逻辑回归

简单来说, 逻辑回归(Logistic Regression)是一种用于解决二分类(0 or 1)问题的机器学习方法,用于估计某种事物的可能性。比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等。 注意,这里用的是“可能性”,而非数学上的“概率”,logisitc回归的结果并非数学定义中的概率值,不可以直接当做概率值来用。该结果往往用于和其他特征值加权求和,而非直接相乘。
这次我们采用逻辑回归的方法来设计一张图片判断是否为猫的分类问题。
这次逻辑回归模型我们采用的是Python进行程序编写。

逻辑回归实现猫的辨别

下面的案列我参照吴恩达的深度学习作业做对应的编写,可能模型准确度不是很高,希望大家多多指点。

Python环境的配置

在对逻辑回归进行猫的辨别时,我们最好建一个jupyter notebook 将每一步都规划好。
第一步导入相对应的包和数据,对应的数据和文件我待会文后附上链接。

import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset ##调用自己的一个python脚本中的函数,在当前工作目录下面
%matplotlib inline #图片显示在jupyter notebook 上面

第二步就是开始导入数据,划分训练集和测试集,查看数据的规模,以及我们定义一些变量。

# Loading the data (cat/non-cat)
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
print(train_set_x_orig.shape)# 查看训练集测试图片的规模,64*64*3,三个通道
print(train_set_y.shape)#查看训练集y的的标签
print(test_set_x_orig.shape)
print(test_set_y.shape)
print(classes)#查看类别
(209, 64, 64, 3)
(1, 209)
(50, 64, 64, 3)
(1, 50)
[b'non-cat' b'cat']

如果有兴趣的话,大家可以自己在自己的电脑上试着查看一下你导入的图片。

# Example of a picture
index = 0 # 查看图片,每张图片对应一个索引,但不要超出范围(这个取决与我们的训练集和测试集大小)
plt.imshow(train_set_x_orig[index])#展示图片
print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") +  "' picture.")#打印图片的编号以及打印它的标签(是不是一只猫)

这个是我运行完后的一个结果,有兴趣大家可以在自己电脑上面进行测试。也可以改变index值,查看别的图片。

如果想具体了解和了解数据属性,可以看下面的操作。

m_train = train_set_x_orig.shape[0]#训练集图片的数量
m_test = test_set_x_orig.shape[0]#测试集图片数量
num_px = train_set_x_orig.shape[2]#图片像素大小矩阵print ("Number of training examples: m_train = " + str(m_train))
print ("Number of testing examples: m_test = " + str(m_test))
print ("Height/Width of each image: num_px = " + str(num_px))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")#每一张图片三个通道对应RGB三种颜色,图片的矩阵表示,对应三个颜色强度矩阵
print ("train_set_x shape: " + str(train_set_x_orig.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x shape: " + str(test_set_x_orig.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
#################运行结果
Number of training examples: m_train = 209
Number of testing examples: m_test = 50
Height/Width of each image: num_px = 64
Each image is of size: (64, 64, 3)
train_set_x shape: (209, 64, 64, 3)
train_set_y shape: (1, 209)
test_set_x shape: (50, 64, 64, 3)
test_set_y shape: (1, 50)

接下来就是我们需要重点关注的一步,如何将图片数据转为向量表示,这里和大家普及一下图片一般是RGB色彩和其他色彩,不过我们这里的图片数据是RBG格式,rgb通俗点就是三原色每个颜色对应一个矩阵,矩阵中的每一个元素都是像素点,三个颜色矩阵的像素点组合就成为一张图片。然后我们将三个矩阵的元素合并到一个向量来表示。

# Reshape the training and test examples
#将图片转成向量
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T#64*64*3,一共209张图片
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0],-1).T#209个训练图片标签
print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0]))#像素检查
#########
train_set_x_flatten shape: (12288, 209)
train_set_y shape: (1, 209)
test_set_x_flatten shape: (12288, 50)
test_set_y shape: (1, 50)
sanity check after reshaping: [17 31 56 22 33]

单纯这样的处理还不够,因为像素点是0-255,数字比较大,不便于后面处理我么对数据进行一定的缩放比例,将像素点范围调控到0-1之间。

train_set_x = train_set_x_flatten/255.#像素的值在0-255之间,缩放像素0-1之间
test_set_x = test_set_x_flatten/255.

