对白的算法屋分享

来源 | 新智元

编辑 | 小咸鱼 好困

**【导读】**近日,北大校友、约翰·霍普金斯大学博士生提出了一种新的方法:MaskFeat,力压大神何恺明的新作MAE,摘下12个SOTA!

什么叫卷?

CV大神何恺明的力作「Masked Autoencoders Are Scalable Vision Learners」(MAE) 刚出了一个多月。

又有新SOTA出来了!

这是一个能用于视频模型的自监督预训练方法:掩码特征预测(MaskFeat)。

https://arxiv.org/abs/2112.09133

简而言之,MaskFeat的ViT-B在ImageNet 1K上的准确率达到了84.0%,MViT-L在Kinetics-400上的准确率达到了86.7%,成功地超越了MAE,BEiT和SimMIM等方法。

一作Chen Wei是约翰·霍普金斯大学的计算机科学博士生,此前在北京大学获得了计算机科学学士学位。

并曾在FAIR、谷歌和华为诺亚方舟实验室实习,主要研究方向是视觉自我监督学习。

MAE刚提出就OUT了?

MAE最大的贡献,可能就是将NLP领域和CV两大领域之间架起了一座更简便的桥梁。

https://arxiv.org/abs/2111.06377

此前,大名鼎鼎的GPT和BERT已经将大型自然语言处理(NLP)模型的性能提升到了一个新的高度。

直观点讲,就是事先遮住一些文本片段,让AI模型通过自监督学习,通过海量语料库的预训练,逐步掌握上下文语境,把这些被遮住的片段,用尽可能合乎逻辑的方式填回去。

这和我们做「完形填空」的方式有些类似。经过海量数据的学习和训练,AI模型慢慢学会了自己生成自然文本。目前,随着GPT及其后续改进模型的不断进步,生成的自然文本几乎可以乱真。

而何恺明的MAE就是把NLP领域已被证明极其有效的方式:「Mask-and-Predict」,用在了计算机视觉(CV)领域,先将输入图像的随机部分予以屏蔽(Mask),再预测(Predict)丢失的像素(pixel)。

MAE模型简单,效果却很拔群。

而就在上周,Facebook AI Research和约翰霍普金斯大学的研究人员提出了MaskFeat,也是采用「Mask-and-Predict」的方法,性能却比MAE上更进一步。

那MAE输在了哪里呢?

HOG VS Pixel Colors

「Mask-and-Predict」总要有个可以「Predict」的特征来让模型学习到东西。

MaskFeat最核心的改变就是将MAE对图像像素(pixel)的直接预测,替换成对图像的方向梯度直方图(HOG)的预测。

图像HOG特征向量

说到HOG,这可不是什么新鲜玩意儿。

HOG是一种经典的图像特征提取算法,发表于2005年的CVPR,到现在已经收获了37000+的引用。

https://hal.inria.fr/file/index/docid/548512/filename/hog_cvpr2005.pdf

那为什么预测图像的HOG比直接预测像素更好呢?

像素作为预测目标,有一个潜在的缺点,那就是会让模型过度拟合局部统计数据(例如光照和对比度变化)和高频细节,而这些对于视觉内容的解释来说很可能并不是特别重要。

相反,方向梯度直方图(HOG)是描述局部子区域内梯度方向或边缘方向分布的特征描述符,通过简单的梯度滤波(即减去相邻像素)来计算每个像素的梯度大小和方向来实现的。

通过将局部梯度组织化和归一化,HOG对模糊问题更加稳健

HOG的特点是善于捕捉局部形状和外观,同时对几何变化不敏感,对光的变化也有不变性,计算引入的开销还很小,可以忽略不计。

这次,MaskFeat引入HOG,其实正是将手工特征与深度学习模型结合起来的一次尝试。

MaskFeat首先随机地mask输入序列的一部分,然后预测被mask区域的特征。

对未见过的验证图像的HOG预测

只不过,模型是通过预测给定masked input(左)的HOG特征(中间)来学习的,原始图像(右)并不用于预测。

方向梯度直方图(HOG)这个点子的加入使得MaskFeat模型更加简化,在性能和效率方面都有非常出色的表现。

在不使用额外的模型权重、监督和数据的情况下,MaskFeat预训练的MViT-L在Kinetics-400数据集上获得了86.7%的Top-1准确率。

这个成绩以5.2%的幅度领先此前的SOTA,也超过了使用如IN-21K和JFT-300M这些大规模图像数据集的方法。

此外,MaskFeat的准确率在Kinetics-600数据集上为88.3%,在Kinetics-700数据集上为80.4%,在AVA数据集上为38.8 mAP,而在SSv2数据集上为75.0%。

结果分析

=======

Kinetics-400数据集


相比于不使用预训练的CNN,严重依赖大规模图像数据集和监督性预训练的基于Transformer的方法,MaskFeat表现出极佳的性能。

在Kinetics-400数据集上的比较

经过300个epoch预训练的MaskFeat将MViT-S,16×4的81.1%的top-1准确率提高了1.1%。其中,16×4表示该模型在训练过程中采用16个时间跨度为4的帧作为输入。

而在K400上用MaskFeat预训练了800个epoch的MViT-L 16×4达到了84.3%的top-1准确率,比其基线高出了3.8%,比使用IN-21K训练的监督模型高出了0.8%。

