模拟电路
1.有源滤波器和无源滤波器的区别
无源滤波器:这种电路主要有无源元件R、L和C组成
有源滤波器:集成运放和R、C组成。具有不用电感、体积小、重量轻等优点。
集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。
2.带负载能力
把电能转换成其他形式的能的装置叫做负载。对于不同的负载,电路输出特性(输出电压,输出电流)几乎不受影响,不会因为负载的剧烈变化而变,这就是所谓的带载能力
3.输入电阻和输出电阻
在独立源不作用(电压源短路,电流源开路)的情况下,由端口看入,电路可用一个电阻元件来等效。这个等效电阻称为该电路的输入电阻。从放大电路输出端看进去的等效内阻称为输出电阻Ro。
4.差模信号、共模信号
两个大小相等、极性相反的一对信号称为差模信号。差动放大电路输入差模信号(uil =-ui2)时,称为差模输入。两个大小相等、极性相同的一对信号称为共模信号。差动放大电路输入共模信号(uil =ui2)时,称为共模输入。在差动放大器中,有用信号以差模形式输入,干扰信号用共模形式输入,那么干扰信号将被抑制的很小。
5.阻抗匹配
阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。
低频:当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。
在高频电路中:如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配。
6. 电流偏置的产生电路
偏置电路:以常用的共射放大电路说吧,主流是从发射极到集电极的IC,偏流就是从发射极到基极的IB。相对与主电路而言,为基极提供电流的电路就是所谓的偏置电路。偏置电路往往有若干元件,其中有一重要电阻,往往要调整阻值,以使集电极电流在设计规范内。这要调整的电阻就是偏置电阻。
7.偏置电阻
在稳态时(无信号)通过电阻为电路提供或泄放一定的电压或电流,使电路满足工作需求, 或改善性能。
8. 电压放大、电流放大、功率放大
电压放大就是只考虑输出电压和输入电压的关系。比如说有的信号电压低,需要放大后才能被模数转换电路识别,这时就只需做电压放大。
电流放大就是只考虑输出电流于输入电流的关系。比如说,对于一个uA级的信号,就需要放大后才能驱动一些仪器进行识别(如生物电子),就需要做电流放大。
功率放大就是考虑输出功率和输入功率的关系。 其实实际上,对于任何以上放大,最后电路中都还是有电压,电流,功率放大的指标在,叫什么放大,只是重点突出电路的作用而已。
9.晶体管工作在放大区,发射结、集电结偏置
发射结 集电结
放大区 正偏 反偏
饱和区 正偏 正偏
截至区 反偏 反偏
10.差分放大电路的功能:
放大两个输入信号之差
11.推挽结构
一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.要实现线与需要用OC(open collector)门电路 .如果输出级的有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三级管推挽相连,这样的电路结构称为推拉式电路或图腾柱(Totem-pole)输出电路
12. RC振荡器的构成和工作原理
由放大器和正反馈网络两部分构成。反馈电路由三节RC移相网络构成,每节移相不超过90°,对某一频率共可移相180°,再加上单管放大电路的反相作用即可构成正反馈,产生振荡。移相振荡器电路简单,适于轻便型测试设备和遥控设备使用,但输出波形差,频率难于调整,幅度也不稳定。
13.LC正弦波振荡器有哪几种三点式振荡电路
电感三点式振荡器和电容三点式振荡器。
14. 电路的谐振
如果外加交流电源的频率和L-C回路的固有频率相同时,回路中产生的电流最大,回路L中的磁场能和C中的电场能恰好自成系统,在电路内部进行交换,最大限度的从电源吸取能量,而不会有能量返回电源,这就叫谐振。
15.描述CMOS电路中闩锁效应产生的过程及最后的结果?
Latch-up 闩锁效应,又称寄生PNPN效应或可控硅整流器( SCR, Silicon Controlled Rectifier )效应。在整体硅的CMOS管下,不同极性搀杂的区域间都会构成P-N结,而两个靠近的反方向的P-N结就构成了一个双极型的晶体三极管。因此CMOS管的下面会构成多个三极管,这些三极管自身就可能构成一个电路。这就是MOS管的寄生三极管效应。如果电路偶尔中出现了能够使三极管开通的条件,这个寄生的电路就会极大的影响正常电路的运作,会使原本的MOS电路承受比正常工作大得多的电流,可能使电路迅速的烧毁。Latch-up状态下器件在电源与地之间形成短路,造成大电流、EOS(电过载)和器件损坏。
16.选择电阻要点
考虑电阻的 阻值(最大,最小) 熔点 是否方便安装
17.旁路电容
可将混有高频电流和低频电流的交流电中的高频成分泄露掉的电容,称做“旁路电容”。
18.无源器件﹕
在模拟和数字电路中加以信号﹐不会改变自已本身的基本特性.如电阻.
有源器件﹕在模拟和数字电路中加以信号﹐可以改变自已本身的基本特性.如三极管.
19.场效应和晶体管比较:
a.在环境条件变化大的场合,采用场效应管比较合适。
b.场效应管常用来做前置放大器,以提高仪器设备的输入阻抗,降低噪声等。
c.工艺简单,占用芯片面积小,适宜大规模集成电路。在脉冲数字电路中获得更广泛的应用。
d.场效应管放大能力比晶体管低。
20.基本放大电路的组成原则:
a.发射结正偏,集电结反偏。
b.输入回路的接法应该使输入信号尽量不损失地加载到放大器的输入端。
c.输出回路的接法应该使输出信号尽可能地传送到负载上。
21.实现放大的条件
a.晶体管必须偏置在放大区。发射结正偏,集电结反偏。
b.正确设置静态工作点,使整个波形处于放大区。
c.输入回路将变化的电压转化成变化的基极电流。
d.输出回路将变化的集电极电流转化成变化的集电极电压,经电容滤波只输出交流信号。
22.静态:
放大电路不加输入信号,电路中各处的电压、电流都是固定不变的直流量,这时电路处于直流工作状态,简称静态。
直流通路:电容开路,电感短路,信号源短路,保留其内阻
交流通路:电容短路,电感开路
23.功放要求:
a.输出功率尽可能大。b.高效率 c.非线形失真小 d.晶体管的散热和保护
24.频率补偿
所谓频率补偿,就是指提高或降低某一特定频率的信号的强度,用来弥补信号处理过程中产生的该频率的减弱或增强。常用的有负反馈补偿、发射极电容补偿、电感补偿等。
