互联网的通信安全,建立在SSL/TLS协议之上。

本文简要介绍SSL/TLS协议的运行机制。文章的重点是设计思想和运行过程,不涉及具体的实现细节。如果想了解这方面的内容,请参阅RFC文档。

一、作用

不使用SSL/TLS的HTTP通信,就是不加密的通信。所有信息明文传播,带来了三大风险。

(1) 窃听风险(eavesdropping):第三方可以获知通信内容。

(2) 篡改风险(tampering):第三方可以修改通信内容。

(3) 冒充风险(pretending):第三方可以冒充他人身份参与通信。

SSL/TLS协议是为了解决这三大风险而设计的,希望达到:

(1) 所有信息都是加密传播,第三方无法窃听。

(2) 具有校验机制,一旦被篡改,通信双方会立刻发现。

(3) 配备身份证书,防止身份被冒充。

互联网是开放环境,通信双方都是未知身份,这为协议的设计带来了很大的难度。而且,协议还必须能够经受所有匪夷所思的攻击,这使得SSL/TLS协议变得异常复杂。

二、历史

互联网加密通信协议的历史,几乎与互联网一样长。

1994年,NetScape公司设计了SSL协议(Secure Sockets Layer)的1.0版,但是未发布。

1995年,NetScape公司发布SSL 2.0版,很快发现有严重漏洞。

1996年,SSL 3.0版问世,得到大规模应用。

1999年,互联网标准化组织ISOC接替NetScape公司,发布了SSL的升级版TLS 1.0版。

2006年和2008年,TLS进行了两次升级,分别为TLS 1.1版和TLS 1.2版。最新的变动是2011年TLS 1.2的修订版。

目前,应用最广泛的是TLS 1.0,接下来是SSL 3.0。但是,主流浏览器都已经实现了TLS 1.2的支持。

TLS 1.0通常被标示为SSL 3.1,TLS 1.1为SSL 3.2,TLS 1.2为SSL 3.3。

三、基本的运行过程

SSL/TLS协议的基本思路是采用公钥加密法,也就是说,客户端先向服务器端索要公钥,然后用公钥加密信息,服务器收到密文后,用自己的私钥解密。

但是,这里有两个问题。

(1)如何保证公钥不被篡改?

解决方法:将公钥放在数字证书中。只要证书是可信的,公钥就是可信的。

(2)公钥加密计算量太大,如何减少耗用的时间?

解决方法:每一次对话(session),客户端和服务器端都生成一个"对话密钥"(session key),用它来加密信息。由于"对话密钥"是对称加密,所以运算速度非常快,而服务器公钥只用于加密"对话密钥"本身,这样就减少了加密运算的消耗时间。

因此,SSL/TLS协议的基本过程是这样的:

(1) 客户端向服务器端索要并验证公钥。

(2) 双方协商生成"对话密钥"。

(3) 双方采用"对话密钥"进行加密通信。

上面过程的前两步,又称为"握手阶段"(handshake)。

四、握手阶段的详细过程

"握手阶段"涉及四次通信,我们一个个来看。需要注意的是,"握手阶段"的所有通信都是明文的。

4.1 客户端发出请求(ClientHello)

首先,客户端(通常是浏览器)先向服务器发出加密通信的请求,这被叫做ClientHello请求。

在这一步,客户端主要向服务器提供以下信息。

(1) 支持的协议版本,比如TLS 1.0版。

(2) 一个客户端生成的随机数,稍后用于生成"对话密钥"。

(3) 支持的加密方法,比如RSA公钥加密。

(4) 支持的压缩方法。

这里需要注意的是,客户端发送的信息之中不包括服务器的域名。也就是说,理论上服务器只能包含一个网站,否则会分不清应该向客户端提供哪一个网站的数字证书。这就是为什么通常一台服务器只能有一张数字证书的原因。

对于虚拟主机的用户来说,这当然很不方便。2006年,TLS协议加入了一个Server Name Indication扩展,允许客户端向服务器提供它所请求的域名。

4.2 服务器回应(SeverHello)

