机器学习是时下流行AI技术中一个很重要的方向,无论是有监督学习还是无监督学习都使用各种“度量”来得到不同样本数据的差异度或者不同样本数据的相似度。良好的“度量”可以显著提高算法的分类或预测的准确率,本文中将介绍机器学习中各种“度量”,“度量”主要由两种,分别为距离、相似度和相关系数,距离的研究主体一般是线性空间中点;而相似度研究主体是线性空间中向量;相关系数研究主体主要是分布数据。本文主要介绍距离。

1 向量距离

1.1 欧式距离¬——从勾股定理而来

让我回忆一下中学时候学过的勾股定理,历史悠久的勾股定理告诉了如果在一个直角三角形中两条直角边分别为\(a\)和\(b\),那么斜边\(c\)和\(a\)、\(b\)的关系一定满足\(c^{2} = a^{2} + b^{2}\)


图1 勾股定理
图2 成书于宋金时期《测圆海镜》中的十五个勾股形

从直观上将,图2中两个点距离是蓝线的长度,而使用勾股定理可以计算出如图2的两个数据点之间距离。


图3 可汗学院距离教程中样例

根据勾股定理很容易求出上面两个点距离为如下式子表示:

这个最直观的距离还有一个正式称呼,欧几里得距离(Euclidean distance),上面是二维空间中欧式距离,更为一般的情况为:在笛卡尔坐标系(Cartesian Coordinates)中如果点x = (x1, x2,..., xn) 和点 y = (y1, y2, ..., yn) 是两个欧式空间的点,则点x和点y的欧式距离为:

\[\begin{array}{l} {d_{Euclidean}}\left( {x,y} \right){\rm{ = }}{d_{Euclidean}}\left( {y,x} \right) = \sqrt {{{\left| {{x_1} - {y_1}} \right|}^2} + {{\left| {{x_2} - {y_2}} \right|}^2} + \cdots + {{\left| {{x_n} - {y_n}} \right|}^2}} \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \; = \sqrt {\sum\limits_{i = 1}^n {{{\left| {{x_i} - {y_i}} \right|}^2}} } \\ \end{array}\]

笛卡尔坐标系: 一种正交坐标系。参阅图4,二维的直角坐标系是由两条相互垂直、相交于原点的数线构成的。在平面内,任何一点的坐标是根据数轴上对应的点的坐标设定的


图4 一个直角坐标系

1.2 曼哈顿距离¬¬——行走在纽约曼哈顿街道上

曼哈顿距离(Manhattan distance)是由十九世纪的赫尔曼·闵可夫斯基所创辞汇,用以标明两个点上在标准坐标系上的绝对轴距之总和。例如在平面上,坐标(x1, x2)的点P1与坐标(y1, y2)的点P2的曼哈顿距离为:

\[\left| {{x_1} - {y_1}} \right| + \left| {{x_2} - {y_2}} \right|\]

如图所示为曼哈顿与欧几里得距离。由曼哈顿距离和欧式距离定义可知两点曼哈顿距离为12,其中红、蓝与黄线分别表示几种不同曼哈顿距离;两点的欧式距离为6√2其中绿线表示唯一的欧几里得距离。


图5 曼哈顿与欧几里得距离
图6 到蓝点的曼哈顿距离为2的所有点构成的“单位圆”

上面是二维空间中曼哈顿距离,更为一般的情况为:在笛卡尔坐标系中如果点x = (x1, x2,..., xn) 和点 y = (y1, y2, ..., yn) 是两个欧式空间点,则点x和点y的曼哈顿距离为:

\[\begin{array}{l} {d_{Manhat\tan }}\left( {x,y} \right){\rm{ = }}{d_{Manhat\tan }}\left( {y,x} \right) = \left| {{x_1} - {y_1}} \right| + \left| {{x_2} - {y_2}} \right| + \cdots + \left| {{x_n} - {y_n}} \right| \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \;\;\; = \sum\limits_{i = 1}^n {\left| {{x_i} - {y_i}} \right|} \\ \end{array}\]

1.3 切比雪夫距离——来下盘国际象棋吧

切比雪夫距离(Chebyshev distance)或是向量空间中的一种度量,二个点之间的距离定义为其各座标数值差的最大值]。切比雪夫距离得名自俄罗斯数学家切比雪夫。例如在平面上,坐标(x1, x2)的点P1与坐标(y1, y2)的点P2的切比雪夫距离为:

\[\max \left( {\left| {{x_1} - {y_1}} \right|,\left| {{x_2} - {y_2}} \right|} \right)\]