25.虚短:
集成运放的两个输入端之间的电压通常接近于零,若把它理想化,则看做零,但不是短路,故称“虚短”。
虚断:集成运放的两个输入端几乎不取用电流,如果把他理想化,则看作电流为零,但不是断开,故称“虚断”
26.基本放大电路种类(电压放大器,电流放大器,互导放大器和互阻放大器),优缺点,特别是广泛采用差分结构的原因。
放大电路的作用:放大电路是电子技术中广泛使用的电路之一,其作用是将微弱的输入信号(电压、电流、功率)不失真地放大到负载所需要的数值。
放大电路种类:(1)电压放大器:输入信号很小,要求获得不失真的较大的输出压,也称小信号放大器;(2)功率放大器:输入信号较大,要求放大器输出足够的功率,也称大信号放大器。 差分电路是具有这样一种功能的电路。该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。设想这样一种情景,如果存在干扰信号,会对两个输入信号产生相同的干扰,通过二者之差,干扰信号的有效输入为零,这就达到了抗共模干扰的目的。
27.放大电路的若干性质
①伏安特性曲线:二极管开启电压为0.7V/0.2V,环境温度升高后,二极管正向特性曲线左移,方向特性曲线下移。
②晶体管工作在放大区的外部条件是发射结正向偏置且集电结反向偏置。
③共射特性曲线:输入特性曲线和输出特性曲线。Uce增大时,曲线右移。
截止区、放大区、饱和区。
④结型场效应管UGS(off)和绝缘栅型场效应管UGS(th)。
夹断区、恒流区、可变电阻区。
⑤静态工作点设置为保证:一、放大不失真 二、能够放大。
两种共射放大电路:直接耦合、阻容耦合。
放大电路分析方法:直流通路求静态工作点,交流通路求动态参数。截止失真,饱和失真。等效电路。
Re直流负反馈。晶体管单管三种接法:共射、共基、共集。
共射:既放大电流又放大电压。输入电阻居中,输出电阻较大,频带窄。多用于低频放大电路。
共基:只放大电压不放大电流。输入电阻小,电压放大和输出电阻与共射相当。频率特性最好。
共集:只放大电流不放大电压。输入电阻最大,输出电阻最小,具有电压跟随特性。用于放大电路的输入级和输出级。
多级电路耦合方式:
直接耦合:良好的低频特性,可放大变化缓慢的信号。
阻容耦合:各级电路静态工作点独立,电路分析、设计、调试简单。有大电容的存在不利于集成化。
变压器耦合:静态工作点独立,不利于集成化,可实现阻抗变换,在功率放大中得到广泛的应用。
抑制温漂的方法:引入直流负反馈、采用温度补偿,电路中二极管。
28.集成运放电路的组成:
输入级:双端输入的差分放大电路,输入电阻高,差模放大倍数大,抑制共模能力强,静态电流小。
中间级:采用共射(共源)放大电路,为提高放大倍数采用复合管放大电路,以恒流源做集电极负载。
输出级:输出电压线性范围宽、输出电阻小(带负载能力强)非线性失真小。多互补对称输出电路。
集成运放频率补偿:一、滞后补偿 1.简单电容补偿2.密勒效应补偿 二、超前补偿
29.放大电路中反馈特性
直流反馈、交流反馈;正反馈、负反馈。
1.有无反馈的判断,是否存在反馈通路。2.反馈极性的判断:瞬时极性法(净输入电压,净输入电流)
四种反馈组态:电压串联负反馈、电流串联负反馈、电压并联负反馈、电流并联负反馈。
电路中引入电压负反馈还是电流负反馈取决于负载欲得到稳定的电压还是稳定的电流。
电路中引入串联负反馈还是并联负反馈取决于输入信号源是恒压源还是恒流源。
负反馈电路分析方法:要将反馈网络作为放大电路输入端和输出端等效负载。当考虑反馈网络在输入端的负载效应时,应输出量作用为零。而考虑反馈网络输出端的负载效应时,应令输入量作用为零。对于电压反馈,输出端短路。电流反馈,回路断开。
负反馈对放大电路的影响:1.稳定放大倍数2.改变输入输出电阻3.展宽频带4.减小非线性失真。
串联负反馈增大输入电阻,并联负反馈减小输入电阻;电压负反馈减小输出电阻,电流负反馈增大输出电阻。
引入负反馈一般原则:
稳定静态工作点,引入直流负反馈;为改善放大电路动态性能,应引入交流负反馈。
根据信号源的性质决定引入串联负反馈或者并联负反馈。信号源为内阻较小电压源,为增大输入电阻,减小内阻上压降,应引入串联负反馈。信号源为内阻较大的电流源,为减小放大电路的输入电阻,使电路获得更大的输入电流,应引入并联负反馈。
根据负载对放大电路输出量的要求,负载需要稳定的电压信号时,引入电压负反馈。需要稳定的电流信号时,引入电流负反馈。
需要进行信号变换时,将电流信号转换为电压信号,引入电压并联负反馈。将电压信号转换为电流信号时,引入电流串联负反馈。
负反馈放大电路自激振荡消除方法:一、滞后补偿 1.简单电容补偿2.RC滞后补偿3.密勒效应补偿 二、超前补偿。
30.基本运算电路
反相比例电路运算电路、T型反相比例运算电路、同相比例运算电路(电压跟随器)。
积分运算电路和微分运算电路
正弦波振荡条件 品质因数Q值越大,选频效果越好。在正弦波振荡电路中,反馈信号能够取代输入信号,电路引入正反馈。二要有外加选频网络,用以确定振荡频率。因此四个部分组成:放大电路、选频网络、正反馈网络、稳幅环节。
电压比较器
对输入信号进行鉴幅与比较的电路。在电压比较器中,集成运放不是处于开环状态就是只引入了正反馈。
单限比较器,滞回比较器,窗口比较器
31. 射极跟随器
射极跟随器(又称射极输出器,简称射随器或跟随器)是一种共集接法的电路,它从基极输入信号,从射极输出信号。它具有高输入阻抗、低输出阻抗、输入信号与输出信号相位相同的特点。
32.放大电路的频率补偿的目的
在放大电路中,由于电抗元件(电容、电感线圈)及晶体管极间电容的存在,当输入信号信号频率过高或过低时,不但放大倍数数值会变小,而且产生超前或滞后的相移。频率补偿主要目的防止自激振荡,使电路稳定。也称相位补偿或相位校正法。具体方法:一、滞后补偿 1.简单电容补偿2.密勒效应补偿 二、超前补偿。
33.零点漂移、怎样抑制零点漂移
零点漂移,就是指放大电路的输入端短路时,输出端还有缓慢变化的电压产生,即输出电压偏离原来的起始点而上下漂动。抑制零点漂移的方法一般有:采用恒温措施;补偿法(采用热敏元件来抵消放大管的变化或采用特性相同的放大管构成差分放大电路);采用直流负反馈稳定静态工作点;在各级之间采用阻容耦合或者采用特殊设计的调制解调式直流放大器等。
34.给出一个差分运放,如何相位补偿
