前言

这里的全家桶目前只包括了ln,exp,sqrtln,exp,sqrtln,exp,sqrt。还有一些类似于带余数模,快速幂之类用的比较少的有时间再更,NTTNTTNTT这种前置知识这里不多说。

还有一些基本的导数和微积分内容要了解,建议不懂的可以先去翻翻高二数学书。

之后多项式算法基本是一环扣一环的,所以前面的看不懂对于后面的理解会造成很大影响。

本博客涉及内容偏浅


Tips

这里是一些我个人的模板书写习惯

  • 习惯相关的问题:默认将读入的nnn变为222的整数次幂形式,目前为止这样的做法都不会影响正确性
  • 正确性相关的问题:模板书写应满足使用的中间变量不重复,如在求lnlnln和逆元时不应该使用重复的中间变量(可能会导致信息丢失)
  • 正确性相关的问题:在每次进行任意操作前应保证在操作值域内不会有上次的信息参与(要清零)

参考资料

  • [command-block]NTT与多项式全家桶
  • [CYJian]浅谈多项式
  • [隔壁的张栩嘉]浅谈牛顿迭代法
  • 洛谷各模板题解

正题

文章目录

    • 前言
    • Tips
    • 参考资料
  • 正题
    • 多项式求逆
      • 题目大意
      • 分析
      • code
    • 多项式导数相关
      • 多项式求导
      • 多项式积分
      • 多项式复合
      • 泰勒公式
      • 牛顿迭代
      • 多项式复合零点
    • 多项式开根
      • 题目大意
      • 分析
      • code
    • 多项式ln
      • 题目大意
      • 分析
      • code
    • 多项式exp
      • 题目大意
      • 解题思路
      • code

多项式求逆

题目大意

给出一个多项式FFF,求出一个GGG使得
F(x)∗G(x)≡1(modxn)F(x)*G(x)\equiv1(mod\ x^n)F(x)∗G(x)≡1(mod xn)

分析

利用经典的倍增思想,假设我们已知多项式G′(x)G'(x)G′(x)满足
F(x)G′(x)≡1(modxn2)F(x)G'(x)\equiv1(mod\ x^{\frac{n}{2}})F(x)G′(x)≡1(mod x2n​)
又有
F(x)G(x)≡1(modxn2)F(x)G(x)\equiv 1(mod\ x^{\frac{n}{2}})F(x)G(x)≡1(mod x2n​)
就有了
F(x)(G(x)−G′(x))≡0(modxn2)⇒G(x)−G′(x)≡0(modxn2)F(x)(G(x)-G'(x))\equiv 0(mod\ x^{\frac{n}{2}})\Rightarrow G(x)-G'(x)\equiv 0(mod\ x^{\frac{n}{2}})F(x)(G(x)−G′(x))≡0(mod x2n​)⇒G(x)−G′(x)≡0(mod x2n​)
然后两边同时平方,后面的模数同理也要平方
G(x)2−2G(x)G′(x)+G′(x)2≡0(modxn)G(x)^2-2G(x)G'(x)+G'(x)^2\equiv 0(mod\ x^n)G(x)2−2G(x)G′(x)+G′(x)2≡0(mod xn)
再乘上一个F(x)F(x)F(x)
F(x)G(x)2−2F(x)G(x)G′(x)+F(x)G′(x)2≡0(modxn)F(x)G(x)^2-2F(x)G(x)G'(x)+F(x)G'(x)^2\equiv 0(mod\ x^n)F(x)G(x)2−2F(x)G(x)G′(x)+F(x)G′(x)2≡0(mod xn)
又因为F(x)G(x)≡1(modxn)F(x)G(x)\equiv 1(mod\ x^n)F(x)G(x)≡1(mod xn),所以就有
G(x)−2G′(x)+F(x)G′(x)2≡0(modxn)⇒G(x)≡2G′(x)−F(x)G′(x)2(modxn)G(x)-2G'(x)+F(x)G'(x)^2\equiv0(mod\ x^n)\Rightarrow G(x)\equiv 2G'(x)-F(x)G'(x)^2(mod\ x^n)G(x)−2G′(x)+F(x)G′(x)2≡0(mod xn)⇒G(x)≡2G′(x)−F(x)G′(x)2(mod xn)
然后倍增就好了,时间复杂度是类似于T(n)=T(n2)+nlog⁡nT(n)=T(\frac{n}{2})+n\log nT(n)=T(2n​)+nlogn的形式所以是O(nlog⁡n)O(n\log n)O(nlogn)的。