接下来就是构建神经网络模型,下面这个我截取吴恩达的课程给出的模型以及涉及到的公式。

Mathematical expression of the algorithm:

For one example x(i)x^{(i)}x(i):
(1)z(i)=wTx(i)+bz^{(i)} = w^T x^{(i)} + b \tag{1}z(i)=wTx(i)+b(1)
(2)y^(i)=a(i)=sigmoid(z(i))\hat{y}^{(i)} = a^{(i)} = sigmoid(z^{(i)})\tag{2}y^​(i)=a(i)=sigmoid(z(i))(2)
(3)L(a(i),y(i))=−y(i)log⁡(a(i))−(1−y(i))log⁡(1−a(i))\mathcal{L}(a^{(i)}, y^{(i)}) = - y^{(i)} \log(a^{(i)}) - (1-y^{(i)} ) \log(1-a^{(i)})\tag{3}L(a(i),y(i))=−y(i)log(a(i))−(1−y(i))log(1−a(i))(3)

The cost is then computed by summing over all training examples:
(6)J=1m∑i=1mL(a(i),y(i))J = \frac{1}{m} \sum_{i=1}^m \mathcal{L}(a^{(i)}, y^{(i)})\tag{6}J=m1​i=1∑m​L(a(i),y(i))(6)

但模型大致思路如下:

定义模型结构(例如输入特性的数量)

初始化模型的参数

计算当前损失(正向传播)

计算当前梯度(向后传播)

更新参数(梯度下降)

关于逻辑回归模型的算法讲解我会在下一篇博客中详解讲解。下面我们开始用python构建逻辑回归模型。
1.下面我们构建模型中的一个重要函数激活函数。

# GRADED FUNCTION: sigmoid
def sigmoid(x):"""计算sigmoid函数:param x: 任意大小的标量或者numpy数组:return: sigmoid(x)"""s = 1 / (1 + np.exp(-x))return s

如果你想看看你的激活函数是否达到你的要求,可以调用函数

初始化模型的参数

# GRADED FUNCTION: initialize_with_zeros
开始给权重值和偏差初始化一个值,权重是一个矢量,偏差是一个标量。
def initialize_with_zeros(dim):"""This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.Argument:dim -- size of the w vector we want (or number of parameters in this case)Returns:w -- initialized vector of shape (dim, 1)#向量b -- initialized scalar (corresponds to the bias)#标量"""w = np.zeros((dim,1))#初始化权重值b = 0assert(w.shape == (dim, 1))#判断权重矩阵是否为你想要的形式assert(isinstance(b, float) or isinstance(b, int))return w, b

定义计算损失值函数

通过“正向”和“反向”传播,计算损失值。
正向传播:
获取 X
计算
计算损失函数:
计算dw和db使用到的两条公式

# GRADED FUNCTION: propagate
实现上述传播的成本函数及其梯度
def propagate(w, b, X, Y):"""Implement the cost function and its gradient for the propagation explained aboveArguments:w -- weights, a numpy array of size (num_px * num_px * 3, 1) 权重,一个numpy数组大小(num_px * num_px * 3,1)b -- bias, a scalar                              偏差,一个标量X -- data of size (num_px * num_px * 3, number of examples)   数据大小(num_px * num_px * 3,例子数量)Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples) 真正的“标签”向量(包含0如果非猫,1如果猫)的大小(1,例子数量)Return:cost -- negative log-likelihood cost for logistic regression      Logistic回归的负对数似然成本。dw -- gradient of the loss with respect to w, thus same shape as w  关于w的损失梯度,与w相同。db -- gradient of the loss with respect to b, thus same shape as b  关于b的损失梯度,与b相同。Tips:- Write your code step by step for the propagation. np.log(), np.dot()"""m = X.shape[1]# FORWARD PROPAGATION (FROM X TO COST)
#前向传播A = sigmoid(np.dot(w.T,X)+b)          cost = -1/m*np.sum(Y*np.log(A)+(1-Y)*np.log(1-A))   ### END CODE HERE #### BACKWARD PROPAGATION (TO FIND GRAD)
#反向传播dw = 1/m*np.dot(X,(A-Y).T)db = 1/m*np.sum(A-Y)### END CODE HERE ###assert(dw.shape == w.shape)assert(db.dtype == float)cost = np.squeeze(cost)assert(cost.shape == ())grads = {"dw": dw,"db": db}return grads, cost#返回梯度和代价

大家可以测试一下上面的函数,看看是否达到你的要求:

当我们进行到这里时候,大致的逻辑回归的模型大致搭建好了,接下来也就是我们要考虑优化函数的问题了。

# GRADED FUNCTION: optimize#优化函数def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):"""This function optimizes w and b by running a gradient descent algorithmArguments:w -- weights, a numpy array of size (num_px * num_px * 3, 1)b -- bias, a scalarX -- data of shape (num_px * num_px * 3, number of examples)Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)num_iterations -- number of iterations of the optimization looplearning_rate -- learning rate of the gradient descent update ruleprint_cost -- True to print the loss every 100 stepsReturns:params -- dictionary containing the weights w and bias bgrads -- dictionary containing the gradients of the weights and bias with respect to the cost functioncosts -- list of all the costs computed during the optimization, this will be used to plot the learning curve.Tips:You basically need to write down two steps and iterate through them:1) Calculate the cost and the gradient for the current parameters. Use propagate().2) Update the parameters using gradient descent rule for w and b."""costs = []for i in range(num_iterations):# Cost and gradient calculation (≈ 1-4 lines of code)### START CODE HERE ### grads, cost = propagate(w,b,X,Y)### END CODE HERE #### Retrieve derivatives from gradsdw = grads["dw"]db = grads["db"]# update rule (≈ 2 lines of code)### START CODE HERE ###w = w-learning_rate*dw#梯度下降法更新参数b = b-learning_rate*db### END CODE HERE #### Record the costsif i % 100 == 0:costs.append(cost)# Print the cost every 100 training examplesif print_cost and i % 100 == 0:print ("Cost after iteration %i: %f" %(i, cost))params = {"w": w,"b": b}grads = {"dw": dw,"db": db}return params, grads, costs

下面是我测试的优化函数结果

当我们进行到这里的时候,逻辑回归的主体函数基本搭建好了,但是我们训练的最终目的是为了预测结果,而不是单纯为了在训练集上面达到想要的结果。所以接下来我们要开始编写我们自己的预测函数。这个是借用吴恩达老师的预测函数。

# GRADED FUNCTION: predictdef predict(w, b, X):'''Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)Arguments:w -- weights, a numpy array of size (num_px * num_px * 3, 1)b -- bias, a scalarX -- data of size (num_px * num_px * 3, number of examples)Returns:Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X'''m = X.shape[1]Y_prediction = np.zeros((1,m))w = w.reshape(X.shape[0], 1)# Compute vector "A" predicting the probabilities of a cat being present in the picture### START CODE HERE ### (≈ 1 line of code)A = sigmoid(np.dot(w.T,X)+b)  #数据预测结果### END CODE HERE ###for i in range(A.shape[1]):# Convert probabilities A[0,i] to actual predictions p[0,i]### START CODE HERE ### (≈ 4 lines of code)if A[0,i]<=0.5:Y_prediction[0,i]=0else:Y_prediction[0,i]=1 ### END CODE HERE ###assert(Y_prediction.shape == (1, m))return Y_prediction

这个是一个测试样例

上述将整个逻辑回归的模型拆成了一个个的函数,便于大家理解和学习,后面我们需要将所有的函数整合在一起,这样才是完整的模型。

# GRADED FUNCTION: modeldef model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):"""Builds the logistic regression model by calling the function you've implemented previouslyArguments:X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)num_iterations -- hyperparameter representing the number of iterations to optimize the parameterslearning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()print_cost -- Set to true to print the cost every 100 iterationsReturns:d -- dictionary containing information about the model."""# initialize parameters with zeros w, b = initialize_with_zeros(X_train.shape[0])# Gradient descentparameters, grads, costs = optimize(w,b,X_train,Y_train,num_iterations,learning_rate,print_cost)# Retrieve parameters w and b from dictionary "parameters"w = parameters["w"]b = parameters["b"]# Predict test/train set examples Y_prediction_test = predict(w,b,X_test)Y_prediction_train = predict(w,b,X_train)print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))d = {"costs": costs,"Y_prediction_test": Y_prediction_test, "Y_prediction_train" : Y_prediction_train, "w" : w, "b" : b,"learning_rate" : learning_rate,"num_iterations": num_iterations}return d

到这里,整个模型也就成型了,但是我们想知道我们的模型对辨别猫有多高的准确率,我们就可以利用上面的数据开始跑我们的模型了。

可能直接看这个觉得不是很直观,我们可以直接索引图片一个个的进行看

# Example of a picture that was wrongly classified.
index = 7#通过改变索引,查看图片测试结果
plt.imshow(test_set_x[:,index].reshape((num_px, num_px, 3)))
print ("y = " + str(test_set_y[0,index]) + ", you predicted that it is a \"" + classes[int(d["Y_prediction_test"][0,index])].decode("utf-8") +  "\" picture.")