一般对于两级或者多级的运放才需要补偿。一般采用密勒补偿。例如两级的全差分运放和两级的双端输入单端输出的运放,都可以采用密勒补偿,在第二级(输出级)进行补偿。区别在于:对于全差分运放,两个输出级都要进行补偿,而对于单端输出的两级运放,只要一个密勒补偿。
35.频率响应 如:怎么才算是稳定的,改变频率响应曲线的几个方法
频率响应通常亦称频率特性,频率响应或频率特性是衡量放大电路对不同频率输入信号适应能力的一项技术指标。实质上,频率响应就是指放大器的增益与频率的关系。通常讲一个好的放大器,不但要有足够的放大倍数,而且要有良好的保真性能,即:放大器的非线性失真要小,放大器的频率响应要好。“好”:指放大器对不同频率的信号要有同等的放大。之所以放大器具有频率响应问题,原因有二:一是实际放大的信号频率不是单一的;;二是放大器具有电抗元件和电抗因素。由于放大电路中存在电抗元件(如管子的极间电容,电路的负载电容、分布电容、耦合电容、射极旁路电容等),使得放大器可能对不同频率信号分量的放大倍数和相移不同。如放大电路对不同频率信号的幅值放大不同,就会引起幅度失真; 如放大电路对不同频率信号产生的相移不同就会引起相位失真。幅度失真和相位失真总称为频率失真,由于此失真是由电路的线性电抗元件(电阻、电容、电感等)引起的,故不称为线性失真。为实现信号不失真放大所以要需研究放大器的频率响应。
数字电子电路
1.竞争与冒险现象
在组合逻辑中,由于门的输入信号通路中经过了不同的延时,导致到达该门的时间不一致叫竞争。产生毛刺叫冒险。如果布尔式中有相反的信号则可能产生竞争和冒险现象。解决方法:一是接入滤波电容,二是引入选通脉冲,三是增加冗余项(只能消除逻辑冒险而不能消除功能冒险)。
2.如何用D触发器实现2倍分频的逻辑电路?什么是状态图?
D触发器的输出端加非门接到D端,实现二分频。
状态图是以图形方式表示输出状态转换的条件和规律。用圆圈表示各状态,圈内注明状态名和取值。用→表示状态间转移。条件可以多个
3. "线与"逻辑,及实现它的具体要求
线与逻辑是两个输出信号相连可以实现与的功能。在硬件上,要用OC/OD门来实现,由于不用OC门可能使灌电流过大,而烧坏逻辑门。同时在输出端口应加一个上拉电阻。
4.同步逻辑和异步逻辑
同步逻辑是时钟之间有固定的因果关系。异步逻辑是各时钟之间没有固定的因果关系。电路设计可分类为同步电路和异步电路设计。同步电路利用时钟脉冲使其子系统同步运作,而异步电路不使用时钟脉冲做同步。
异步电路主要是组合逻辑电路,用于产生地址译码器、FIFO或RAM的读写控制信号脉冲,其逻辑输出与任何时钟信号都没有关系,译码输出产生的毛刺通常是可以监控的。同步电路是由时序电路(寄存器和各种触发器)和组合逻辑电路构成的电路,其所有操作都是在严格的时钟控制下完成的。这些时序电路共享同一个时钟CLK,而所有的状态变化都是在时钟的上升沿(或下降沿)完成的。
5.Latch与Register的区别,为什么现在多用register.行为级描述中latch如何产生的?
Latch是电平触发,Register是边沿触发,register在同一时钟边沿触发下动作,符合同步电路的设计思想,而latch则属于异步电路设计,往往会导致时序分析困难,不适当的应用latch则会大量浪费芯片资源。
6.可编程逻辑器件有哪些
(简单)PROM,PAL,GAL,PLA,(复杂)CPLD,FPGA
FPGA: Field Programmable Gate Array
CPLD:Complex Programmable Logic Device
7.如何解决亚稳态
亚稳态是指触发器无法在某个规定时间段内达到一个可确认的状态。当一个触发器进入亚稳态时,既无法预测该单元的输出电平,也无法预测何时输出才能稳定在某个正确的电平上。在这个稳定期间,触发器输出一些中间级电平,或者可能处于振荡状态,并且这种无用的输出电平可以沿信号通道上的各个触发器级联式传播下去。
8.三态与非门(TSL)
三态与非门有三种状态:(1)门导通,输出低电平。(2)门截止,输出高电平。(3)禁止状态或称高阻状态、悬浮状态,此为第三态。
三态门的一个重要用途,就是可向同一条导线(或称总线Y)上轮流传送几组不同的数据或控制信号,如图2-17所示。当E1、E2、E3轮流接低电平时,Al、Bl、A2、B2、A3、B3三组数据轮流按与非关系传送到总线Y上;而当各门控制端E1、E2、E3为高电平时,门为禁止状态,相当于与总线Y断开,数据A、B不被传送。
9. 集电极开路与非门(OC门)
OC门和普通的TTL与非门所不同的是,它用一个外接电阻RL来代替由VT3、VT4组成的有源负载,实现与非门逻辑功能, OC门逻辑功能灵活,应用广泛。 10.窄沟道效应:
由于边缘场的影响,沟道区耗尽层在沟道宽度两侧向场区有一定的扩张。当沟道宽度较大时,耗尽层向两侧的扩展部分可以忽略;但是沟道变窄时,边缘场造成的耗尽层扩展变得不可忽略,这样,耗尽层电荷量比原来计算的要大,这就产生了窄沟道效应
11.MOS电路的特点:
优点1. 工艺简单,集成度高。2. 是电压控制元件,静态功耗小。3.允许电源电压范围宽(318V)。4.扇出系数大,抗噪声容限大。
缺点:工作速度比TTL低 。
12.半导体工艺中,掺杂有哪几种方式?
根据掺入的杂质不同,杂质半导体可以分为N型和P型两大类。 N型半导体中掺入的杂质为磷等五价元素,磷原子在取代原晶体结构中的原子并构成共价键时,多余的第五个价电子很容易摆脱磷原子核的束缚而成为自由电子,于是半导体中的自由电子数目大量增加,自由电子成为多数载流子,空穴则成为少数载流子。P型半导体中掺入的杂质为硼或其他三价元素,硼原子在取代原晶体结构中的原子并构成共价键时,将因缺少一个价电子而形成一个空穴,于是半导体中的空穴数目大量增加,空穴成为多数载流子,而自由电子则成为少数载流子。
12.组合逻辑、时序逻辑以及同步时序逻辑
组合逻辑:输出只是当前输入逻辑电平的函数(有延时),与电路的原始状态无关的逻辑电路。(无记忆)由与、或、非门组成的网络,常见的有多路器,数据通路开关,加法器,乘法器等。
时序逻辑:输出不只是当前输入逻辑电平的函数,还与电路目前所处的状态有关的逻辑电路。(有记忆)由多个触发器和多个组合逻辑块组成的网络,常见的有计数器,运算控制逻辑,指令分析和操作控制逻辑。
同步时序逻辑:表示状态的寄存器组的值只可能在唯一确定的触发条件发生时改变,只能有时钟的正跳沿或负跳沿出发的状态机就是一例。异步时序逻辑:触发条件有多个控制因素组成,任何一个因素的跳变都可以引起触发。
14、同步电路和异步电路的区别
