主要内容:

  1. 信号的稀疏表示
  2. 编码测量(采样过程)
  3. 恢复算法(非线性)

一、信号与图像的稀疏表示

在DSP(数字信号处理)中,有个很重要的概念:变换域(某个线性空间:一组基函数支撑起来的空间)

一般而言,我们的信号都是在时域或空域中来表示,其实我们可以在其他变换域中通过某些正交基函数的线性组合来表示信号。如:sinusoids, wavelets, curvelets, Gabor functions,. . .

对于某个变换域或空间,其基函数是确定的,只要得到系数α的这一组值,即可通过该系数向量来表示信号。

那么系数α该怎么求呢?

说了这么多,为什么要通过变换域的系数来表示信号呢?

很明显,系数向量α的大小远小于原始信号,这一个压缩和降维的过程(稀疏性),有利于存储、传输和处理。

下面以图片为例,介绍传统的图像表示方法DCT和现代的图像表示方法小波变换:

Classical Image Representation: DCT

Discrete Cosine Transform (DCT)

Basically a real-valued Fourier transform (sinusoids)

如上图所示,左边为原始图像,右边为DCT变换后的图像。

该图像表示二维的频率幅值系数,可以看出,右下角的大部分系数接近于0。也就是说图像的大部分能量都集中在左上角的低频部分(稀疏性),

因此我们只要保留左上角的信息(压缩),就可以很好地重建出左边的图像。(有损)

这也就是JEPG图像压缩标准的基础:DCT变换。

DCT重建(反变换)的图像特点:平滑区域表现很好,边缘可能会模糊或出现振铃(因为某些高频信号丢失)

Modern Image Representation: 2D Wavelets

有关小波变换的知识,这里就不详述,可以参考:http://www.zhihu.com/topic/19621077/top-answers

如上图所示,左边为原始图像,中间为尺度图像,右边为小波变换后的系数结构

系数框架:大系数很少,小系数很多(稀疏性)

这也是JPEG2000压缩标准的基础:小波变换。

小波变换重建(反变换)的图像特点:平滑区域表现很好,边缘更加尖锐(在边缘处理上,比DCT好)

小波变换的图像重建:

小波系数的分布:

小波变换的重建:

这一部分主要介绍了变换域,以及信号在变换域的稀疏表示,并以图像的DCT和小波变换为例,来阐述信号在变换域的稀疏性。

稀疏性的作用总结:

  1. 压缩
  2. 去噪
  3. 降维

二、编码测量

跟传统采集不同,压缩感知采集的不是像素点,而是一组线性组合的测量值。

下面的公式表示每一个测量值yi的计算过程,f表示信号,Φ表示测量矩阵,两者的内积之和即为yi。

经过M次测量之后,即得到所需要的M个测量数据Y。

问题是测量矩阵应该怎么选择呢?

为了能够重构信号,测量矩阵的选择尤其重要,矩阵需要满足与信号的稀疏表示基Ψ不相关。(RIP性质,具体不详述)

实验证明:高斯随机矩阵、一致球矩阵、二值随机矩阵、局部傅立叶矩阵、局部哈达玛矩阵以及托普利兹矩阵等能在很大概率上满足上述条件。

测量公式如下:

三、稀疏重建算法

假设信号是K-sparse,测量矩阵是高斯随机矩阵,现在通过采集获得了M个测量值,我们如何恢复出我们的信号呢?

测量过程:

重建过程:(数学建模:L1 Minimization,当然还有其他方法,后续再叙述)

需要多少个测量值才能够有效地恢复出信号呢?一个、两个很明显是不行的,N个显然就没有了压缩的意义,那么至少多少才合适呢?

下面的公式给出了一个估计值:

变换域重建:

举例:

浅谈压缩感知(二):理论基础相关推荐

  1. 压缩感知高斯测量矩阵matlab,浅谈压缩感知(十七):测量矩阵之有限等距常数RIC的计算...

    有限等距常数(RestrictedIsometry Constant, RIC)是与有限等距性质(Restricted IsometryProperty, RIP)紧密结合在一起的一个参数. 一.RI ...

  2. 浅谈压缩感知(二十一):压缩感知重构算法之正交匹配追踪(OMP)

    主要内容: OMP的算法流程 OMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.OMP的算法流程 二.OMP的MATL ...

