传统模式

传统的编程是线性模式的:

  • 开始--->代码块A--->代码块B--->代码块C--->代码块D--->......--->结束

每一个代码块里是完成各种各样事情的代码,但编程者知道代码块A,B,C,D...的执行顺序,唯一能够改变这个流程的是数据。输入不同的数据,根据条件语句判断,流程或许就改为A--->C--->E...--->结束。每一次程序运行顺序或许都不同,但它的控制流程是由输入数据和你编写的程序决定的。如果你知道这个程序当前的运行状态(包括输入数据和程序本身),那你就知道接下来甚至一直到结束它的运行流程。

事件驱动模型

对于事件驱动型程序模型,它的流程大致如下:

  • 开始--->初始化--->等待

与上面传统编程模式不同,事件驱动程序在启动之后,就在那等待,等待什么呢?

等待被事件触发。传统编程下也有“等待”的时候,比如在代码块D中,你定义了一个input(),需要用户输入数据。但这与下面的等待不同,传统编程的“等待”,比如input(),你作为程序编写者是知道或者强制用户输入某个东西的,或许是数字,或许是文件名称,如果用户输入错误,你还需要提醒他,并请他重新输入。

事件驱动程序的等待则是完全不知道,也不强制用户输入或者干什么。只要某一事件发生,那程序就会做出相应的“反应”。这些事件包括:输入信息、鼠标、敲击键盘上某个键还有系统内部定时器触发。

通常,处理器处理模型的程序,有以下几种模型:

  1. 每收到一个请求,创建一个进程来处理请求。
  2. 每收到一个请求,创建一个新的线程,来处理该请求。
  3. 每收到一个请求,放入一个事件列表,让朱金城通过非阻塞I/O方式来处理请求。

第三种就是协程、事件驱动方式。

用例子来比较和对比一下单线程、多线程以及事件驱动编程模型。下图展示了随着时间的推移,这三种模式下程序所做的工作。这个程序有3个任务需要完成,每个任务都在等待I/O操作时阻塞自身。阻塞在I/O操作上所花费的时间已经用灰色框标示出来了。

在单线程同步模型中,任务按照顺序执行。如果某个任务因为I/O而阻塞,其他所有的任务都必须等待,直到它完成之后它们才能依次执行。这种明确的执行顺序和串行化处理的行为是很容易推断得出的。如果任务之间并没有互相依赖的关系,但仍然需要互相等待的话这就使得程序不必要的降低了运行速度。

在多线程版本中,这3个任务分别在独立的线程中执行。这些线程由操作系统来管理,在多处理器系统上可以并行处理,或者在单处理器系统上交错执行。这使得当某个线程阻塞在某个资源的同时其他线程得以继续执行。与完成类似功能的同步程序相比,这种方式更有效率,但程序员必须写代码来保护共享资源,防止其被多个线程同时访问。多线程程序更加难以推断,因为这类程序不得不通过线程同步机制如锁、可重入函数、线程局部存储或者其他机制来处理线程安全问题,如果实现不当就会导致出现微妙且令人痛不欲生的bug。

在事件驱动版本的程序中,3个任务交错执行,但仍然在一个单独的线程控制中。当处理I/O或者其他昂贵的操作时,注册一个回调到事件循环中,然后当I/O操作完成时继续执行。回调描述了该如何处理某个事件。事件循环轮询所有的事件,当事件到来时将它们分配给等待处理事件的回调函数。这种方式让程序尽可能的得以执行而不需要用到额外的线程。事件驱动型程序比多线程程序更容易推断出行为,因为程序员不需要关心线程安全问题。

当我们面对如下的环境时,事件驱动模型通常是一个好的选择:

  1. 程序中有许多任务,而且…
  2. 任务之间高度独立(因此它们不需要互相通信,或者等待彼此)而且…
  3. 在等待事件到来时,某些任务会阻塞。

当应用程序需要在任务间共享可变的数据时,这也是一个不错的选择,因为这里不需要采用同步处理。

网络应用程序通常都有上述这些特点,这使得它们能够很好的契合事件驱动编程模型。

服务器端编程经常需要构造高性能的IO模型,常见的IO模型有四种:

  1. 同步阻塞IO(Blocking IO):即传统的IO模型。
  2. 同步非阻塞IO(Non-blocking IO):默认创建的socket都是阻塞的,非阻塞IO要求socket被设置为NONBLOCK。注意这里所说的NIO并非Java的NIO(New IO)库。
  3. IO多路复用(IO Multiplexing):即经典的Reactor设计模式,有时也称为异步阻塞IO,Java中的Selector和Linux中的epoll都是这种模型。
  4. 异步IO(Asynchronous IO):即经典的Proactor设计模式,也称为异步非阻塞IO。

同步和异步

  • 描述的是用户线程与内核的交互方式:同步是指用户线程发起IO请求后需要等待或者轮询内核IO操作完成后才能继续执行;而异步是指用户线程发起IO请求后仍继续执行,当内核IO操作完成后会通知用户线程,或者调用用户线程注册的回调函数。

阻塞和非阻塞

  • 描述的是用户线程调用内核IO操作的方式:阻塞是指IO操作需要彻底完成后才返回到用户空间;而非阻塞是指IO操作被调用后立即返回给用户一个状态值,无需等到IO操作彻底完成。

另外,Richard Stevens 在《Unix 网络编程》卷1中提到的基于信号驱动的IO(Signal Driven IO)模型,由于该模型并不常用,本文不作涉及。接下来,我们详细分析四种常见的IO模型的实现原理。为了方便描述,我们统一使用IO的读操作作为示例。

一、同步阻塞IO

同步阻塞IO模型是最简单的IO模型,用户线程在内核进行IO操作时被阻塞。

图1 同步阻塞IO

如图1所示,用户线程通过系统调用read发起IO读操作,由用户空间转到内核空间。内核等到数据包到达后,然后将接收的数据拷贝到用户空间,完成read操作。

即用户需要等待read将socket中的数据读取到buffer后,才继续处理接收的数据。整个IO请求的过程中,用户线程是被阻塞的,这导致用户在发起IO请求时,不能做任何事情,对CPU的资源利用率不够。

二、同步非阻塞IO

同步非阻塞IO是在同步阻塞IO的基础上,将socket设置为NONBLOCK。这样做用户线程可以在发起IO请求后可以立即返回。

图2 同步非阻塞IO

如图2所示,由于socket是非阻塞的方式,因此用户线程发起IO请求时立即返回。但并未读取到任何数据,用户线程需要不断地发起IO请求,直到数据到达后,才真正读取到数据,继续执行。

即用户需要不断地调用read,尝试读取socket中的数据,直到读取成功后,才继续处理接收的数据。整个IO请求的过程中,虽然用户线程每次发起IO请求后可以立即返回,但是为了等到数据,仍需要不断地轮询、重复请求,消耗了大量的CPU的资源。一般很少直接使用这种模型,而是在其他IO模型中使用非阻塞IO这一特性。

三、IO多路复用

IO多路复用模型是建立在内核提供的多路分离函数select基础之上的,使用select函数可以避免同步非阻塞IO模型中轮询等待的问题。

图3 多路分离函数select

如图3所示,用户首先将需要进行IO操作的socket添加到select中,然后阻塞等待select系统调用返回。当数据到达时,socket被激活,select函数返回。用户线程正式发起read请求,读取数据并继续执行。

从流程上来看,使用select函数进行IO请求和同步阻塞模型没有太大的区别,甚至还多了添加监视socket,以及调用select函数的额外操作,效率更差。但是,使用select以后最大的优势是用户可以在一个线程内同时处理多个socket的IO请求。用户可以注册多个socket,然后不断地调用select读取被激活的socket,即可达到在同一个线程内同时处理多个IO请求的目的。而在同步阻塞模型中,必须通过多线程的方式才能达到这个目的。

