BloomFilter——大规模数据处理利器

Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法。通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合。

实例

为了说明Bloom Filter存在的重要意义,举一个实例:

假设要你写一个网络蜘蛛(web crawler)。由于网络间的链接错综复杂,蜘蛛在网络间爬行很可能会形成“环”。为了避免形成“环”,就需要知道蜘蛛已经访问过那些URL。给一个URL,怎样知道蜘蛛是否已经访问过呢?稍微想想,就会有如下几种方案:

1. 将访问过的URL保存到数据库。

 2. 用HashSet将访问过的URL保存起来。那只需接近O(1)的代价就可以查到一个URL是否被访问过了。

3. URL经过MD5或SHA-1等单向哈希后再保存到HashSet或数据库。

 4. Bit-Map方法。建立一个BitSet,将每个URL经过一个哈希函数映射到某一位。

方法1~3都是将访问过的URL完整保存,方法4则只标记URL的一个映射位。

以上方法在数据量较小的情况下都能完美解决问题,但是当数据量变得非常庞大时问题就来了。

方法1的缺点:数据量变得非常庞大后关系型数据库查询的效率会变得很低。而且每来一个URL就启动一次数据库查询是不是太小题大做了?

方法2的缺点:太消耗内存。随着URL的增多,占用的内存会越来越多。就算只有1亿个URL,每个URL只算50个字符,就需要5GB内存。

方法3:由于字符串经过MD5处理后的信息摘要长度只有128Bit,SHA-1处理后也只有160Bit,因此方法3比方法2节省了好几倍的内存。

方法4消耗内存是相对较少的,但缺点是单一哈希函数发生冲突的概率太高。还记得数据结构课上学过的Hash表冲突的各种解决方法么?若要降低冲突发生的概率到1%,就要将BitSet的长度设置为URL个数的100倍。

  实质上上面的算法都忽略了一个重要的隐含条件:允许小概率的出错,不一定要100%准确!也就是说少量url实际上没有没网络蜘蛛访问,而将它们错判为已访问的代价是很小的——大不了少抓几个网页呗。

. Bloom Filter的算法

废话说到这里,下面引入本篇的主角——Bloom Filter。其实上面方法4的思想已经很接近Bloom Filter了。方法四的致命缺点是冲突概率高,为了降低冲突的概念,Bloom Filter使用了多个哈希函数,而不是一个。

 Bloom Filter算法如下:

  创建一个m位BitSet,先将所有位初始化为0,然后选择k个不同的哈希函数。第i个哈希函数对字符串str哈希的结果记为h(i,str),且h(i,str)的范围是0到m-1 。

(1) 加入字符串过程

下面是每个字符串处理的过程,首先是将字符串str“记录”到BitSet中的过程:

对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后将BitSet的第h(1,str)、h(2,str)…… h(k,str)位设为1。

图1.Bloom Filter加入字符串过程

很简单吧?这样就将字符串str映射到BitSet中的k个二进制位了。

(2) 检查字符串是否存在的过程

下面是检查字符串str是否被BitSet记录过的过程:

 对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后检查BitSet的第h(1,str)、h(2,str)…… h(k,str)位是否为1,若其中任何一位不为1则可以判定str一定没有被记录过。若全部位都是1,则“认为”字符串str存在。

 若一个字符串对应的Bit不全为1,则可以肯定该字符串一定没有被Bloom Filter记录过。(这是显然的,因为字符串被记录过,其对应的二进制位肯定全部被设为1了)

但是若一个字符串对应的Bit全为1,实际上是不能100%的肯定该字符串被Bloom Filter记录过的。(因为有可能该字符串的所有位都刚好是被其他字符串所对应)这种将该字符串划分错的情况,称为false positive 。

(3) 删除字符串过程

字符串加入了就被不能删除了,因为删除会影响到其他字符串。实在需要删除字符串的可以使用Counting bloomfilter(CBF),这是一种基本Bloom Filter的变体,CBF将基本Bloom Filter每一个Bit改为一个计数器,这样就可以实现删除字符串的功能了。

  Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率。

. Bloom Filter参数选择

   (1)哈希函数选择

哈希函数的选择对性能的影响应该是很大的,一个好的哈希函数要能近似等概率的将字符串映射到各个Bit。选择k个不同的哈希函数比较麻烦,一种简单的方法是选择一个哈希函数,然后送入k个不同的参数。

(2)Bit数组大小选择

哈希函数个数k、位数组大小m、加入的字符串数量n的关系可以参考参考文献1。该文献证明了对于给定的m、n,当 k = ln(2)* m/n 时出错的概率是最小的。

 同时该文献还给出特定的k,m,n的出错概率。例如:根据参考文献1,哈希函数个数k取10,位数组大小m设为字符串个数n的20倍时,false positive发生的概率是0.0000889 ,这个概率基本能满足网络爬虫的需求了。

. Bloom Filter实现代码

下面给出一个简单的Bloom Filter的Java实现代码:

import java.util.BitSet;

publicclass BloomFilter 
{
/* BitSet初始分配2^24个bit */ 
privatestaticfinalint DEFAULT_SIZE =1<<25; 
/* 不同哈希函数的种子,一般应取质数 */
privatestaticfinalint[] seeds =newint[] { 5, 7, 11, 13, 31, 37, 61 };
private BitSet bits =new BitSet(DEFAULT_SIZE);
/* 哈希函数对象 */ 
private SimpleHash[] func =new SimpleHash[seeds.length];

public BloomFilter() 
{
for (int i =0; i < seeds.length; i++)
{
func[i] =new SimpleHash(DEFAULT_SIZE, seeds[i]);
}
}