同步电路:存储电路中所有触发器的时钟输入端都接同一个时钟脉冲源,因而所有触发器的状态的变化都与所加的时钟脉冲信号同步。
异步电路:电路没有统一的时钟,有些触发器的时钟输入端与时钟脉冲源相连,这有这些触发器的状态变化与时钟脉冲同步,而其他的触发器的状态变化不与时钟脉冲同步。
15.模数转换器(ADC)
模数转换指的是将输入的模拟量转换为数字量输出,实现这种转换功能的电路称为模数转换器,简称ADC(Analog Digital Converter)。
ADC按工作原理的不同可分为直接ADC和间接ADC。直接ADC有并联比较型和逐次渐进型等,直接ADC的转换速度快。间接ADC的转换速度慢,如双积分型ADC。并联比较型ADC、逐次渐进型ADC和双积分型ADC各有特点,应用在不同的场合。高速且精度要求不高,可以选用并联比较型ADC;低速、精度高且抗干扰强的场合,可以选用双积分型ADC;逐次渐进型ADC兼顾了两者的优点,速度较快、精度较高、价格适中,应用较为普遍。
AD转换要经过采样、保持、量化和编码等过程。采样-保持电路对输入模拟信号进行采样并保持,量化是对采样信号进行分级,编码则将分级后的信号转换成二进制代码。对模拟信号采样时,必须满足采样定理。
16.数模转换器(DAC)
数模转换器将输入的二进制数字量转换成与之成正比的模拟量;模数转换器将输入的模拟电压转换成与之成正比的二进制数字量。常见的数-模转换电路(DAC)有多种类型:权电阻网络DAC、倒T形电阻网络DAC、权电流网络DAC等。
A/D转换=模拟/数字转换,意思是模拟讯号转换为数字讯号;D/A转换=数字/模拟转换,意思是数字讯号转换为模拟讯号;ADC=模拟/数字转换器,DAC=数字/模拟转换器
17.A/D电路组成、工作原理。
ADC电路通常由两部分组成,它们是:采样、保持电路和量化、编码电路。其中量化、编码电路是最核心的部件,任何ADC转换电路都必须包含这种电路。 ADC电路的形式很多,通常可以并为两类: 间接法:它是将采样-保持的模拟信号先转换成与模拟量成正比的时间或频率,然后再把它转换位数字量。这种通常是采用时钟脉冲计数器,它又被称为计数器式。它的工作特点是:工作速度低,转换精度高,抗干扰能力强。 直接法:通过基准电压与采样-保持信号进行比较,从而转换位数字量。它的工作特点是:工作速度高,转换精度容易保证。
18.组合电路与时序电路区别
组合逻辑电路是具有一组输出和一组输入的非记忆性逻辑电路,它的基本特点是任何时刻的输出信号状态仅取决于该时刻各个输入信号状态的组合,而与电路在输入信号作用前的状态无关。组合电路是由门电路组成的,但不包含存储信号的记忆单元,输出与输入间无反馈通路,信号是单向传输,且存在传输延迟时间。组合逻辑电路的功能描述方法有真值表、逻辑表达式、逻辑图、卡诺图和波形图等。
时序逻辑电路与组合逻辑电路不同,在逻辑功能及其描述方法、电路结构、分析方法和设计方法上都有区别于组合电路的明显特点。在时序逻辑电路中,任意时刻的输出信号不仅和当时的输入信号有关,而且还与电路原来的状态有关,这是时序逻辑电路在逻辑功能上的特点。因而时序逻辑电路必然包含存储记忆单元电路。描述时序电路逻辑功能的方法有:三个方程(输出方程、驱动方程(或激励函数)、状态方程)、状态转换表、状态转换图和时序图等。
19.常用逻辑电平
常用逻辑电平:12V,5V,3.3V;TTL和CMOS不可以直接互连,由于TTL是在0.3-3.6V之间,而CMOS则是有在12V的有在5V的。CMOS输出接到TTL是可以直接互连。TTL接到CMOS需要在输出端口加一上拉电阻接到5V或者12V。
CMOS门的VT= 0.5VDD ,TTL门的VT一般在1.0~1.4V。
CMOS门输出:高电平为VOH= VDD ,低电平为VOL=0V。
TTL门输出:高电平为VOH=3.6V, 低电平为VOL=0.3V。
19.正负逻辑
在数字电路中,一般用高电平代表1、低电平代表0,即所谓的正逻辑系统。反之,用高电平代表0、低电平代表1,即所谓的负逻辑系统。
21.名词解释:
VLSI,CMOS,EDA,VHDL,Verilog,HDL,ROM,RAM,DRC,LVS,SRAM,DRAM,FLSAH,SSRAM,SDRAM,IRQ,BIOS,USB, SDR。
由PMOS管和NMOS管共同构成的互补型MOS集成电路即为 CMOS
sram:静态随机存储器,存取速度快,但容量小,掉电后数据会丢失;flash:闪存,存取速度慢,容量大,掉电后数据不会丢失;dram:动态随机存储器,必须不断的重新的加强(REFRESHED) 电位差量,否则电位差将降低至无法有足够的能量表现每一个记忆单位处于何种状态。价格比sram便宜,但访问速度较慢,耗电量较大,常用作计算机的内存使用;ssram:同步静态随机存储器;SDRAM:同步动态随机存储器;IRQ: Interrupt ReQuest; BIOS: Basic Input Output System;USB: Universal Serial Bus;;SDR: Single Data Rate;压控振荡器的英文缩写(VCO)。
22.简述CMOS非门,与非门和或非门的电路及其功能。
非门工作原理: A为高电平,T1截止T2导通,L为低电平,符合非逻辑关系。
与非门工作原理: A、 B同为高电平时T1 、T2截止, T3 、T4导通,L为低电平,符合与非逻辑关系。反之亦然。
或非门工作原理:当A、B两个输入端均为低电平时,T1、T2截止,T3、T4导通,输出Y为高电平;当A、B两个输入端中有一个为高电平时,T1、T2中必有一个导通,T3、T4中必有一个截止,输出为低电平。
异或门电路:
同或门电路: ①NMOS管的串联可实现“与逻辑”,并联可实现“或逻辑”,其输出是该逻辑的反。
②每个CMOS门电路都由互补的NMOS管和PMOS管组合而成,且两互补的NMOS管、PMOS管的栅极连接在一起作为输入端。
③要实现“与逻辑”,可将相应的NMOS管组合串联;要实现“或逻辑”,可将NMOS管组合并联。
④NMOS管串联时,其对应的PMOS管一定并联;NMOS管并联时,其对应的PMOS管一定串联。
23.MOS与非门,多余的输入、输出端的连接
门电路中多余的输入端一般不要悬空,因为干扰信号易从这些悬空端引入,使电路工作不稳定。
与门和与非门:多余输入端接正电源或与有用输入端并接
或门和或非门:多余输入端接地或与有用输入端并接
CMOS电路多余输入端与有用输入端的并接仅适用于工作频率很低的场合。
TTL 电路输入端悬空时相当于输入高电平,CMOS 电路多余输入端不允许悬空。