其中while循环前将socket添加到select监视中,然后在while内一直调用select获取被激活的socket,一旦socket可读,便调用read函数将socket中的数据读取出来。

然而,使用select函数的优点并不仅限于此。虽然上述方式允许单线程内处理多个IO请求,但是每个IO请求的过程还是阻塞的(在select函数上阻塞),平均时间甚至比同步阻塞IO模型还要长。如果用户线程只注册自己感兴趣的socket或者IO请求,然后去做自己的事情,等到数据到来时再进行处理,则可以提高CPU的利用率。

IO多路复用模型使用了Reactor设计模式实现了这一机制。

图4 Reactor设计模式

如图4所示,EventHandler抽象类表示IO事件处理器,它拥有IO文件句柄Handle(通过get_handle获取),以及对Handle的操作handle_event(读/写等)。继承于EventHandler的子类可以对事件处理器的行为进行定制。Reactor类用于管理EventHandler(注册、删除等),并使用handle_events实现事件循环,不断调用同步事件多路分离器(一般是内核)的多路分离函数select,只要某个文件句柄被激活(可读/写等),select就返回(阻塞),handle_events就会调用与文件句柄关联的事件处理器的handle_event进行相关操作。

图5 IO多路复用

如图5所示,通过Reactor的方式,可以将用户线程轮询IO操作状态的工作统一交给handle_events事件循环进行处理。用户线程注册事件处理器之后可以继续执行做其他的工作(异步),而Reactor线程负责调用内核的select函数检查socket状态。当有socket被激活时,则通知相应的用户线程(或执行用户线程的回调函数),执行handle_event进行数据读取、处理的工作。由于select函数是阻塞的,因此多路IO复用模型也被称为异步阻塞IO模型。注意,这里的所说的阻塞是指select函数执行时线程被阻塞,而不是指socket。一般在使用IO多路复用模型时,socket都是设置为NONBLOCK的,不过这并不会产生影响,因为用户发起IO请求时,数据已经到达了,用户线程一定不会被阻塞。

用户线程使用IO多路复用模型的伪代码描述为:

用户需要重写EventHandler的handle_event函数进行读取数据、处理数据的工作,用户线程只需要将自己的EventHandler注册到Reactor即可。Reactor中handle_events事件循环的伪代码大致如下。

Reactor::handle_events() {

while(1) {

sockets = select();

for(socket in sockets) {

get_event_handler(socket).handle_event();

}

}

}

事件循环不断地调用select获取被激活的socket,然后根据获取socket对应的EventHandler,执行器handle_event函数即可。

IO多路复用是最常使用的IO模型,但是其异步程度还不够“彻底”,因为它使用了会阻塞线程的select系统调用。因此IO多路复用只能称为异步阻塞IO,而非真正的异步IO。

四、异步IO

“真正”的异步IO需要操作系统更强的支持。在IO多路复用模型中,事件循环将文件句柄的状态事件通知给用户线程,由用户线程自行读取数据、处理数据。而在异步IO模型中,当用户线程收到通知时,数据已经被内核读取完毕,并放在了用户线程指定的缓冲区内,内核在IO完成后通知用户线程直接使用即可。

异步IO模型使用了Proactor设计模式实现了这一机制。

图6 Proactor设计模式

如图6,Proactor模式和Reactor模式在结构上比较相似,不过在用户(Client)使用方式上差别较大。Reactor模式中,用户线程通过向Reactor对象注册感兴趣的事件监听,然后事件触发时调用事件处理函数。而Proactor模式中,用户线程将AsynchronousOperation(读/写等)、Proactor以及操作完成时的CompletionHandler注册到AsynchronousOperationProcessor。AsynchronousOperationProcessor使用Facade模式提供了一组异步操作API(读/写等)供用户使用,当用户线程调用异步API后,便继续执行自己的任务。AsynchronousOperationProcessor 会开启独立的内核线程执行异步操作,实现真正的异步。当异步IO操作完成时,AsynchronousOperationProcessor将用户线程与AsynchronousOperation一起注册的Proactor和CompletionHandler取出,然后将CompletionHandler与IO操作的结果数据一起转发给Proactor,Proactor负责回调每一个异步操作的事件完成处理函数handle_event。虽然Proactor模式中每个异步操作都可以绑定一个Proactor对象,但是一般在操作系统中,Proactor被实现为Singleton模式,以便于集中化分发操作完成事件。