// 将字符串标记到bits中
publicvoid add(String value) 
{
for (SimpleHash f : func) 
{
bits.set(f.hash(value), true);
}
}

//判断字符串是否已经被bits标记
publicboolean contains(String value) 
{
if (value ==null) 
{
returnfalse;
}
boolean ret =true;
for (SimpleHash f : func) 
{
ret = ret && bits.get(f.hash(value));
}
return ret;
}

/* 哈希函数类 */
publicstaticclass SimpleHash 
{
privateint cap;
privateint seed;

public SimpleHash(int cap, int seed) 
{
this.cap = cap;
this.seed = seed;
}

//hash函数,采用简单的加权和hash
publicint hash(String value) 
{
int result =0;
int len = value.length();
for (int i =0; i < len; i++) 
{
result = seed * result + value.charAt(i);
}
return (cap -1) & result;
}
}
}

参考文献:

[1]Pei Cao. Bloom Filters - the math.

http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html

[2]Wikipedia. Bloom filter.

http://en.wikipedia.org/wiki/Bloom_filter

转载于:https://www.cnblogs.com/seurain/p/3350621.html

BloomFilter ——大规模数据处理利器相关推荐

  1. BloomFilter–大规模数据处理利器(转)

    BloomFilter–大规模数据处理利器 Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求1 ...

  2. 那些优雅的数据结构(1) : BloomFilter——大规模数据处理利器

    BloomFilter--大规模数据处理利器 https://www.cnblogs.com/heaad/ Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通 ...

  3. BloomFilter——大规模数据处理利器

    Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合. 一. 实例  为了说明B ...

  4. Bloom Filter 大规模数据处理利器

    2019独角兽企业重金招聘Python工程师标准>>> 最近工作中涉及到bloom Filter,真是一把科研利器呀,大数据.网络.云等等都可以用到! Bloom Filter是由B ...

  5. 大规模数据处理Apache Spark开发

    大规模数据处理Apache Spark开发 Spark是用于大规模数据处理的统一分析引擎.它提供了Scala.Java.Python和R的高级api,以及一个支持用于数据分析的通用计算图的优化引擎.它 ...

  6. 大规模数据处理的演化历程(2003-2018)

    转自:https://www.iteblog.com/archives/2430.html 本文翻译自<Streaming System>最后一章<The Evolution of ...

  7. Serverless 在大规模数据处理的实践

    作者 | 西流  阿里云技术专家 <关注阿里巴巴云原生公众号,后台回复 606 即可下载相关 PPT> 前言 当您第一次接触 Serverless 的时候,有一个不那么明显的新使用方式:与 ...

  8. 3个步骤,4大平台,完成大规模数据处理

    本文由百度智能云大数据平台技术架构师--李莅在百度开发者沙龙线上分享的演讲内容整理而成.本次分享围绕云原生数据湖架构的价值展开,深度数据湖计算和统一元数据的技术架构.希望开发者能够通过本文对一站式大数 ...

  9. Serverless在大规模数据处理的实践

    云栖号资讯:[点击查看更多行业资讯] 在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来! 前言 当您第一次接触 Serverless 的时候,有一个不那么明显的新使用方式:与传统的基于服务 ...

最新文章

  1. 计算机组成原理第3章-存储系统
  2. 为什么项目经理依然想写代码?
  3. 电脑联网了但不能上网_电脑联网不能用,求助
  4. eclipse最新版本photon下载和安装
  5. umi 导航菜单的空白页问题
  6. 指定Web打印的打印机
  7. 用vmware安装gho文件
  8. CSDN博客大神汇总
  9. Confession:关于本博客以及实习
  10. Linux查看DNS
  11. Linux版本的 免费的人脸识别技术。
  12. Oracle-Spatial空间数据库基础
  13. 我的Windows工具之文件查重工具——DuplicateCleaner
  14. 基于RK3399Pro的SARADC数据采集-内存映射
  15. 【Unity3DRPG入门学习笔记第六卷】SetCursor 设置鼠标指针
  16. QGC的PlanToolBar
  17. Twitter 帐号申请解封
  18. java 不定长参数_java中什么是不定长参数?
  19. Arduino SD库不能正常初始化SD卡的解决方法
  20. 12.5亿美金 联想收购IBM PC业务

热门文章

  1. java list map 去重和排序方法
  2. 如何在 Laravel 中 “规范” 的开发验证码发送功能
  3. TP-Link 开始锁定路由器固件禁止安装开源固件
  4. 《jQuery移动开发》—— 2.1 语义HTML5
  5. JavaScript中圆括号()和方括号[]的一个特殊用法
  6. ****阿里云使用+快速运维总结(不断更新)
  7. zabbix 接触这段时间的感悟
  8. MySQLdb不能调用Sql脚本?
  9. Google是如何识别原创文章的,以及外链建设意见
  10. 批处理学习笔记6 - 重定向符和