24.NMOS、PMOS、、PNP、NPN
NMOS是指沟道在栅电压控制下p型衬底反型变成n沟道,靠电子的流动导电 ;
PMOS是指n型p沟道,靠空穴的流动导电。
增强型是指不加栅源电压时,FET内部不存在导电沟道,这时即使漏源间加上电源电压也没有漏极电流产生。耗尽型是指当栅源电压为0时,FET内部已经有沟道存在,这时若在漏源间加上适当的电源电压,就有漏极电流产生。
PNP由2块P型半导体中间夹着一块N型半导体所组成,载流子以空穴为主;NPN管是由2块N型半导体中间夹着一块P型半导体所组成,载流子载流子以空穴为主。
25. TTL集成电路
TTL集成电路是一种单片集成电路。在这种集成电路中,一个逻辑电路的所有元器件和连线都制作在同一块半导体基片上。由于这种数字集成电路的输人端和输出端的电路结构形式采用了晶体管,所以一般称为晶体管一晶体管(Transistor-tranSiS-tor Logic)逻辑电路,简称TTL电路。
26、IC设计中同步复位与异步复位的区别。
同步复位在时钟沿采复位信号,完成复位动作。异步复位不管时钟,只要复位信号满足条件,就完成复位动作。 异步复位对复位信号要求比较高,不能有毛刺,如果其与时钟关系不确定,也可能出现亚稳态。
27.DSP(数字信号处理芯片)、CPU(中央处理器)、MCU(微控制器 )的结 构、特点、功能以及用途
在设计原理上都是一样的,应用上各具特点,所以结构功能有所不同。
DSP为快速处理数字信号而设计,结构上数据,地址总线分开,数据的吞吐量更大。指令集的设计多考虑信号处理。不过现在,为提高微处理器MCU的性能,像ARM在设计上,总线也是分开的。
CPU主要是完成指令的处理,外围接口是独立设计的,像存储器,总线控制器是独立的,没有集成到CPU中。
而MCU多应用在嵌入式平台,外围的接口是集成在一起的。一颗芯片就能完成。
逻辑代数三个重要的规则:代入规则、反演规则、对偶规则。后两者的主要区别在于对偶不做任何取反的操作。
28.晶体三极管的开关特性工作
工作在截止区和饱和区。此过程包括了4个时间参数:延迟时间Td上升时间Tr存储时间Ts下降时间Tf
开启时间为:延迟时间+上升时间
关闭时间为:存储时间+下降时间
29.二极管逻辑门:与门电路和或门电路。
30.负载能力有灌电流和拉电流负载之分。
31.不同逻辑电平的配合:
TTL电路高电平最小值为2.4V,低电平最小值为0.8V。
ECL电路高电平为-0.8V,低电平为-1.6V。
CMOS电路电源电压为5V,阈值电压为2.5V,高电平为5V,低电平为0V,可以直接驱动TTL电路。CMOS输出功率很小,不能驱动电流大的TTL门。
32.逻辑电路选用时主要参数为:
逻辑电平、噪声容限、工作速度、功耗。数字逻辑电路分为组合逻辑和时序逻辑电路两类。组合逻辑电路不含记忆元件,输入和输出间没有反馈。
用基本逻辑门设计组合电路步骤:1、列真值表2、根据真值表写出逻辑函数表达式。3.、将函数化简变换。4、绘制逻辑电路图5、选择逻辑门装配。
33.描述触发器的方法:
1、状态表2、功能表3、状态方程(特征方程)4、波形图(时序图)5状态图:以图形方式表示输出状态转换的条件和规律。
34.时序电路划分为米里型和摩尔型两种。米里型输出信号与存储电路状态和输入变量有关。摩尔型仅取决于存储电路状态。
时序电路包括:寄存器、移位寄存器、计数器。
同步时序电路分析:激励方程、状态方程、输出方程。
35.TTl和COMS 电路和区别
TTL电路是晶体管-晶体管逻辑电路的英文缩写(Transister-Transister-Logic),是数字集成电路的一大门类。它采用双极型工艺制造,具有高速度低功耗和品种多等特点。
CMOS是:金属-氧化物-半导体(Metal-Oxide-Semiconductor)结构的晶体管简称MOS晶体管,有P型MOS管和N型MOS管之分。由MOS管构成的集成电路称为MOS集成电路,而由PMOS管和NMOS管共同构成的互补型MOS集成电路即为 CMOS-IC(Complementary MOS Integrated Circuit)。
CMOS集成电路的性能特点:
微功耗—CMOS电路的单门静态功耗在毫微瓦(nw)数量级。
高噪声容限—CMOS电路的噪声容限一般在40%电源电压以上。
宽工作电压范围—CMOS电路的电源电压一般为1.5~18伏。
高逻辑摆幅—CMOS电路输出高、低电平的幅度达到全电为VDD,逻辑“0”为VSS。
高输入阻抗–CMOS电路的输入阻抗大于108Ω,一般可达1010Ω。
高扇出能力–CMOS电路的扇出能力大于50。
低输入电容–CMOS电路的输入电容一般不大于5PF。
宽工作温度范围—陶瓷封装的CMOS电路工作温度范围为- 55 0C ~ 125 0C;塑封的CMOS电路为 – 40 0C ~ 85 0C。
1、TTL电平:
输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
2、CMOS电平:
1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。而且具有很宽的噪声容限。TTL和COMS电路比较:
1)TTL电路是电流控制器件,而coms电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
3)COMS电路的锁定效应:COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。这种效应就是锁定效应。当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯片。
防御措施:
1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。
2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。
3)在VDD和外电源之间加限流电阻,即使有大的电流也不让它进去。 4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS电路得电源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS。
36.全波整流和半波整流的输出电压各为多少
答:单相全波一般比半波多三个二极管
半波输出电压有效值是全波的一半
半波0.45U 全波0.9U

