(图片由AI科技大本营付费下载自视觉中国)

作者 | 文杰

编辑 | yuquanle

本文介绍线性回归模型,从梯度下降和最小二乘的角度来求解线性回归问题,以概率的方式解释了线性回归为什么采用平方损失,然后介绍了线性回归中常用的两种范数来解决过拟合和矩阵不可逆的情况,分别对应岭回归和Lasso回归,最后考虑到线性回归的局限性,介绍了一种局部加权线性回归,增加其非线性表示能力线性回归A、线性回归假设有数据有:其中,。其中m为训练集样本数,n为样本维度,y是样本的真实值。线性回归采用一个高维的线性函数来尽可能的拟合所有的数据点,最简单的想法就是最小化函数值与真实值误差的平方(概率解释-高斯分布加最大似然估计)。即有如下目标函数:其中线性函数如下:构建好线性回归模型的目标函数之后,接下来就是求解目标函数的最优解,即一个优化问题。常用的梯度优化方法都可以拿来用,这里以梯度下降法来求解目标函数。另外,线性回归也可以从最小二乘法的角度来看,下面先将样本表示向量化,,构成如下数据矩阵。那么目标函数向量化形式如下:可以看出目标函数是一个凸二次规划问题,其最优解在导数为0处取到。值得注意的上式中存在计算矩阵的逆,一般来讲当样本数大于数据维度时,矩阵可逆,可以采用最小二乘法求得目标函数的闭式解。当数据维度大于样本数时,矩阵线性相关,不可逆。此时最小化目标函数解不唯一,且非常多,出于这样一种情况,我们可以考虑奥卡姆剃刀准则来简化模型复杂度,使其不必要的特征对应的w为0。所以引入正则项使得模型中w非0个数最少。当然,岭回归,lasso回归的最根本的目的不是解决不可逆问题,而是防止过拟合。B、概率解释损失函数与最小二乘法采用最小化平方和的概率解释。假设模型预测值与真实值的误差为,那么预测值与真实值之间有如下关系:根据中心极限定理,当一个事件与很多独立随机变量有关,该事件服从正态分布 。一般来说,连续值我们都倾向于假设服从正态分布。假设每个样本的误差独立同分布均值为0,方差为σ的高斯分布,所以有:即表示满足以均值为,方差为的高斯分布。由最大似然估计有:岭回归和Lasso回归岭回归的目标函数在一般的线性回归的基础上加入了正则项,在保证最佳拟合误差的同时,使得参数尽可能的“简单”,使得模型的泛化能力强(即不过分相信从训练数据中学到的知识)。正则项一般采用一,二范数,使得模型更具有泛化性,同时可以解决线性回归中不可逆情况。其迭代优化函数如下:另外从最小二乘的角度来看,通过引入二范正则项,使其主对角线元素来强制矩阵可逆。Lasso回归采用一范数来约束,使参数非零个数最少。而Lasso和岭回归的区别很好理解,在优化过程中,最优解为函数等值线与约束空间的交集,正则项可以看作是约束空间。可以看出二范的约束空间是一个球形,而一范的约束空间是一个方形,这也就是二范会得到很多参数接近0的值,而一范则尽可能非零参数最少。值得注意的是线性模型的表示能力有限,但是并不一定表示线性模型只能处理线性分布的数据。这里有两种常用的线性模型非线性化。对于上面的线性函数的构造,我们可以看出模型在以的坐标上是线性的,但是并不表示线性的模型就一定只能用于线性分布问题上。假如我们只有一个特征,而实际上回归值是等,我们同样可以采用线性模型,因为我们完全可以把输入空间映射到高维空间,其实这也是核方法以及PCA空间变换的一种思想,凡是对输入空间进行线性,非线性的变换,都是把输入空间映射到特征空间的思想,所以只需要把非线性问题转化为线性问题即可。另外一种是局部线性思想,即对每一个样本构建一个加权的线性模型。局部加权线性回归考虑到线性回归的表示能力有限,可能出现欠拟合现象。局部加权线性回归为每一个待预测的点构建一个加权的线性模型。其加权的方式是根据预测点与数据集中点的距离来为数据集中的点赋权重,当某点距离预测点较远时,其权重较小,反之较大。由于这种权重的机制引入使得局部加权线性回归产生了一种局部分段拟合的效果。由于该方法对于每一个预测点构建一个加权线性模型,都要重新计算与数据集中所有点的距离来确定权重值,进而确定针对该预测点的线性模型,计算成本高,同时为了实现无参估计来计算权重,需要存储整个数据集。局部加权线性回归,在线性回归基础上引入权重,其目标函数(下面的目标函数是针对一个预测样本的)如下:一般选择下面的权重函数,权重函数选择并非因为其类似于高斯函数,而是根据数据分布的特性,但权重函数的选取并不一定依赖于数据特性。其中是待预测的一个数据点。对于上面的目标函数,我们的目标同样是求解使得损失函数最小化,同样局部加权线性回归可以采用梯度的方法,也可以从最小二乘法的角度给出闭式解。其中是对角矩阵,。线性回归核心思想最小化平方误差,可以从最小化损失函数和最小二乘角度来看,优化过程可以采用梯度方法和闭式解。在闭式解问题中需要注意矩阵可逆问题。考虑到过拟合和欠拟合问题,有岭回归和lasso回归来防止过拟合,局部加权线性回归通过加权实现非线性表示。代码实战A、线性回归