若将国际象棋棋盘放在二维直角座标系中,格子的边长定义为1,座标的x轴及y轴和棋盘方格平行,原点恰落在某一格的中心点,则王从一个位置走到其他位置需要的步数恰为二个位置的切比雪夫距离,因此切比雪夫距离也称为棋盘距离。由于王可以往斜前或斜后方向移动一格,因此可以较有效率的到达目的的格子。例如位置F6和位置E2的切比雪夫距离为4。任何一个不在棋盘边缘的位置,和周围八个位置的切比雪夫距离都是1。


图7 国际象棋棋盘上二个位置间的切比雪夫距离

上面是二维空间中切比雪夫距离,更为一般情况为:在笛卡尔坐标系中如果点x = (x1, x2,..., xn) 和点 y = (y1, y2, ..., yn) 是两个欧式空间点,则点x和点y切比雪夫距离为:

1.4 闵科夫斯基距离¬——大统一论

闵科夫斯基距离(Minkowski distance)实际上是欧式距离、曼哈顿距离、切比雪夫距离在笛卡尔坐标系下的一种推广,闵科夫斯基距离将上述所以距离都统一在一个框架中。在笛卡尔坐标系中如果点x = (x1, x2,..., xn) 和点 y = (y1, y2, ..., yn)是两个欧式空间点,则点x和点y的p阶闵科夫斯基距离为:

\[\begin{array}{l} {d_{p - Minkowski}}\left( {x,y} \right){\rm{ = }}{d_{p - Minkowski}}\left( {y,x} \right) = {\left( {{{\left| {{x_1} - {y_1}} \right|}^p} + {{\left| {{x_2} - {y_2}} \right|}^p} + \cdots + {{\left| {{x_n} - {y_n}} \right|}^p}} \right)^{\frac{1}{p}}} \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \;\;\; = {\left( {\sum\limits_{i = 1}^n {{{\left| {{x_i} - {y_i}} \right|}^p}} } \right)^{\frac{1}{p}}} \\ \end{array}\]

当p=1的时候,1阶闵科夫斯基距离等价于曼哈度距离
\[\begin{array}{l} {d_{1 - Minkowski}}\left( {x,y} \right){\rm{ = }}{d_{1 - Minkowski}}\left( {y,x} \right) = {\left( {{{\left| {{x_1} - {y_1}} \right|}^1} + {{\left| {{x_2} - {y_2}} \right|}^1} + \cdots + {{\left| {{x_n} - {y_n}} \right|}^1}} \right)^{\frac{1}{1}}} \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \;\;\;\;\;\;\; = \sum\limits_{i = 1}^n {\left| {{x_i} - {y_i}} \right|} \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \;\;\;\;\;\;\; = \left| {{x_1} - {y_1}} \right| + \left| {{x_2} - {y_2}} \right| + \cdots + \left| {{x_n} - {y_n}} \right| \\ \end{array}\]

当p=2的时候,2阶闵科夫斯基距离等价于欧几里得距离
\[\begin{array}{l} {d_{2 - Minkowski}}\left( {x,y} \right){\rm{ = }}{d_{2 - Minkowski}}\left( {y,x} \right) = {\left( {{{\left| {{x_1} - {y_1}} \right|}^2} + {{\left| {{x_2} - {y_2}} \right|}^2} + \cdots + {{\left| {{x_n} - {y_n}} \right|}^2}} \right)^{\frac{1}{2}}} \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \;\;\;\;\;\;\; = \sqrt {\sum\limits_{i = 1}^n {{{\left| {{x_i} - {y_i}} \right|}^2}} } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \;\;\;\;\;\;\; = \sqrt {{{\left| {{x_1} - {y_1}} \right|}^2} + {{\left| {{x_2} - {y_2}} \right|}^2} + \cdots + {{\left| {{x_n} - {y_n}} \right|}^2}} \\ \end{array}\]

当p=∞的时候,∞阶闵科夫斯基距离等价于车比雪夫距离
\[\begin{array}{l} {d_{\infty - Minkowski}}\left( {x,y} \right){\rm{ = }}{d_{\infty - Minkowski}}\left( {y,x} \right) = \mathop {\lim }\limits_{x \to \infty } {\left( {\sum\limits_{i = 1}^n {{{\left| {{x_i} - {y_i}} \right|}^p}} } \right)^{\frac{1}{p}}} \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \;\;\;\;\;\;\; = \max \left( {\left| {{x_1} - {y_1}} \right|,\left| {{x_2} - {y_2}} \right|, \cdots ,\left| {{x_n} - {y_n}} \right|} \right) \\ \end{array}\]

转载于:https://www.cnblogs.com/Kalafinaian/p/10970924.html

机器学习中的度量—— 向量距离相关推荐

  1. 机器学习中的度量——字符串距离

    机器学习是时下流行AI技术中一个很重要的方向,无论是有监督学习还是无监督学习都使用各种"度量"来得到不同样本数据的差异度或者不同样本数据的相似度.良好的"度量" ...