这是的测试结果

当我们进性索引时发现有一些图片被模型判别错误了,这个一个是我们数据量不是很大的原因,还有我们的参数调节问题。这个我后面会和大家讲解,代码和文件我会后期附在这个博客后面,可以给大家参考,这个代码我也是在吴恩达老师的作业代码进行补充的。
代码参考链接链接:https://pan.baidu.com/s/1ZqXWD5rDSl-Y52W4dA0k9A
提取码:xmxl

python逻辑回归识别猫(持续更新中)相关推荐

  1. 莫烦Python Python基础教程 文字版 持续更新中

    打开IDLE开始干活 * 函数 1. 注意函数名后冒号 2. 多行语句无{ },函数名后四个空格对齐属于函数部分 3. 这样定义的函数 可以这样调用4.print可以直接回车换行,多行书写 5.函数默 ...

  2. Python Challenge全解(持续更新中)

    有趣的Python Challenge编程游戏闯关攻略一(0-4关) 有趣的Python Challenge编程解谜游戏攻略二(5-9关) 有趣的Python Challenge编程解谜游戏第10关 ...

  3. Python爬虫及其它函数知识读记及简单用法,持续更新中...

    Python爬虫相关函数知识读记及简单用法,持续更新中- requests [riˈkwests] n. 请求,要求( request的名词复数 ): 需要: 所请求的事物: 申请书 函数或单词- 音 ...

  4. 【Python全栈开发从入门到实战】持续更新中......

    本专栏为Python全栈开发系列文章,技术包括Python基础.函数.文件.面向对象.网络编程.并发编程.MySQL数据库.HTML.JavaScript.CSS.JQuery.bootstrap.W ...

  5. Python 100个简单小例子(持续更新中)

    Python 100个简单小例子(持续更新中) 1 编写一个计算平年还是闰年的小例子其核心是年份可以整除4和400,且不是100的倍数且2000年是特殊年份为闰年! year = int(input( ...

  6. Go语言开发学习笔记(持续更新中)

    Go语言开发学习笔记(持续更新中) 仅供自我学习 更好的文档请选择下方 https://studygolang.com/pkgdoc https://www.topgoer.com/go%E5%9F% ...

  7. Linux常见命令作用(持续更新中,欢迎提议支持)

    Linux常见命令作用(持续更新中,欢迎提议支持) 1.ifconfig 查看ip地址 2.cd 切换工作目录(跳转路径) cd 路径 切换至工作目录"路径" 下同,指令后面都可附 ...

  8. 【Vue全家桶+SSR+Koa2全栈开发】项目搭建过程 整合 学习目录(持续更新中)

    写在开头 大家好,这里是lionLoveVue,基础知识决定了编程思维,学如逆水行舟,不进则退.金三银四,为了面试也还在慢慢积累知识,Github上面可以直接查看所有前端知识点梳理,github传送门 ...

  9. 嵌入式相关开源项目、库、资料------持续更新中

    学习初期最难找的就是找学习资料了,本贴精心汇总了一些嵌入式相关资源,包括但不限于编程语言.单片机.开源项目.物联网.操作系统.Linux.计算机等资源,并且在不断地更新中,致力于打造全网最全的嵌入式资 ...

最新文章

  1. Foundation框架: 9.OC中的集合类之四 - NSMutableDictionary的基本认识
  2. [book]道法自然
  3. 前端学习(2510):文件目录
  4. 第一个flash游戏--配对游戏
  5. 95-136-040-源码-Operator-Operator简介
  6. SQLi LABS Less 26a 联合注入+布尔盲注
  7. 数据对齐的理解与一道组成原理题的详细解释
  8. 一级计算机第65套题,全国计算机一级考试题库(附答案).pdf
  9. 2021年压力焊工作业考试题库
  10. 注册表清理工具PC Performer
  11. 最全的iOS开发资源整理
  12. Java项目部署到远程服务器(详细步骤)
  13. 【黑灰产犯罪研究】网络水军
  14. 继杭州购房宝典后,Github上的这个程序员买房实用指南火了!
  15. 3097-小鑫爱数学
  16. 印度软件外包发展简记
  17. 最新最全论文合集——多模态情感分析
  18. draggrid简单用法
  19. Matplotlib中画图,使用带有边框的条线
  20. 集合的使用——超市购物小票案例

热门文章

  1. STM32单片机语音识别MP3播放器音乐播放器TF卡播放器
  2. 第三章 垃圾收集器与内存分配策略
  3. for语句的3道面试题
  4. Python Click 模块
  5. 以数据为基,戴尔科技全线护航数字化“攀登者”
  6. 学习方法——TRIZ创新理论中的40个发明原则(二)
  7. html和xhtml基础知识整理
  8. TP6中db操作数据库的方式(方法)和ORM模型操作数据库的方式(方法)
  9. 2023 在线弹钢琴模拟网站源码
  10. php curl post上传图片,PHP中使用CURL发送get/post请求上传图片批处理功能