QY-DG760A是电工、模电、数电实验与技能实训考核结合。实验项目包括电工学、电工原理、模拟电子技术、数字电子技术等课程,可完成交直流、振荡、磁场电路、运算放大器、整流电路、交直流放大电路、数字逻辑电路等电路实验。
模电、数电技能实训改革传统实验实训教学模式,通过基本操作技能和三十几类实用新型电路的制作、调试,使学生掌握电子产品的制作调试,学会阅读电路原理图和PCB图,熟悉常用电子元器件的选择、测试,掌握焊接和电路组装工艺技能(设备中配置三十几套特制实训电路板和相应元器件),并能处理安装调试过程中出现的问题。实训电路中涵盖开关、音频、信号发生、计数、译码、显示、测量、控制等内容。
1、实训台能完成电工、模电、数电实验又能进行电工、模电、数电实训考核,实训部分在网孔板上完成,更换器件便捷,接近工业现场,易扩展实训功能或开展新实训项目。
2、设有电压型电流型漏电保护器,并有单片机自动全程监控装置过载或短路,一旦发生即可自动切断电源,故障排除后方可再次启动工作电源。能确保设备和操作者安全。
实训项目
(一)实训部分:
A:电工部分
1.低压验电笔的使用
2.灭火器的操作方法(教师演示)
3.口对口人工呼吸法和胸外心脏压挤法急救的掌握
4.常用工具的使用与识别
5.常用导线的连接和绝缘的恢复
6.电烙铁的拆装与焊接技能训练
7.电工识图训练
8.电工布线工艺
9.日光灯电路的按装接线
10.单相电度表直接接线电路安装
11.单相电度表经电流互感器的接线电路安装
12.配电板安装
13.室内配线
14.室内照明电路安装
15.万用表转换开关的使用和读数
16.交流电压的测量
17.直流电压、直流电流的测量
18.电流表、电压表的安装
19.电阻的测量
20.兆欧表、钳形电流表接地电阻测定仪的使用
21.单相功率、功率因数的测量
22.三相四线有功电度表的安装接线
23.三相四线有功电度表经电流互感器的安装与接线
24.常用开关继电器拆装
25.交流接触器的拆卸与组装
26.常用启动器的结构观察与检测
27.小型变压器的制作
28.小型变压器故障检查与排除
29.三相鼠笼式电动机的拆装与测试
30.三相鼠笼式异步电动机运行巡视
31.三相鼠笼式异步电动机的定期检修
32.三相鼠笼式电动机故障分析
33.定子绕组局部故障的排除
34.单相电容式电动机绕组的拆装
35.单相电容式电动机故障与排除
36.手动正转控制线路的安装与检修训练
37.接触器点动正转控制
38.具有自锁的正转控制
39.具有过载保护的正转控制
40.接触器联锁的正反转控制
41.按钮联锁的正反转控制线路
42.按钮、接触器复合联锁的控制线路
43.按触器控制Y-△降压控制
44.X62-W型铣床主轴与进给电机的联锁控制
45.时间继电器控制Y-△降压起动控制
46.C620-1型车床控制线路的模拟安装
47.直流电动机的拆装训练(教师演示)
48.直流电动机的检修训练(教师演示)
B:电子实训
1.常用仪器仪表的使用
2.常用电子元器件的识别与检测
3.电烙铁拆装与电子锡焊技能训练
4.印刷线路板的制作
5.三端集成稳压直流电源的制作
6.串联型直流稳压电源的制作
7.低频信号电压放大器的装配与测试
8.具有负反馈信号放大器电路的制作与测试
9.文式桥振荡器的焊接与调试
10.电池电压监视电路的制作与测试
11.电子催眠器电路的制作
12.模拟“知了”电子电路的制作实训
13.实用声控、光控节电照明灯的制作与实训
14.电子驱蚊器线路的制作实训
15.保护视力定时器线路
16.语音报警喇叭的制作与实训
17.逻辑测试器的制作与测试
18.正负脉冲信号的制作与测试
19.智力竞赛抢答器的制作
20.水位报警器电路的制作
21.迷你闪光彩灯的制作
22.光控音乐门铃
23.实用模拟自然风控制器的制作
24.台灯调光电路
25.实用CMOS触摸锁钥电路
26.自动充电器的制作
27.半导体收音机的组装与调试
28.助听器的组装与调试
29.声、光控楼道灯的组装与调试
30.灭火机器人的组装与调试
(二)实验部分:
A、电工实验:
1.电工测量仪表的使用
2.常用元件的识别与检测
3.线性元件与非线性元件的伏安特性
4.电源的外特性
5.电位值、电压值的测定
6.电流表和电压表的扩程
7.基尔霍夫定律的验证
8.验征楞次定律
9.迭加原理与互易定理的验证
10.戴维南定理与诺顿定理的验征
11.电压源与电流源的等效变换
12.受控源特性的研究
13.一阶电路实验
14.二阶电路的过渡过程
15.研究LC元件在直流和交流电路中的特性
16.负载获得最大功率的条件
17.交流电路参数的测量
18.正弦交流电路中RLC元件的特性
19.RL及RC串联电路实验
20.RLC串联谐振电路
21.日光灯电路的连接及功率因数改善
22.三相负载的星、三角接法
23.三相电路及功率的测量
24.R-C选频网络的研究
25.二端口网络研究
26.单相变压器实验
27.互感电路实验
28.三相异步电动机的使用与起动
29.三相电动机继电接触控制的基本电路
30.三相电动机Y-△起动控制实验
31.三相电动机的顺序控制实验
32.三相电动机能耗制动控制实验
33.最简单的电路
34.电路中各点电位与参考点的选择
35.电阻的串联