code

比较远古的代码所以码风有点不同

// luogu-judger-enable-o2
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define ll long long
using namespace std;
const ll N=1e6+100,XJQ=998244353,G=3,Gi=332748118;
const double Pi=acos(-1);
ll n,m,l,a[N<<2],b[N<<2],c[N<<2],r[N<<2];
ll power(ll x,ll b)
{ll ans=1;while(b){if(b&1) ans=ans*x%XJQ;x=x*x%XJQ;b>>=1;}return ans;
}
void ntt(ll *f,ll n,ll op)
{for(ll i=0;i<n;i++)if(i<r[i])swap(f[i],f[r[i]]);for(ll p=2;p<=n;p<<=1){ll len=p>>1,tmp=power(G,(XJQ-1)/p);for(ll k=0;k<n;k+=p){ll buf=1;for(ll i=k;i<k+len;i++){ll tt=buf*f[len+i]%XJQ;f[len+i]=(f[i]-tt+XJQ)%XJQ;f[i]=(f[i]+tt)%XJQ;buf=buf*tmp%XJQ;}}}if(op==1) return;int inv=power(n,XJQ-2);reverse(f+1,f+n);for(int i=0;i<n;i++) f[i]=f[i]*inv%XJQ;
}
void work(ll *a,ll *b,ll l)
{if(l==1){b[0]=power(a[0],XJQ-2);return;}work(a,b,(l+1)>>1);ll cnt;for(cnt=1;cnt<(l<<1);cnt<<=1);for(ll i=1;i<cnt;i++)r[i]=(r[i>>1]>>1)|((i&1)?cnt>>1:0);for(ll i=0;i<l;i++) c[i]=a[i];for(ll i=l;i<cnt;i++) c[i]=0;ntt(c,cnt,1);ntt(b,cnt,1);for(ll i=0;i<cnt;i++)b[i]=(2-b[i]*c[i]%XJQ+XJQ)%XJQ*b[i]%XJQ;ntt(b,cnt,-1);for(ll i=l;i<cnt;i++) b[i]=0;
}
int main()
{scanf("%lld",&n);for(ll i=0;i<n;i++)scanf("%lld",&a[i]);work(a,b,n);for(ll i=0;i<n;i++)printf("%lld ",b[i]);
}

多项式导数相关

后面就要开始用到高二的知识了

多项式求导

后面定义f′f'f′表示多项式fff的求导,定义ai=f(x)[i]a_i=f(x)[i]ai​=f(x)[i],那么有
f′(x)=∑i=0nai+1(i+1)xif'(x)=\sum_{i=0}^na_{i+1}(i+1)x^if′(x)=i=0∑n​ai+1​(i+1)xi
大体就是把所有位乘上iii再往前移动,对导数有了解的话应该能理解,这里就不给出推导了

多项式积分

同理定义ai=f(x)[i]a_i=f(x)[i]ai​=f(x)[i],那fff的积分ggg就有
g(x)=∑i=0nai−1ixig(x)=\sum_{i=0}^n\frac{a_{i-1}}{i}x^ig(x)=i=0∑n​iai−1​​xi
和上面同理,需要知道积分和求导是逆运算。

多项式复合

定义复合函数
F(G(x))=∑i=0F[i]G(x)iF(G(x))=\sum_{i=0}F[i]G(x)^iF(G(x))=i=0∑​F[i]G(x)i
看上去没什么用,之后再说