图7 异步IO

如图7所示,异步IO模型中,用户线程直接使用内核提供的异步IO API发起read请求,且发起后立即返回,继续执行用户线程代码。不过此时用户线程已经将调用的AsynchronousOperation和CompletionHandler注册到内核,然后操作系统开启独立的内核线程去处理IO操作。当read请求的数据到达时,由内核负责读取socket中的数据,并写入用户指定的缓冲区中。最后内核将read的数据和用户线程注册的CompletionHandler分发给内部Proactor,Proactor将IO完成的信息通知给用户线程(一般通过调用用户线程注册的完成事件处理函数),完成异步IO。

用户线程使用异步IO模型的伪代码描述为:

void UserCompletionHandler::handle_event(buffer) {

process(buffer);

}

{

aio_read(socket, new UserCompletionHandler);

}

用户需要重写CompletionHandler的handle_event函数进行处理数据的工作,参数buffer表示Proactor已经准备好的数据,用户线程直接调用内核提供的异步IO API,并将重写的CompletionHandler注册即可。

相比于IO多路复用模型,异步IO并不十分常用,不少高性能并发服务程序使用IO多路复用模型+多线程任务处理的架构基本可以满足需求。况且目前操作系统对异步IO的支持并非特别完善,更多的是采用IO多路复用模型模拟异步IO的方式(IO事件触发时不直接通知用户线程,而是将数据读写完毕后放到用户指定的缓冲区中)。Java7之后已经支持了异步IO,感兴趣的读者可以尝试使用。

I/O多路复用:通过一种机制,监视多个描述符,一旦某个描述符就绪(一般是读或写就绪),能通知程序进行相应的读写操作。

Linux中select,poll,epoll都是IO多路复用机制。

python

python中有一个select模块,其中提供了select,poll,epoll三个方法,实现多路复用。

注意:

  • Windows Python:提供select
  • Mac Python:提供select
  • Linux Python:提供select 、poll、epoll
  • I/O操作, 网络操作,文件操作,终端操作都属于I/O操作,对于Windows只支持socket操作,其他系统支持其他IO操作。

更多:Python 目录

事件驱动模型与IO多路复用相关推荐

  1. Python之进程+线程+协程(事件驱动模型、IO多路复用、select与epoll)

    文章目录 一.事件驱动模型 二.IO多路复用 本篇文章是关于涉及网络编程与协程.进程之间结合的内容,其中事件驱动模型.IO多路复用.select与epoll的使用等方面的知识 一.事件驱动模型 1.事 ...

  2. IO模型、IO多路复用

    IO多路复用 基础概述 用户空间和内核空间 PIO与DMA 缓存IO和直接IO 缓存IO 优点 缺点 直接IO IO访问方式 磁盘IO 网络IO 磁盘IO和网络IO对比 Socket网络编程 客户端 ...

  3. linux io多路复用详解,Linux系统中IO多路复用

    文章目录 1 什么是IO多路复用 1.1 阻塞IO模型 1.2 非阻塞IO模型 1.3 IO复用模型 1.4 信号驱动IO模型 1.5 异步IO模型 2 IO多路复用,epoll 1 什么是IO多路复 ...

  4. io多路复用的原理和实现_IO多路复用机制详解

    select,poll,epoll机制区别总结: 服务器端编程经常需要构造高性能的IO模型,常见的IO模型有四种: (1)同步阻塞IO(Blocking IO):即传统的IO模型. (2)同步非阻塞I ...