36.电阻的并联
37.电阻的混联
38.电阻分压器电路
39.全电路欧姆定律
40.电桥的应用与平衡条件
41.节点电压法
42.回路电压法
43.支路电流法
44.RCL并联电路
45.串联电路
46.变压器结构及工作原理
47.基尔霍夫第一定律
48.基尔霍夫第二定律
49.日光灯电路原理
50.扩大电压表量程
51.扩大电流表量程
52.RC电路的过度过程
53.RL过渡过程
54.电容的串联电路
55.电容的并联电路
56.电容器的充放电
57.电容器在交直流中的作用
58.条形磁铁在线圈中的运动
59.电容的混联
60.纯电阻、电感、电容电路
61.磁耦合线圈的顺串
62.磁耦合线圈的反串
63.欧姆表的工作原理
64.双联开关二地控制
65.用示波器观察磁滞回线
66.磁路欧姆定律
67.两线圈的互感及同名端
68.互感耦合
69.提高功率因数的方法
70.单相电路功率的测量
71.收录机电源电路
72.滤波电路
73.电阻与温度的关系:用伏安法测出灯丝
在不同电压下的阻值。
74.三相异步电机闸刀控制正转实验
75.具有过载保护的控制线路
76.按钮控制的正反转控制线路
77.接触器控制星一三角降压起动控制线路
B、模电、数电实验:
(1)模拟部分实验
1.二极管的正、反相特性
2.晶体三极管的输入、输出特性
3.晶体管共射极单管放大器
4.两级阻容耦合放大电路
5.负反馈对放大器性能的影响
6.场效应管放大器
7.差动放大电路
8.运算放大器指标测试
9.集成运算放大器的基本应用
(多种模拟运算电路)
10.集成运算放大器非线性应用
(多种波形发生器)
11.变压器耦合推挽功率放大器
12.0TL功率放大器
13.集成功率放大器
14.单相桥式整流电路
15.串联型晶体管直流稳压电源
(设计性实验)
16.集成直流稳压电源
17.单结晶体管特性
18.单结晶体管触发电路
19.晶闸管简单测试
20.晶闸管可控整流电路
利用上述20项实验元器件还可完成下面实验项目
1.电压负反馈偏置电路
2.分压式电流负反馈偏置电路
3.用二极管稳定工作点
4.共基极放大电路
5.共集电极放大电路
6.共源极基本放大电路
7.场效应管共漏极电路
8.场效应管共栅极电路
9.单管阻容放大电路
10.变压器耦合放大电路
11.甲类功率放大电路
12.串联电流负反馈电路
13.串联电压负反馈电路
14.并联电压负反馈电路
15.并联电流负反馈电路
16.共基共射极放大电路
17.自举射极输出电路
18.NPN一PNP直接耦合放大电路
19.用负反馈消除自激振荡
20.晶体管开关作用
21.变压器反馈式振荡电路
22.电容三点式振荡电路
23.电感三点式振荡电路
24.差动放大电路的基本形式
25.长尾式差动放大电路
26.双电源长尾式差动放大电路
27.运放用作交流比例放大
28.反相输入保护措施
29.同相输入保护措施
30.电源极性错接的保护
31.RC高通电路
32.利用三极管来保护器件
33.差动输入运算电路
34.快速积分电路
35.模拟一阶微分方程电路
36.模拟二阶微分方程电路
37.基本对数运算电路
38.实用微分电路
39.反对数放大基本电路
40.简单的过零比较电路
41.利用二级管作为上限检测幅度选择电路
42.下限幅度选择电路
43.RC无源网络的低通滤波电路
44.同相输入一阶低通滤波电路
45.反相输入一阶低通滤波电路
46.简单的二阶RC滤波电路
47.典型二阶RC有源低通滤波电路
48.典型二阶高通有源滤波电路
49.基本带通滤波电路
50.典型带通滤波电路
51.矩型波振荡电路
52.宽度可调的矩形波发生器
53.幅频可调的锯齿波发生器
54.单相半波整流电路
55.单相全波整流电路
56.电容滤波电路
57.电容滤波带电阻负载
58.RC滤波电路
59.基本LC滤波电路
60.二倍压整流电路
61.三倍压整流电路
62.基本稳压电路
63.基本调整管稳压电路6
64.具有放大环节的稳压电路
65.单相半波可控硅整流
66.电子调压电路
67.电子催眠器一一趣味性实验一
68.电子门铃电路一一趣味性实验二
69.电子报警电路一一趣味性实验三
(2)数字部分实验
1.TTL集成逻辑门的参数测试
2.CM0S逻辑门的参数测试
3.TTL集成电极开路门与三态输出门的应用
4.与、非、或、与非门电路实验
5.半加器电路实验
6.全加器电路实验
7.RS触发器实验
8.D触发器实验
9.JK触发器实验
10.T触发器实验
11.JK型触发器转换成D触发器
12.D型触发器转换成JK触发器
13.计数器实验
14.MSI移位寄存器及其应用
15.译码器及其变换方式
16.MSI数据选择器及逻辑设计
17.微分型单稳态电路
18.环形多谐振荡器
19.利用门电路构成编码器分配器、选择器
20.组合电路的设计之一一一编码转换
21.组合电路的设计之二一一显示电路
22.同步时序电路的设计
23.计算机时序电路的设计
24.集成定时器测试及应用
25.CM0S集成A/D、D/A转换电路实验
26.二极管非门、或非门电路
27.三极管非门、与非门、或非门电路
28.异步十进制减法计数器
29.异步十进制加法计数器
30.综合能力培训实验一一电子秒表