泰勒公式

这里开始就暂时不和多项式有多挂钩了。
f(x)=lim⁡n→∞∑i=0nf(n)(x0)i!(x−x0)i+Rn(x)f(x)=\lim_{n\to \infty}\sum_{i=0}^{n}\frac{f^{(n)}(x_0)}{i!}(x-x_0)^i+R_n(x)f(x)=n→∞lim​i=0∑n​i!f(n)(x0​)​(x−x0​)i+Rn​(x)
其中f(n)f^{(n)}f(n)表示fff的nnn阶求导,Rn(x)R_n(x)Rn​(x)是余项。
看上去没有什么用,是牛迭的基础,可以直接记牛迭的结论。
到时候会有泰勒公式的常用写法

牛顿迭代

这里就不用泰勒公式的推导了,直接感性点理解快速过一下。
我们知道导数
f′(x)=lim⁡Δx→0f(x+Δx)−f(x)Δxf'(x)=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}f′(x)=Δx→0lim​Δxf(x+Δx)−f(x)​
是可以理解为求某个函数在(x,f(x))(x,f(x))(x,f(x))处的切点,而牛顿迭代正是利用这个原理求函数的近似零点,可以先看一张生动的图(来自维基百科)。

就是先找一个点(x,f(x))(x,f(x))(x,f(x)),然后求它在函数图像上的切线,之后这条切线与xxx有交的位置x′x'x′再带入xxx之后继续这个过程。

这个过程中求得的xxx在不断逼近原点,这样就可以求出一个函数000点的近似解。

当然牛顿迭代显然并不是对所有函数都适用的,但是对于我们需要解决的多项式问题来说足够了。

然后要上泰勒公式了
f(x)=lim⁡n→∞∑i=0nf(n)(x0)i!(x−x0)i+Rn(x)f(x)=\lim_{n\to \infty}\sum_{i=0}^{n}\frac{f^{(n)}(x_0)}{i!}(x-x_0)^i+R_n(x)f(x)=n→∞lim​i=0∑n​i!f(n)(x0​)​(x−x0​)i+Rn​(x)
这里只拿i=1i=1i=1的情况来展开一下,再定义一个ϕ(x)≈f(x)\phi(x)\approx f(x)ϕ(x)≈f(x)就是
f(x)≈ϕ(x)=f′(x0)(x−x0)−f(x0)f(x)\approx \phi(x)=f'(x_0)(x-x_0)-f(x_0)f(x)≈ϕ(x)=f′(x0​)(x−x0​)−f(x0​)
然后如果求f(x)=0f(x)=0f(x)=0就是近似的求ϕ(x)=0\phi(x)=0ϕ(x)=0也就是
f′(x0)(x−x0)−f(x0)=0f'(x_0)(x-x_0)-f(x_0)=0f′(x0​)(x−x0​)−f(x0​)=0
就有
x=x0−f(x0)f′(x0)⇒xn+1=xn−f(xn)f′(xn)x=x_0-\frac{f(x_0)}{f'(x_0)}\Rightarrow x_{n+1}=x_{n}-\frac{f(x_n)}{f'(x_n)}x=x0​−f′(x0​)f(x0​)​⇒xn+1​=xn​−f′(xn​)f(xn​)​
这个递推式子。

然后就可以快速近似求解了。

多项式复合零点

那么现在就是牛顿迭代的实战时间了,题目是给出一个多项式G(x)G(x)G(x),要求求出一个f(x)f(x)f(x)使得G(f(x))≡0(modxn)G(f(x))\equiv 0(mod\ x^n)G(f(x))≡0(mod xn)。