服务器收到客户端请求后,向客户端发出回应,这叫做SeverHello。服务器的回应包含以下内容。

(1) 确认使用的加密通信协议版本,比如TLS 1.0版本。如果浏览器与服务器支持的版本不一致,服务器关闭加密通信。

(2) 一个服务器生成的随机数,稍后用于生成"对话密钥"。

(3) 确认使用的加密方法,比如RSA公钥加密。

(4) 服务器证书。

除了上面这些信息,如果服务器需要确认客户端的身份,就会再包含一项请求,要求客户端提供"客户端证书"。比如,金融机构往往只允许认证客户连入自己的网络,就会向正式客户提供USB密钥,里面就包含了一张客户端证书。

4.3 客户端回应

客户端收到服务器回应以后,首先验证服务器证书。如果证书不是可信机构颁布、或者证书中的域名与实际域名不一致、或者证书已经过期,就会向访问者显示一个警告,由其选择是否还要继续通信。

如果证书没有问题,客户端就会从证书中取出服务器的公钥。然后,向服务器发送下面三项信息。

(1) 一个随机数。该随机数用服务器公钥加密,防止被窃听。

(2) 编码改变通知,表示随后的信息都将用双方商定的加密方法和密钥发送。

(3) 客户端握手结束通知,表示客户端的握手阶段已经结束。这一项同时也是前面发送的所有内容的hash值,用来供服务器校验。

上面第一项的随机数,是整个握手阶段出现的第三个随机数,又称"pre-master key"。有了它以后,客户端和服务器就同时有了三个随机数,接着双方就用事先商定的加密方法,各自生成本次会话所用的同一把"会话密钥"。

至于为什么一定要用三个随机数,来生成"会话密钥",dog250解释得很好:

"不管是客户端还是服务器,都需要随机数,这样生成的密钥才不会每次都一样。由于SSL协议中证书是静态的,因此十分有必要引入一种随机因素来保证协商出来的密钥的随机性。

对于RSA密钥交换算法来说,pre-master-key本身就是一个随机数,再加上hello消息中的随机,三个随机数通过一个密钥导出器最终导出一个对称密钥。

pre master的存在在于SSL协议不信任每个主机都能产生完全随机的随机数,如果随机数不随机,那么pre master secret就有可能被猜出来,那么仅适用pre master secret作为密钥就不合适了,因此必须引入新的随机因素,那么客户端和服务器加上pre master secret三个随机数一同生成的密钥就不容易被猜出了,一个伪随机可能完全不随机,可是是三个伪随机就十分接近随机了,每增加一个自由度,随机性增加的可不是一。"

此外,如果前一步,服务器要求客户端证书,客户端会在这一步发送证书及相关信息。

4.4 服务器的最后回应

服务器收到客户端的第三个随机数pre-master key之后,计算生成本次会话所用的"会话密钥"。然后,向客户端最后发送下面信息。

(1)编码改变通知,表示随后的信息都将用双方商定的加密方法和密钥发送。

(2)服务器握手结束通知,表示服务器的握手阶段已经结束。这一项同时也是前面发送的所有内容的hash值,用来供客户端校验。

至此,整个握手阶段全部结束。接下来,客户端与服务器进入加密通信,就完全是使用普通的HTTP协议,只不过用"会话密钥"加密内容。

from:http://www.ruanyifeng.com/blog/2014/02/ssl_tls.html

转载于:https://www.cnblogs.com/xuan52rock/p/6068738.html

【转】SSL/TLS协议运行机制的概述相关推荐

  1. http和https的区别 与 SSL/TLS协议运行机制的概述

    http和https的区别 与 SSL/TLS协议运行机制的概述 参考1 1 http 是不使用的SSL/TSL的通信通道 窃听风险:第三方获取通信内容 篡改风险:修改通信内容 冒充风险:冒充他人身份 ...

  2. SSL/TLS协议运行机制的概述

    1. 作用 不使用SSL/TLS的HTTP通信,就是不加密的通信.所有信息明文传播,带来了三大风险: (1)窃听风险(eavesdropping):第三方可以获知通信内容. (2)篡改风险(tampe ...

  3. SSL / TLS 协议运行机制详解

    转载自  SSL / TLS 协议运行机制详解 互联网的通信安全,建立在SSL/TLS协议之上. 本文简要介绍SSL/TLS协议的运行机制.文章的重点是设计思想和运行过程,不涉及具体的实现细节.如果想 ...