模拟电路与数字电路基础知识及实训QY-DG760A相关推荐

  1. 模拟电路基础秦世才_模拟电路电子技术基础知识

    模拟电路就是利用信号的大小强弱(某一时刻的模拟信号,即时间和幅度上都连续的信号)表示信息内容的电路,如声音经话筒(学名为送话器)变为电信号,其电 信号的大小就对应于电信号大小强弱(电压的高低值或电流的 ...

  2. 机电一体化基础知识及实训QY-JDYT01

    A.机电一体化:是在机械的主功能.动力功能.信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称. ※B.机电一体化系统:按照机电一体化方法设计出来的机械与电子 ...

  3. 数字信号处理与高频电路基础知识与实训QY-MS300E

    数字信号处理与高频电路 1.FS FT DFS DTFT DFT 的联系和区别 时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周 ...

  4. 模拟电路技术之基础知识(一)

    学模电第一步 笔记总目录 大体内容如下,做到全部内容熟记于心 文章目录 第一章 半导体器件 1.半导体基础 本征半导体 杂质半导体 PN结 PN结的的电容效应 2.半导体二极管 3.晶体三极管(BJT ...

  5. 模拟电路技术之基础知识

    模电的特点就是知识点很多,细枝末节的,所以要尽可能列出所有知识点 不要怕在基础的地方花费时间,基础越牢,后面越顺利! 温故而知新! 参考教材:模拟电子技术基础_清华大学童诗白第四版 第一章 半导体器件 ...

  6. 模拟电路技术之基础知识(二)

    到基放了,基放学的顺不顺利全在于前面半导体基础扎不扎实 笔记总目录 文章目录 第二章 基本放大电路 放大的概念和放大电路的主要性能指标 放大的概念 放大电路的主要性能指标 基本共射放大电路的工作原理 ...

  7. 数字电路和模拟电路-2数字电路基础

    目录 一.数字电路的基本概念 二.正逻辑与负逻辑 三.数字信号的主要参数 四.数字电路分类 五.数制 1.几种常见的计数体制: 2.不同数制间的转换 六.编码 一.数字电路的基本概念 1.模拟信号与数 ...

  8. 模拟电路技术之基础知识(十)

    直流电源 直流电源电源组成及各部分的作用 直流电源是能量转换电路 将220v(或380)50hz的交流电转换为直流电 直流稳压电源:电子电路的电源为直流稳压电源,即在电网电压波动范围内,在负载的变换范 ...

  9. 模拟电路技术之基础知识(八)

    信号变换 正弦波振荡电路 正弦波振荡电路是指在没有外加输入信号的情况下,依靠电路自激振荡而产生正弦波输出电压的电路. 与负反馈放大电路振荡的不同之处:在正弦波振荡电路中引入的是正反馈,且振荡频率可控. ...

  10. 模拟电路技术之基础知识(七)

    信号的运算和处理 基本运算电路 比例运算电路 加减运算电路 积分运算电路和微分运算电路 对数运算电路和指数运算电路

最新文章

  1. java 4大作用域_JavaWeb的四大作用域详解
  2. 【云周刊】第178期:阿里云以生态联盟推动全球市场,牵手Bolloré集团全球合作...
  3. iPhone5或明年下半年发布 配备iOS6和A6芯片
  4. 查看linux内核的glibc库,查看当前系统的glibc版本
  5. object+java+equals_java-为什么SparseIntArray.equals(Object)不起作用?
  6. forward_list容器
  7. html 让表格在右侧显示不出来,css中怎么解决表格边框不显示的问题?
  8. 单例模式到Java内存模型
  9. android手机微信收藏功能实现,Android模仿微信收藏文件的标签处理功能
  10. mysql写入 cpu飙升_分析MySQL中索引引引发的CPU负载飙升的问题
  11. 云吟职中计算机老师,夹江县云吟职业中学校018招生简介
  12. javascript---DOM---事件
  13. 【java笔记】list接口
  14. java代码进行短信接收_自动化测试-自动获取手机短信验证码
  15. java毕业生设计药品管理系统演示录像2021计算机源码+系统+mysql+调试部署+lw
  16. qt Android 基站定位,AT指令获取基站信息
  17. MSN Spaces
  18. 最新《播布客李明新概念C语言作品》
  19. 停电让服务器自动关机,服务器断网/断电自动关机小工具 断网/断电5分钟后自动关机...
  20. 刘强东在耶鲁北京中心演讲(2015-8):商城+金融+3农+生鲜

热门文章

  1. 基于java+ssh+mysql实现的共享自行车单车租赁|出租管理系统项目源代码
  2. app软件怎么开发 盘点3种app制作方式
  3. Android Studio4.0解决Gradle下载超时问题
  4. Gps经纬度转化关系
  5. Altium中Smart PDF的使用
  6. c python函数图像_python画正余弦函数图像?
  7. android instance区别,Android singleTask 和singleInstance的区别
  8. 图论复习(二)-——哈密顿图及其应用
  9. 【机器学习基石】感知机模型+PLA(二)
  10. java基础入门(完整详细版)