拿多项式来泰勒展开推导或者直接用上面的牛迭结论。设ftf_tft​满足G(ft)≡0(modx2t)G(f_t)\equiv 0(mod\ x^{2^t})G(ft​)≡0(mod x2t),那么就有结论
ft≡ft−1−G(ft−1)G′(ft−1)(modx2t)f_t\equiv f_{t-1}-\frac{G(f_{t-1})}{G'(f_{t-1})}(mod\ {x^{2^t}})ft​≡ft−1​−G′(ft−1​)G(ft−1​)​(mod x2t)
这里还是推导一下吧,先把fff给泰勒展开了(这里换成了一个比较常用的写法)
G(ft)≡G(ft−1)+∑i=1∞G(i)(ft−1)i!∗(ft−ft−1)i(modx2t)G(f_t)\equiv G(f_{t-1})+\sum_{i=1}^\infty\frac{G^{(i)}(f_{t-1})}{i!}*(f_t-f_{t-1})^i(mod\ x^{2^t})G(ft​)≡G(ft−1​)+i=1∑∞​i!G(i)(ft−1​)​∗(ft​−ft−1​)i(mod x2t)
又因为G(ft−1)≡0(modx2t−1)G(f_{t-1})\equiv 0(mod\ x^{2^{t-1}})G(ft−1​)≡0(mod x2t−1)和G(ft)≡0(modx2t)G(f_t)\equiv 0(mod\ x^{2^t})G(ft​)≡0(mod x2t)。所以ft−ft−1f_t-f_{t-1}ft​−ft−1​的前2t−12^{t-1}2t−1项都是000,那么(ft−ft−1)2(f_t-f_{t-1})^2(ft​−ft−1​)2的前2t2^t2t都是0,也就当i≥2i\geq 2i≥2的时候后面的项都被模掉了,所以式子就变得很简单了。
G(ft)≡G(ft−1)+G′(ft−1)∗(ft−ft−1)(modx2t)G(f_t)\equiv G(f_{t-1})+G'(f_{t-1})*(f_t-f_{t-1})(mod\ x^{2^t})G(ft​)≡G(ft−1​)+G′(ft−1​)∗(ft​−ft−1​)(mod x2t)
把G(ft)=0G(f_t)=0G(ft​)=0带入就有
ft=ft−1−G(ft−1)G′(ft−1)(modx2t)f_t=f_{t-1}-\frac{G(f_{t-1})}{G'(f_{t-1})}(mod\ x^{2^t})ft​=ft−1​−G′(ft−1​)G(ft−1​)​(mod x2t)
式子到这里就得根据具体情况化简了,然后练练手?


多项式开根

题目大意

给出一个多项式FFF,求一个多项式GGG满足
G(x)2=F(x)(modxn)G(x)^2=F(x)(mod\ x^{n})G(x)2=F(x)(mod xn)

分析

下面的GGG和上面的要求的GGG不同
如果我们求出一个多项式G(f)=f2−F(x)G(f)=f^2-F(x)G(f)=f2−F(x)。如果G(f)≡0(modxn)G(f)\equiv 0(mod\ x^n)G(f)≡0(mod xn)的解就是f(x)≡F(x)(modxn)f(x)\equiv \sqrt{F(x)}(mod\ x^n)f(x)≡F(x)​(mod xn)的解了。
之后直接代前面多项式零点求值的东西就有
ft=ft−1−G(ft−1)G′(ft−1)⇒ft=ft−1−ft−12−F(x)2ft−1f_t=f_{t-1}-\frac{G(f_{t-1})}{G'(f_{t-1})}\Rightarrow f_t=f_{t-1}-\frac{f_{t-1}^2-F(x)}{2f_{t-1}}ft​=ft−1​−G′(ft−1​)G(ft−1​)​⇒ft​=ft−1​−2ft−1​ft−12​−F(x)​
嗯,那个2ft−12f_{t-1}2ft−1​是对GGG手动求导的结果
时间复杂度也是类T(n)=T(n2)+nlog⁡nT(n)=T(\frac{n}{2})+n\log nT(n)=T(2n​)+nlogn的形式所以还是O(nlog⁡n)O(n\log n)O(nlogn)