  3. 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)

    浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP) 主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.g ...

  4. 浅谈压缩感知(九):正交匹配追踪算法OMP

    浅谈压缩感知(九):正交匹配追踪算法OMP 主要内容: OMP算法介绍 OMP的MATLAB实现 OMP中的数学知识 一.OMP算法介绍 来源:http://blog.csdn.net/scucj/a ...

  5. matlab施密特正交化,浅谈压缩感知(十九):MP、OMP与施密特正交化

    浅谈压缩感知(十九):MP.OMP与施密特正交化 关于MP.OMP的相关算法与收敛证明,这里仅简单陈述算法流程及二者的不同之处. 主要内容: MP的算法流程及其MATLAB实现OMP的算法流程以及MA ...

  6. 浅谈压缩感知(十三):压缩感知与传统压缩

    浅谈压缩感知(十三):压缩感知与传统压缩 导言: 压缩感知,顾名思义,就是感知压缩,这里包含两层意思,1.感知,即采集或采样,在传统的信号采集中,为了不失真,必须满足Nyquist采样定理,在上一篇博 ...

  7. 浅谈压缩感知(三十二):压缩感知的常见测量矩阵

    一.参考文献中常见的测量矩阵 [1]喻玲娟,谢晓春.压缩感知介绍[J].电视技术,2008,32(12):16-18. [2]李树涛,魏丹.压缩传感综述[J]. 自动化学报,2009,35(11):1 ...

  8. 浅谈压缩感知(十六):感知矩阵之RIP

    在压缩感知中,总是看到"矩阵满足RIP"之类的字眼,没错,这是一个压缩感知绕不开的术语,有限等距性质(Restricted Isometry Property, RIP). 注意: ...

  9. 浅谈压缩感知(三十一):压缩感知重构算法之定点连续法FPC

    主要内容: FPC的算法流程 FPC的MATLAB实现 一维信号的实验与结果 基于凸优化的重构算法 基于凸优化的压缩感知重构算法. 约束的凸优化问题: 去约束的凸优化问题: 在压缩感知中,J函数和H函 ...

最新文章

  1. html5 css 笔记,HTML5+CSS3笔记
  2. Learning by doing 系列文章(之一)如何在 Python 中使用 epoll ?
  3. SVN迁移到Git的过程(+ 一些技巧)
  4. java gui 窗口 传值_java – GUI – 在不同窗口之间传输数据(J...
  5. python表白代码弹窗-python实现祝福弹窗效果
  6. UA MATH574M 统计学习 Variable Selection:Cross Validation
  7. 某业务自助开通账户问题排查
  8. 奥林匹克数学竞赛教练员汇编,最牛奥数资料全集!
  9. .net Reflection(反射)- 二
  10. 雨林木风系统封装工具封装xp_如何用小丸工具大幅度压缩视频且画质损失较小?...
  11. 运维派送红包福利,参与就有!
  12. 启动vpn报网络扩展错误(问题篇)
  13. 模仿老乡鸡点餐小程序选择门店功能
  14. 西门子200PLC步进控制(入门)
  15. 修改密码 -测试用例设计
  16. x20手机科学计算机,360手机N4 跑分遭泄露 Helio X20名不虚传
  17. c语言中 输出操作是由库函数,【判断题】在 C语言中,输入操作是由库函数scanf完成,输出操作是由库函数printf完成 。...
  18. java字符串去重复_java去除重复的字符串和移除不想要的字符串
  19. 七夕节 看到许多停止更新的blog 莫名有点淡淡的忧桑
  20. Java+MySQL基于Springboot+vue的汉服交流网站#毕业设计

热门文章

  1. VMware虚拟机多开克隆教程
  2. Xshell 免密连接云主机(以Vultr云服务为例)
  3. v-if和v-show能和v-for同时出现吗?
  4. XDP/BPF Github教程
  5. java得到选择的复选框_java怎么获取复选框的值_java学习记录20200817
  6. ubuntu16.04下,man: nothing appropriate.问题解决
  7. Color国际青年公寓
  8. 深度学习中Concat层和Flatten层作用
  9. 魔方最快速识别六面颜色
  10. 白话数据、数据项、数据元素和数据对象的概念和联系。