/**
线性回归函数的实现,考虑一般的线性回归,最小平方和作为损失函数,则目标函数是一个无约束的凸二次规划问题,
由凸二次规划问题的极小值在导数为0处取到,且极小值为全局最小值,且有闭式解。根据数学表达式实现矩阵之间的运算求得参数w。
**/int regression(Matrix x,Matrix y){
    Matrix xT=x.transposeMatrix();
    Matrix xTx=xTx.multsMatrix(xT,x);
    Matrix xTx_1=xTx.niMatrix();
    Matrix xTx_1xT=xTx_1xT.multsMatrix(xTx_1,xT);
    Matrix ws;
    ws=ws.multsMatrix(xTx_1xT,y);cout<<"ws"<<endl;
    ws.print();return 0;
}

B、岭回归和Lasso回归

/**
下面的岭回归函数只是在一般的线性回归函数的基础上在对角线上引入了岭的概念,不仅有解决矩阵不可逆的线性,同样也有正则项的目的,
采用常用的二范数就得到了直接引入lam的形式。
**/int ridgeRegres(Matrix x,Matrix y,double lam){
    Matrix xT=x.transposeMatrix();
    Matrix xTx=xTx.multsMatrix(xT,x);Matrix denom(xTx.row,xTx.col,lam,"diag");
    xTx=xTx.addMatrix(xTx,denom);
    Matrix xTx_1=xTx.niMatrix();
    Matrix xTx_1xT=xTx_1xT.multsMatrix(xTx_1,xT);
    Matrix ws=ws.multsMatrix(xTx_1xT,y);cout<<"ws"<<endl;
    ws.print();return 0;
}

C、局部加权线性回归

/**
局部加权线性回归是在线性回归的基础上对每一个测试样本(训练的时候就是每一个训练样本)在其已有的样本进行一个加权拟合,
权重的确定可以通过一个核来计算,常用的有高斯核(离测试样本越近,权重越大,反之越小),这样对每一个测试样本就得到了不一样的
权重向量,所以最后得出的拟合曲线不再是线性的了,这样就增加的模型的复杂度来更好的拟合非线性数据。
**///需要注意的是局部加权线性回归是对每一个样本进行权重计算,所以对于每一个样本都有一个权重w,所以下面的函数只是局部线性回归的一个主要辅助函数Matrix locWeightLineReg(Matrix test,Matrix x,Matrix y,const double &k){Matrix w(x.row,x.row,0,"T");double temp=0;int i,j;/**
    根据测试样本点与整个样本的距离已经选择的核确定局部加权矩阵,采用对角线上为局部加权值
    **/for(i=0;i    {
        temp=0;for(j=0;j        {
            temp+=(test.data[0][j]-x.data[i][j])*(test.data[0][j]-x.data[i][j]);
        }
        w.data[i][i]=exp(temp/-2.0*k*k);
    }
    Matrix xT=x.transposeMatrix();
    Matrix wx=wx.multsMatrix(w,x);
    Matrix xTwx;
    xTwx=xTwx.multsMatrix(xT,wx);
    Matrix xTwx_1;
    xTwx_1=xTwx.niMatrix();
    Matrix xTwx_1xT;
    xTwx_1xT=xTwx_1xT.multsMatrix(xTwx_1,xT);
    Matrix xTwx_1xTw;
    xTwx_1xTw=xTwx_1xTw.multsMatrix(xTwx_1xT,w);
    Matrix ws = xTwx_1xTw * y;return ws;
}

详细代码:https://github.com/myazi/myLearn/blob/master/LineReg.cpp(*本文为 AI科技大本营转载文章,转载请联系原作者)

精彩推荐

2019 中国大数据技术大会(BDTC)历经十一载,再度火热来袭!豪华主席阵容及百位技术专家齐聚,15 场精选专题技术和行业论坛,超强干货+技术剖析+行业实践立体解读,深入解析热门技术在行业中的实践落地。【早鸟票】【特惠学生票】限时抢购,扫码了解详情!

推荐阅读

  • 100多次竞赛后,他研发了一个几乎可以解决所有机器学习问题的框架

  • 王霸之路:从0.1到2.0,一文看尽TensorFlow“奋斗史”

  • 伯克利人工智能研究院开源深度学习数据压缩方法Bit-Swap,性能创新高

  • NLP被英语统治?打破成见,英语不应是「自然语言」同义词

  • TensorFlow2.0正式版发布,极简安装TF2.0(CPU&GPU)教程

  • 肖仰华:知识图谱构建的三要素、三原则和九大策略 | AI ProCon 2019

  • AI落地遭“卡脖子”困境:为什么说联邦学习是解决良方?