code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=6e5+10,P=998244353,inv2=(P+1)/2;
ll n,a[N],b[N],r[N];
ll t1[N],t2[N],t3[N],t4[N];
ll power(ll x,ll b){ll ans=1;while(b){if(b&1)ans=ans*x%P;x=x*x%P;b>>=1;}return ans;
}
ll GetL(ll len){ll n=1;while(n<=len)n<<=1;for(ll i=0;i<n;i++)r[i]=(r[i>>1]>>1)|((i&1)?(n>>1):0);return n;
}
void NTT(ll *f,ll n,ll op){for(ll i=0;i<n;i++)if(i<r[i])swap(f[i],f[r[i]]);for(ll p=2;p<=n;p<<=1){ll len=p>>1,tmp=power(3,(P-1)/p);if(op==-1)tmp=power(tmp,P-2);for(ll k=0;k<n;k+=p){ll buf=1;for(ll i=k;i<k+len;i++){ll tt=f[i+len]*buf%P;f[i+len]=(f[i]-tt+P)%P;f[i]=(f[i]+tt)%P;buf=buf*tmp%P;}}}if(op==-1){ll invn=power(n,P-2);for(ll i=0;i<n;i++)f[i]=f[i]*invn%P;}return;
}
void GetInv(ll *f,ll *g,ll n){if(n==1){g[0]=power(f[0],P-2);return;}GetInv(f,g,n>>1);ll l=GetL(n);for(ll i=0;i<n;i++)t1[i]=f[i],t2[i]=g[i];for(ll i=n;i<l;i++)t1[i]=t2[i]=0;NTT(t1,l,1);NTT(t2,l,1);for(ll i=0;i<l;i++)t1[i]=t1[i]*t2[i]%P*t2[i]%P;NTT(t1,l,-1);for(ll i=0;i<n;i++)g[i]=(2*g[i]-t1[i]+P)%P;return;
}
void Sqrt(ll *f,ll *g,ll n){if(n==1){g[0]=1;return;}Sqrt(f,g,n>>1);ll l=GetL(n<<1);for(ll i=0;i<n;i++)t3[i]=f[i],t4[i]=0;for(ll i=n;i<l;i++)t3[i]=t4[i]=0;GetInv(g,t4,n);l=GetL(n<<1);NTT(t3,l,1);NTT(t4,l,1);for(ll i=0;i<l;i++)t3[i]=t3[i]*t4[i]%P;NTT(t3,l,-1);for(ll i=0;i<n;i++)g[i]=(g[i]+t3[i])*inv2%P;return;
}
signed main()
{scanf("%lld",&n);for(ll i=0;i<n;i++)scanf("%lld",&a[i]);ll m=GetL(n);Sqrt(a,b,m);for(ll i=0;i<n;i++)printf("%lld ",b[i]);return 0;
}

多项式ln

题目大意

给出一个多项式FFF,求一个多项式GGG满足
G(x)≡ln(F(x))(modxn)G(x)\equiv ln(F(x))(mod\ x^n)G(x)≡ln(F(x))(mod xn)

分析

这个题不用牛顿迭代,对GGG求个导,因为是复合函数直接展开
G′(x)≡ln′(F(x))∗F′(x)(modxn)⇒G′(x)≡F′(x)F(x)(modxn)G'(x)\equiv ln'(F(x))*F'(x)(mod\ x^n)\Rightarrow G'(x)\equiv\frac{F'(x)}{F(x)}(mod\ x^n)G′(x)≡ln′(F(x))∗F′(x)(mod xn)⇒G′(x)≡F(x)F′(x)​(mod xn)
这个推导要用到的有ln′(x)=1xln'(x)=\frac{1}{x}ln′(x)=x1​。

就是算F′(x)F(x)\frac{F'(x)}{F(x)}F(x)F′(x)​再积分就好了
时间复杂度O(nlog⁡n)O(n\log n)O(nlogn)