  4. SSL/TLS协议运行机制

    互联网的通信安全,建立在SSL/TLS协议之上 一.作用 不使用SSL/TLS的HTTP通信,就是不加密的通信.所有信息明文传播,带来了三大风险. (1) 窃听风险(eavesdropping):第三 ...

  5. 假如让你来设计SSL/TLS协议,你要怎么设计呢?

    本文分享自华为云社区<假如让你来设计SSLTLS协议>,作者:元闰子. 前言 说起网络通信协议,相信大家对 TCP 和 HTTP 都很熟悉,它们可以说是当今互联网通信的基石.但是,在网络安 ...

  6. 转载:图解SSL/TLS协议

    http://www.ruanyifeng.com/blog/2014/09/illustration-ssl.html 图解SSL/TLS协议 作者: 阮一峰 日期: 2014年9月20日 我看了C ...

  7. SSL/TLS协议交互流程分析

    本文参考 SSL/TLS协议运行机制的概述 tls运行机制,这里不细说,建议细看 HTTPS与TLS The Transport Layer Security (TLS) Protocol v1.2 ...

  8. SSL/TLS协议的运行原理浅析—https通信过程及CA证书诠释

    互联网是开放环境,通信双方都是未知身份,这为协议的设计带来了很大的难度.而且,协议还必须能够经受所有匪夷所思的攻击,这使得SSL TLS协议变得异常复杂.理清https原理与CA证书体系 互联网的通信 ...

  9. HTTP协议,HTTPS协议,SSL/TLS协议概述

    HTTP协议,HTTPS协议,SSL/TLS协议概述 1. 什么是HTTP协议   HTTP(Hyper Text Transfer Protocol,HTTP)协议超文本传输协议,是一个基于请求与响 ...

最新文章

  1. java与3d建模_3d建模加载,更新和在java中呈现
  2. 2020年春季学期教学日历
  3. python算法书籍-你也能看得懂的Python算法书
  4. 关于Linux 是怎么来的,该如何去学
  5. 算法那么重要,你还不会?ACM金牌选手教你学习数据结构与算法
  6. 04_机器学习概述,什么是机器学习,应用场景,数据来源与类型,网上可用的数据集、常用数据集数据的结构组成、特征工程是什么、意义、特征抽取、sklearn特征抽取API、文本特征抽取(学习笔记)
  7. java解析xml中文字符乱码_Eclipse读取xml中文乱码问题解决
  8. [图:知识竞赛题库PPT制作] 为上海棒约翰餐饮管理有限公司定制的的知识竞赛题目及展示界面-PPT格式-双屏展示。
  9. 如何编写正确且高效的 OpenResty 应用
  10. 问卷与量表数据分析(SPSS+AMOS)学习笔记(一) :问卷分析的流程
  11. PHP合并在线电影ts格式视频文件
  12. unity屏幕分辨率设置注意及代码
  13. cad lisp 背景遮罩_单行文字转多行文字带背景遮罩
  14. 揭秘!谷歌云确立领先地位的五大变革
  15. spring boot 整合kettle调用ktr与kjb文件
  16. 【中间件系列】Nacos注册中心妙用
  17. 关闭微信内置浏览器页面
  18. 深信服实习面经11_02
  19. 使用Visio来画图配置
  20. 卸载WPS后,原office出现各种问题,报错,图标混乱

热门文章

  1. 2021年提升效率的7个新vue实战技巧!
  2. python中intvar_Python的IntVar设置
  3. 魔术方法 python_python所有的魔术方法
  4. dnn神经网络_【李宏毅机器学习笔记】深度神经网络(DNN)
  5. lua 给userdata设置元表_提高Lua语言开发效率的简单方法
  6. c++代码好玩_Python开源学习:60秒学会一个例子,147段简单代码助你从入门到大师 | 中文资源...
  7. android文件搜索广播,Android 实现无网络传输文件
  8. 喷水装置2(nyoj12)
  9. 机器学习笔记——随机森林
  10. VS2008无法下断点调试的原因