  5. L6网络编程--IO多路复用(day6)

    目录 一.I/O模型 二.阻塞I/O模式 : 1.读阻塞 2.写阻塞 三.非阻塞模式I/O 1.非阻塞模式的实现 fcntl()函数 四.多路复用I/O 基本常识: 多路复用服务器模型:​编辑 sel ...

  6. 引入了一个IO多路复用模型

    我们前面讲的非阻塞仍然需要进程不断的轮询重试.能不能实现当数据可读了以后给程序一个通知呢?所以这里引入了一个IO多路复用模型,I/O多路复用的本质是通过一种机制(系统内核缓冲I/O数据),让单个进程可 ...

  7. java基础巩固-宇宙第一AiYWM:为了维持生计,四大基础之OS_Part_2整起~IO们那些事【包括五种IO模型:(BIO、NIO、IO多路复用、信号驱动、AIO);零拷贝、事件处理及并发等模型】

    PART0.前情提要: 通常用户进程的一个完整的IO分为两个阶段(IO有内存IO.网络IO和磁盘IO三种,通常我们说的IO指的是后两者!):[操作系统和驱动程序运行在内核空间,应用程序运行在用户空间, ...

  8. IO多路复用之epoll模型

    一.IO多路复用:一个线程监测多个IO操作 基本思想:先构造一张有关描述符的表,然后调用一个函数,当这些文件描述符中的一个或多个已经准备好进行I/O函数时才返回.函数返回时告诉进程哪个描述符已经就绪, ...

  9. 漫谈五种IO模型(主讲IO多路复用)

    首先引用levin的回答让我们理清楚五种IO模型 1.阻塞I/O模型 老李去火车站买票,排队三天买到一张退票. 耗费:在车站吃喝拉撒睡 3天,其他事一件没干. 2.非阻塞I/O模型 老李去火车站买票, ...

最新文章

  1. leetcode C++ 46. 全排列 给定一个 没有重复 数字的序列,返回其所有可能的全排列。
  2. P、NP、NPC(NP完全问题)、NP-hard问题概述
  3. GDCM:gdcm::DirectionCosines的测试程序
  4. 使用bash echo 输出回车转义
  5. php7 电子书 下载,PHP 7: Real World Application Development
  6. 【转】context和getApplicationContext()介绍
  7. 使用js进行智慧树刷课
  8. 百会云办公:国内首家微信办公一站式解决方案
  9. (二十三)美萍酒店管理系统:系统维护_系统设置_商品设置_添加类别、添加商品
  10. Java实现昵图网摄影图片爬虫
  11. 3dmax晶格指令制作石墨烯模型的图文教程
  12. 计算机桌面图标任意排列,教你win7电脑桌面图标怎么随意摆放
  13. XSS线上靶场---haozi
  14. HowTo——cotex-m3处理器HardFault事后分析方法
  15. 超市会员管理系统(面向对象)
  16. Windows桌面右键新建未出现word/excel/ppt解决办法
  17. F#周报2019年第8期
  18. Shell脚本中cp使用*号提示No such file
  19. 缅怀我的第一台平板——Surface RT
  20. Oracle使用同义词

热门文章

  1. AIX 网卡绑定聚合具体操作步骤
  2. 老司机人手必备xxlive 仅供学习交流 勿传播以及商业用途
  3. Mac设置路由实现同时连接有线内网和无线外网时自动切换内网和外网
  4. 三农数据(1996-2020)二:居民收入、电力和水利建设、化肥农药、生产性固定资产等
  5. 联想服务器控制口登录地址_常用服务器管理口IP及账号密码(欢迎补充)
  6. houdini之vex 数组
  7. 阿里云服务器web应用安全-XSS攻击
  8. 基于OpenCV的火焰检测(三)——HSI颜色判据
  9. 【Gradle】Gradle报错:Using insecure protocols with repositories,without explicit opt-in,,is unsupported.
  10. mac上一款定时休息提醒软件:stretchly mac