code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=4e5+10,P=998244353;
ll n,r[N],f[N],g[N];
ll t1[N],t2[N],t3[N],t4[N];
ll power(ll x,ll b){ll ans=1;while(b){if(b&1)ans=ans*x%P;x=x*x%P;b>>=1;}return ans;
}
ll GetL(ll len){ll n=1;while(n<=len)n<<=1;for(ll i=0;i<n;i++)r[i]=(r[i>>1]>>1)|((i&1)?(n>>1):0);return n;
}
void NTT(ll *f,ll n,ll op){for(ll i=0;i<n;i++)if(i<r[i])swap(f[i],f[r[i]]);for(ll p=2;p<=n;p<<=1){ll len=p>>1,tmp=power(3,(P-1)/p);if(op==-1)tmp=power(tmp,P-2);for(ll k=0;k<n;k+=p){ll buf=1;for(ll i=k;i<k+len;i++){ll tt=f[i+len]*buf%P;f[i+len]=(f[i]-tt+P)%P;f[i]=(f[i]+tt)%P;buf=buf*tmp%P;}}}if(op==-1){ll invn=power(n,P-2);for(ll i=0;i<n;i++)f[i]=f[i]*invn%P;}return;
}
void GetInv(ll *f,ll *g,ll n){if(n==1){g[0]=power(f[0],P-2);return;}GetInv(f,g,n>>1);ll m=GetL(n);for(ll i=0;i<n;i++)t1[i]=f[i],t2[i]=g[i];for(ll i=n;i<m;i++)t1[i]=t2[i]=0;NTT(t1,m,1);NTT(t2,m,1);for(ll i=0;i<m;i++)t1[i]=t1[i]*t2[i]%P*t2[i]%P;NTT(t1,m,-1);for(ll i=0;i<n;i++)g[i]=(2*g[i]-t1[i]+P)%P;return;
}
void GetD(ll *f,ll *g,ll n){for(ll i=0;i<n;i++)g[i]=f[i+1]*(i+1)%P;g[n-1]=0;return;
}
void GetJ(ll *f,ll *g,ll n){for(ll i=1;i<n;i++)g[i]=f[i-1]*power(i,P-2)%P;g[0]=0;return;
}
void GetLn(ll *f,ll *g,ll n){n=GetL(n);GetD(f,t3,n);GetInv(f,t4,n);n=GetL(n);NTT(t3,n,1);NTT(t4,n,1);for(ll i=0;i<n;i++)t3[i]=t3[i]*t4[i]%P;NTT(t3,n,-1);GetJ(t3,g,n);return;
}
signed main()
{scanf("%lld",&n);for(ll i=0;i<n;i++)scanf("%lld",&f[i]);GetLn(f,g,n);for(ll i=0;i<n;i++)printf("%lld ",g[i]);return 0;
}

多项式exp

题目大意

给出多项式FFF,求一个多项式GGG满足
G(x)≡eF(x)(modxn)G(x)\equiv e^{F(x)}(mod\ x^n)G(x)≡eF(x)(mod xn)

解题思路

这个应该是最麻烦的了,和开根一样的思路
定义一个复合函数G(f)=ln(f)−F(x)G(f)=ln(f)-F(x)G(f)=ln(f)−F(x)那么当G(f)=0G(f)=0G(f)=0的解就是答案了。
然后同理直接上倍增加泰勒展开
ft≡ft−1−G(ft−1)G′(ft−1)(modx2t)⇒ft≡ft−1−(ln(ft−1)−F(x))∗ft−1(modx2t)f_t\equiv f_{t-1}-\frac{G(f_{t-1})}{G'(f_{t-1})}(mod\ x^{2^t})\Rightarrow f_t\equiv f_{t-1}-(ln(f_{t-1})-F(x))*f_{t-1}(mod\ x^{2^t})ft​≡ft−1​−G′(ft−1​)G(ft−1​)​(mod x2t)⇒ft​≡ft−1​−(ln(ft−1​)−F(x))∗ft−1​(mod x2t)
然后时间复杂度依旧是T(n)=T(n2)+nlog⁡nT(n)=T(\frac{n}{2})+n\log nT(n)=T(2n​)+nlogn,所以还是O(nlog⁡n)O(n\log n)O(nlogn)的

