词:BPSK.QPSK.调幅.调相.QAM.星座图-- 众所周知,调制和解调是通信基本业务流程中的重要组成部分.没有它们,我们的移动通信根本无法实现. 那么, ...

  5. 一文读懂5G:颠覆生活资费天价?

    来源:网易手机 当我们还在习惯于用非智能机慢速浏览web网页的时候,3G网络悄然而至,当我们认为3G已经能够满足日常所需的时候,4G已经走入了我们的生活,而当我们直到今天,依然感叹于4G的快速时,更加 ...

  6. 一文读懂 5G——发展历史、应用场景

    1.前言: 第五代移动通信技术(英语:5th generation mobile networks或5th generation wireless systems.5th-Generation,简称5 ...

  7. 一文读懂5G无线通信与4G的典型区别

    前提:这篇文章写的很好,不是我写的,是转载别人写的文章!!! 转载地址:https://www.ednchina.com/news/201707265G.html 通信技术并不神秘,5G作为通信技术皇 ...

  8. 灰光和彩光_通信行业5G招标系列点评之二:一文读懂5G前传-光纤、灰光、彩光、CWDM、LWDM、MWDM...

    据中国电信招标官网1 月4 日披露,中国电信将招标15 万无源波分彩光设备.开启了5G 前传集团集采的大幕.我们预计前传波分设备将由4G 时期的1%提升到5G 时期的15%~17%,利好前传波分厂家, ...

  9. 一文读懂5G智慧教育:42个应用场景如何改变教育

    随着5G的到来,教育形态也将会发生巨大变化,而智慧教育作为5G的一个重要应用,到底有哪些细分场景呢? 一.5G+虚拟现实教育 作为5G+智慧教育的主战场,VR/AR 与教育结合呈现的全新的教学体验,可 ...

最新文章

  1. 7-12 两个数的简单计算器 (C语言)
  2. 有监督回归:最小二乘学习法
  3. java 级联下拉列表_java 下拉框级联(年月日级联)
  4. html超市代码,前端 CSS : 5# 纯 CSS 实现24小时超市
  5. Web API 跨域访问
  6. 2020CCPC长春站第一场区域赛打铁记
  7. win10 企业版2016长期服务激活教程
  8. 基于pytorch的sque2suqe with attention实现与介绍
  9. 个人永久性免费-Excel催化剂功能第98波-零代码零距离轻松接触并拥有金融大数据...
  10. Testin云测技术沙龙在沪召开,云监控预警成关注重点
  11. 【JavaWeb】一文学会JPA
  12. 广告联盟介绍之——A5广告联盟
  13. 既生 var 何生 let
  14. java面试题目整理
  15. Oracle前台主机,Oracle 数据库主机巡检
  16. html5复合选择器,传智播客解读Css基本选择器与复合选择器
  17. 什么是cdn节点和cdn节点服务器?
  18. Mediapipe 基于KNIFT如何输出识别数据
  19. oracle数据库报错09275,【求助】oracle 数据库导入出错怎么解决?
  20. STM32学习笔记2:配置TCRT5000模块(红外传感模块)调用

热门文章

  1. 带固态硬盘的电脑Ubuntu和Windows双系统安装
  2. 网易教育论坛:“状元”在美读大学:中国孩子都被教傻了
  3. PT100三线制恒流源接法
  4. 阿里老兵深度雄文:不懂这些,你的复盘都是白费功夫!
  5. (新手向)零基础探究机器学习Crime_Prediction
  6. 如何处理编码GBK的不可映射字符
  7. edge打开pdf不显示印章_一旦碰到Edge浏览器打不开pdf文件,只需这样做就可完美解决!...
  8. 字符串分割、切片、替换、去除头尾指定字符
  9. [转载]计算机视觉、机器学习相关领域论文和源代码
  10. linux vmware 共享文件夹共享,解决vmware上使用linux虚拟,无法共享文件的问题