  2. 机器学习中的度量——相关系数

    机器学习是时下流行AI技术中一个很重要的方向,无论是有监督学习还是无监督学习都使用各种"度量"来得到不同样本数据的差异度或者不同样本数据的相似度.良好的"度量" ...

  3. 机器学习中的度量指标:ROC曲线,AUC值,K-S曲线

    机器学习中的度量指标:ROC曲线,AUC值,K-S曲线 首先,回顾一下二分类问题的一些定义: 预测 1 0 实 1 TP FN ​际 0 FP TN 上表中,四个项分别为:TP真阳性:FN假阴性:FP ...

  4. 机器学习中的矩阵向量求导(四) 矩阵向量求导链式法则

    在机器学习中的矩阵向量求导(三) 矩阵向量求导之微分法中,我们讨论了使用微分法来求解矩阵向量求导的方法.但是很多时候,求导的自变量和因变量直接有复杂的多层链式求导的关系,此时微分法使用起来也有些麻烦. ...

  5. 机器学习中的矩阵向量求导(三) 矩阵向量求导之微分法

    在机器学习中的矩阵向量求导(二) 矩阵向量求导之定义法中,我们讨论了定义法求解矩阵向量求导的方法,但是这个方法对于比较复杂的求导式子,中间运算会很复杂,同时排列求导出的结果也很麻烦.因此我们需要其他的 ...

  6. 机器学习中的矩阵向量求导(二) 矩阵向量求导之定义法

    在机器学习中的矩阵向量求导(一) 求导定义与求导布局中,我们讨论了向量矩阵求导的9种定义与求导布局的概念.今天我们就讨论下其中的标量对向量求导,标量对矩阵求导, 以及向量对向量求导这三种场景的基本求解 ...

  7. 机器学习中的矩阵向量求导(一) 求导定义与求导布局

    在之前写的上百篇机器学习博客中,不时会使用矩阵向量求导的方法来简化公式推演,但是并没有系统性的进行过讲解,因此让很多朋友迷惑矩阵向量求导的具体过程为什么会是这样的.这里准备用几篇博文来讨论下机器学习中 ...

  8. 机器学习中的度量——协方差、相关系数(Pearson 相关系数)

    一.相关系数第一次理解 概念:Pearson相关系数 (Pearson CorrelationCoefficient)是用来衡量两个数据集合是否在一条线上面,它用来衡量定距变量间的线性关系.[1] 注 ...

  9. 机器学习中的矩阵向量求导(五) 矩阵对矩阵的求导

    在矩阵向量求导前4篇文章中,我们主要讨论了标量对向量矩阵的求导,以及向量对向量的求导.本文我们就讨论下之前没有涉及到的矩阵对矩阵的求导,还有矩阵对向量,向量对矩阵求导这几种形式的求导方法. 本文所有求 ...

最新文章

  1. matlab 线模式密度,环形腔窄线宽光纤激光器的研究
  2. mysql Sql slow log_MySQL慢查询日志(SLOW LOG)
  3. python免费入门_python入门 2018最新最全学习资料免费获取啦
  4. 七点建议,帮助你编写出简洁、干练的Java代码
  5. 美国检测病毒3270美元,中国仅40,问题出在哪?
  6. Visual Studio 2008 每日提示(十)
  7. python进程池的实现原理_Python基于进程池实现多进程过程解析
  8. 苹果收购Siri的八年,是成还是败?
  9. 66. 编写高效的 JavaScript
  10. Maxthon中RSS阅读器BUG解决[原创]
  11. linux用户管理命令(添加,删除,修改)
  12. linux给文件备份,Linux文件备份
  13. Rk3326 Android8.0HAL服务添加
  14. 人工智能实践教程(一)
  15. 浅谈来自德国的电子分类系统eCl@ss
  16. stay hungry stay foolish原文_2020考研英语二大纲原文
  17. iPhone XS系列降价一千元;Intel雷电接口将融合USB4;蔚来汽车收入、亏损均增长百分百 | 雷锋早报...
  18. 设置暴风影音缓存文件夹位置的方法
  19. ADC 采集电池电量
  20. cmd批量打印文件夹下的文件名,以及打印文件树

热门文章

  1. 【知识星球】Attention网络结构上新,聚焦才能赢
  2. 全球及中国太阳能光热发电市场重点项目规划及发展格局展望报告2021-2027年
  3. 使用Signature Tool自动生成P/Invoke调用Windows API的C#函数声明
  4. 博鳌论坛国际粮食安全-林裕豪:从玉农业对话丰收节贸易会
  5. 现代农业谋定县域经济-农业大健康·万祥军:载体幸福美丽
  6. (转)mybatis一级缓存二级缓存
  7. SQL------Hint
  8. PyCharm-缩进 格式化代码
  9. 运行scrapy保存图片,报错ValueError: Missing scheme in request url: h
  10. linux下添加用户并赋予root权限