然后上个lnlnln和求逆就好了


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=8e5+10,P=998244353;
ll n,m,r[N],a[N],b[N];
ll t1[N],t2[N],t3[N],t4[N],t5[N],t6[N];
ll power(ll x,ll b){ll ans=1;while(b){if(b&1)ans=ans*x%P;x=x*x%P;b>>=1;}return ans;
}
void GetL(ll len){n=1;while(n<=len)n<<=1;for(ll i=0;i<n;i++)r[i]=(r[i>>1]>>1)|((i&1)?(n>>1):0);return;
}
void NTT(ll *f,ll op){for(ll i=0;i<n;i++)if(i<r[i])swap(f[i],f[r[i]]);for(ll p=2;p<=n;p<<=1){ll len=p>>1,tmp=power(3,(P-1)/p);if(op==-1)tmp=power(tmp,P-2);for(ll k=0;k<n;k+=p){ll buf=1;for(ll i=k;i<k+len;i++){ll tt=f[i+len]*buf%P;f[i+len]=(f[i]-tt+P)%P;f[i]=(f[i]+tt)%P;buf=buf*tmp%P;}}}if(op==-1){ll invn=power(n,P-2);for(ll i=0;i<n;i++)f[i]=f[i]*invn%P;}return;
}
void GetInv(ll *f,ll *g,ll m){if(m==1){g[0]=power(f[0],P-2);return;}GetInv(f,g,m>>1);GetL(m);for(ll i=0;i<m;i++)t1[i]=f[i],t2[i]=g[i];for(ll i=m;i<n;i++)t1[i]=t2[i]=0;NTT(t1,1);NTT(t2,1);for(ll i=0;i<n;i++)t1[i]=t1[i]*t2[i]%P*t2[i]%P;NTT(t1,-1);for(ll i=0;i<m;i++)g[i]=(2*g[i]-t1[i]+P)%P;return;
}
void GetD(ll *f,ll *g,ll n){for(ll i=0;i<n-1;i++)g[i]=f[i+1]*(i+1)%P;g[n-1]=0;return;
}
void GetJ(ll *f,ll *g,ll n){for(ll i=1;i<n;i++)g[i]=f[i-1]*power(i,P-2)%P;g[0]=0;return;
}
void GetLn(ll *f,ll *g,ll m){GetL(m);GetD(f,t3,n);GetInv(f,t4,n);GetL(m);GetL(n);NTT(t3,1);NTT(t4,1);for(ll i=0;i<n;i++)t3[i]=t3[i]*t4[i]%P;NTT(t3,-1);GetJ(t3,g,n);for(int i=0;i<n;i++)t3[i]=t4[i]=0;return;
}
void GetExp(ll *f,ll *g,ll m){if(m==1){g[0]=1;return;}GetExp(f,g,m>>1);GetLn(g,t5,m);GetL(m);for(ll i=0;i<m;i++)t6[i]=f[i];for(ll i=m;i<n;i++)t5[i]=t6[i]=0;NTT(t5,1);NTT(t6,1);NTT(g,1);for(ll i=0;i<n;i++)g[i]=g[i]*(1-t5[i]+t6[i]+P)%P;NTT(g,-1);for(ll i=m;i<n;i++)g[i]=0;return;
}
signed main()
{scanf("%lld",&m);for(ll i=0;i<m;i++)scanf("%lld",&a[i]);GetL(m);GetExp(a,b,n);for(ll i=0;i<m;i++)printf("%lld ",b[i]);return 0;
}

[模板]多项式全家桶小记(求逆,开根,ln,exp)相关推荐

  1. 多项式的各类计算(多项式的逆/开根/对数/exp/带余除法/多点求值)

    预备知识:FFT/NTT 多项式的逆 给定一个多项式 F(x)F(x)F(x),请求出一个多项式 G(x)G(x)G(x),满足 F(x)∗G(x)≡1(modxn)F(x)*G(x) \equiv ...

  2. 【知识总结】多项式全家桶(一)(NTT、加减乘除和求逆)

    我这种数学一窍不通的菜鸡终于开始学多项式全家桶了-- 必须要会的前置技能:FFT(不会?戳我:[知识总结]快速傅里叶变换(FFT)) 以下无特殊说明的情况下,多项式的长度指多项式最高次项的次数加\(1 ...

  3. [Note] 多项式全家桶 小球与盒子 分拆数

    - Partition NumberReference p r ( n ) p_r(n) pr​(n) 表示将正整数 n n n 拆分为若干个不大于 r r r 的正整数的和的方案数(无序). 1.你 ...