  • 10分钟搭建你的第一个图像识别模型 | 附完整代码

  • 限时早鸟票 | 2019 中国大数据技术大会(BDTC)超豪华盛宴抢先看!

你点的每个“在看”,我都认真当成了喜欢

lasso回归_一文读懂线性回归、岭回归和Lasso回归相关推荐

  1. psm倾向得分匹配法举例_一文读懂倾向得分匹配法(PSM)举例及stata实现(一)

    原标题:一文读懂倾向得分匹配法(PSM)举例及stata实现(一) 一.倾向匹配得分应用之培训对工资的效应 政策背景:国家支持工作示范项目( National Supported Work,NSW ) ...

  2. stata 求输出相关系数矩阵命令_一文读懂结果输出命令大全(上)

    目录 描述统计量 help tabstat   //Stata 官方命令 描述统计量组间均值差异检验 help ttest help ttable2 help estout 相关分析命令 help p ...

  3. stata 将数据集变量名称导出_一文读懂空间计量经济学及stata操作

    在Stata 15中,推出了最新的空间计量官方命令,均以sp开头,表示 spatial data),可以处理横截面与面板形式的空间数据.本文主要为大家介绍空间计量命令之spregress的使用. 一. ...

  4. java中date类型如何赋值_一文读懂java中的Reference和引用类型

    简介 java中有值类型也有引用类型,引用类型一般是针对于java中对象来说的,今天介绍一下java中的引用类型.java为引用类型专门定义了一个类叫做Reference.Reference是跟jav ...

  5. python输入什么就输出什么_一文读懂Python的输入和输出

    本文介绍了Python的输入和输出,既然是Python代码,那么就一定有输出量,那么,Python是如何输出的呢? 输出 用print()在括号中加上字符串,就可以向屏幕上输出指定的文字.比如输出'h ...

  6. gps导航原理与应用_一文读懂角速度传感器(陀螺仪)的应用场景

    前文我们大致了解陀螺仪的来历,原理和种类,那么,它与我们的日常生活有怎样的关系呢? 陀螺仪器最早是用于航海导航,但随着科学技术的发展,它在航空和航天事业中也得到广泛的应用.陀螺仪器不仅可以作为指示仪表 ...

  7. hdfs读写流程_一文读懂HDFS分布式存储框架分析

    一文读懂HDFS分布式存储框架分析 HDFS是一套基于区块链技术的个人的数据存储系统,利用无处不在的私人PC存储空间及便捷的网络为个人提供数据加密存储服务,将闲置的存储空间利用起来,服务于正处于爆发期 ...

  8. mysql 默认事务隔离级别_一文读懂MySQL的事务隔离级别及MVCC机制

    回顾前文: <一文学会MySQL的explain工具> <一文读懂MySQL的索引结构及查询优化> (同时再次强调,这几篇关于MySQL的探究都是基于5.7版本,相关总结与结论 ...

  9. 超融合和服务器关系_一文读懂超融合服务器

    原标题:一文读懂超融合服务器 1.什么叫超融合服务器 融合基础架构(Hyper-Converged Infrastructure)是一种集成了虚拟计算资源和存储设备的信息基础架构.在这样的架构环境中, ...

最新文章

  1. 多表连接去重复 mysql_连接多个表时避免重复条目(MySQL)
  2. 最近很火的最新一代国际视频标准 VVC 到底是什么?阿里专家为你揭秘
  3. hdu 4533(树状数组区间更新+单点查询)
  4. java实现js取反_特定位取反(js实现)
  5. php yii 控件分页,Yii2分页的使用及其扩展方法详解
  6. [react] 怎样在react中创建一个事件?
  7. 如何在svn上新建一个目录并赋予相应的权限
  8. 浅层砂过滤器 全自动浅层介质过滤系统
  9. MySQL+Navicat安装教程
  10. 一片文章带你理解再生核希尔伯特空间(RKHS)以及各种空间
  11. 获取QQ好友列表接口分析
  12. JAVA基础知识汇总(思维导图)
  13. 「 机器人学 」机器人与控制工程基础浅谈
  14. 循环冗余校验码解法简析
  15. python tcp socket.connect() [Errno 56] Socket is already connectedconnect
  16. 781.森林中的兔子
  17. php引用符号详解——————给变量起小名
  18. 【邢不行|量化小讲堂系列48-实战篇】听说今天融资盘爆仓了?来看看融资数据在量化投资中的作用
  19. POJ - 3311 Hie with the Pie
  20. 2020 夏季短学期实践学习计划与安排

热门文章

  1. Ant Design Vue 表格数据按树型展示
  2. RabbitMQ镜像策略set_policy
  3. SQL入门试炼创建表
  4. 通用mapper 如何处理多表条件查询通过list封装(一对多)
  5. js中解析json字符串
  6. 解决在待办任务菜单中都会抛出异常,由于definitionId=undefined导致的问题
  7. Vue+mui实现图片的本地缓存
  8. mysql连接不上怎么重置密码错误_MySQL数据库连接不上、密码修改问题
  9. C/C++ atof函数 - C语言零基础入门教程
  10. Python chr / ord 函数区别和使用 - Python零基础入门教程