  4. NTT笔记和多项式全家桶

    1.点值表示法 点值表示法是多项式的另一种表示方法,多项式一般是用表达式表示,对于一个n次的多项式我们可以代入n+1个点来确定这个多项式. 假设A(x)=a0+a1x+a2x2+a3x3-+anxn ...

  5. 【知识总结】多项式全家桶(三)(任意模数NTT)

    经过两个月的咕咕,"多项式全家桶" 系列终于迎来了第三期--(雾) 上一篇:[知识总结]多项式全家桶(二)(ln和exp) 先膜拜(伏地膜)大恐龙的博客:任意模数 NTT (在页面 ...

  6. 多项式全家桶——Part.1 多项式加减乘

    多项式全家桶它lei了. 好吧,最近发现自己的多项式芝士严重匮乏,发现只会FFT和NTT,而且还有点生疏. 那既然没事干,那就来吃吃全家桶来补充芝士储备. 多项式 多项式是一个神奇的东东. 它长这样: ...

  7. 任意模数ntt_【知识总结】多项式全家桶(三)(任意模数NTT)

    经过两个月的咕咕,"多项式全家桶" 系列终于迎来了第三期--(雾) 先膜拜(伏地膜)大恐龙的博客:任意模数 NTT (在页面右侧面板 "您想嘴谁" 中选择 &q ...

  8. 多项式全家桶学习笔记【持续更新】

    本文完成的时间跨度较长,文风变化可能较大-- 最近更新于2020年2月17日 Part 1.主线 乘法 前面讲过FFT 然而FFT常数感人,适用范围还窄,比如不能取模 于是有了NTT 其实就是取模的F ...

  9. 【WC2019】数树【子集反演】【结论】【树形dp】【生成函数】【函数求导】【多项式全家桶】

    题意:有两棵基于同一点集的树,点集大小为 nnn ,两棵树中有 opopop 棵未确定,可以取所有 nn−2n^{n-2}nn−2 种可能.给每个点染上 [1,y][1,y][1,y] 中的一个颜色, ...

最新文章

  1. 独家揭秘!阿里大规模数据中心的性能分析 1
  2. MySQL五大约束详解(我有多详细只有我知道小白都能懂哦)
  3. 《大规模Web服务开发技术》
  4. 庆祝51CTO六周年:资源牛人有奖比拼,生日当天疯狂送豆!(已结束)
  5. 【WS-Federation】到底有多少公司在用WS-Federation
  6. Android开发笔记(四十四)动态UI事件
  7. 运行测试类(Test报错) Execution failed for task ‘:test‘.
  8. 您应该购买卡巴斯基安全产品吗
  9. Windows中的字体映射关系
  10. 微信登录提示逻辑不正确_微信逻辑错误无法登录
  11. L298N、电机、单片机的线路连接(51、stm32程序)
  12. 中国计算机学会推荐学术会议/期刊(网络与信息安全部分)
  13. 计算机无法识别游戏手柄,Win10系统使用游戏xbox游戏手柄提示“无法识别”的解决办法...
  14. CTF杂项小结--沙窝李的王
  15. laravel集合collect中的implode
  16. 安装运行太极框架Android搞机操作root
  17. PHP抓取页面中a标签的href属性值以及a中间内容
  18. Mysql优化(一)—Sql语句
  19. 提高企业竞争力,如何开展知识管理工作?
  20. android 经纬度 转换成地址,Android 百度地图经纬度转换成地址

热门文章

  1. java打印三角形_java基础打印三角形
  2. winform能连MySQL吗_c# winform中怎么连接mysql
  3. php mysql explain_MySQL Explain详解
  4. tensorrt轻松部署高性能dnn推理_部署环境之:tensorRT的插件
  5. python getattr_详解 Python 的二元算术运算,为什么说减法只是语法糖?
  6. android shell用户界面,shell界面下安装和卸载Android应用程序(apk包)
  7. 7搭建zabbix_监控03分布式监控Zabbix
  8. 数据结构——括号匹配问题
  9. 「offer来了」2种递进学习思维,24道计网题目,保姆级巩固你的计网知识体系
  10. [mybatis]动态sql_set_与if结合的动态更新