MaskFeat也以一己之力将K400上没有外部数据的最佳准确率(MoViNet-A6的81.5%)提高了5.2%。

此外,MaskFeat仅用K400的结果(86.7%)就能和86.5%的Florence和86.8%的SwinV2-G不相上下。其中,Florence使用了9亿个文本-图像对,SwinV2-G使用了一个具有30亿个参数的巨型模型,并首先在IN-21K和7千万张内部图像的大型数据集上进行自我监督和监督预训练。

可以说,MaskFeat在参数量、计算成本、数据和注释方面的高效性再次证明了直接在未标记的视频上进行预训练的优势,也为一种全新的视频预训练方式打开了大门。

Kinetics-600 & Kinetics-700数据集


在Kinetics-600数据集上的比较

在Kinetics-700数据集上的比较

MaskFeat在K600和K700上分别达到了86.4%和77.5%的top-1准确率,与之前基于Transformer的方法相比,既没有使用外部的图像数据,而且FLOPs还减少了10倍以上。

而在更大的输入分辨率312和更长的持续时间40×3下,MaskFeat在K600上实现了88.3%的top-1准确率,在K700上实现了80.4%的top-1准确率。

于是,MaskFeat在没有任何外部监督(如IN-21K和JFT-300M)的情况下,为每个数据集都创造了新的SOTA。

ImageNet-1K数据集


对MaskFeat进行1600个epoch的预训练,在ViT-B上微调100个epoch,在ViT-L上微调50个epoch。

当图像大小为224x224时,MaskFeat与在IN-21K上进行的有监督的预训练相比,在ViT-B上打成了平手,而在ViT-L上直接实现了超越。

当图像大小为384x384时,利用IN-21K的有监督预训练需要用到比MaskFeat多10倍的图像和标注。

通常来说,由于缺乏典型的CNN归纳偏置,ViT模型对数据要求很高,并且需要大规模的监督预训练。而MaskFeat可以在没有外部标记数据的情况下通过解决特征图像修复任务来克服这个问题。

此外,与BEiT相比,MaskFeat只需要计算HOG特征,摆脱了dVAE的tokenizer。而后者在250M DALL-E数据集上引入了额外的预训练阶段,并在mask预测期间引入了不可忽视的推理开销。与MoCo v3和DINO相比,MaskFeat也更准确、更简单。

此处MaskFeat的预训练为300个epoch

随着MAE、MaskFeat等模型的出现,NLP界的制胜武器「Mask-and-Predict」会是CV自监督预训练的下一个标准范式吗?

对此,来自清华大学的知友「谢凌曦」表示:

视觉自监督领域做了这么些年,从最早的生成式学习出发,绕了一圈,又回到生成式学习。到头来,我们发现像素级特征跟各种手工特征、tokenizer、甚至离线预训练网络得到的特征,在作为判断生成图像质量方面,没有本质区别。

也就是说,自监督也许只是把模型和参数调得更适合下游任务,但在「新知识从哪里来」这个问题上,并没有任何实质进展。

参考资料:

https://arxiv.org/pdf/2112.09133.pdf

https://www.zhihu.com/question/506657286/answer/2275700206

如果觉得有用,就请分享到朋友圈吧!

关于我

你好,我是对白,清华计算机硕士毕业,现大厂算法工程师,拿过8家大厂算法岗SSP offer(含特殊计划),薪资40+W-80+W不等。

高中荣获全国数学和化学竞赛二等奖。

本科独立创业五年,两家公司创始人,拿过三百多万元融资(已到账),项目入选南京321高层次创业人才引进计划。创业做过无人机、机器人和互联网教育,保研清华后退居股东。

我每周至少更新三篇原创,分享人工智能前沿算法、创业心得和人生感悟。我正在努力实现人生中的第二个小目标,上方关注后可以加我微信交流。

期待你的关注,我们一起悄悄拔尖,惊艳所有

北大美女学霸力压何恺明新作MAE 怒摘12个SOTA,灵感竟来自16年前CVPR论文相关推荐

  1. 北大美女学霸力压大神何恺明新作MAE!怒摘12个SOTA,灵感竟来自16年前CVPR论文...

      视学算法报道   编辑:小咸鱼 好困 [新智元导读]近日,北大校友.约翰·霍普金斯大学博士生提出了一种新的方法:MaskFeat,力压大神何恺明的新作MAE,摘下12个SOTA! 什么叫卷? CV ...

  2. 较真的来了!这篇【硬核论文】为何恺明新作MAE提供了一种理论解释和数学证明...

    关注公众号,发现CV技术之美 昨天,arXiv上出现了一篇非常硬核的论文"How to Understand Masked Autoencoder".该论文为何恺明的最新一作论文& ...

  3. 深度了解自监督学习,就看这篇解读 !何恺明新作MAE:通向CV大模型

    点击上方"计算机视觉工坊",选择"星标" 干货第一时间送达 作者丨科技猛兽 编辑丨极市平台 导读 本文对何恺明的新作MAE进行了深度的解析,他提出一种用于计算机 ...

  4. 紧跟大佬的步伐:关于我亲自动手复现了恺明新作MAE这件事

    点击上方"视学算法",选择加"星标"或"置顶" 重磅干货,第一时间送达 作者丨CW不要無聊的風格@知乎(已授权) 来源丨https://zh ...

  5. 2020CVPR解读之何恺明新作PointRend:将图像分割视作渲染问题,显著提升语义/实例分割性能

    2020CVPR解读之何恺明新作PointRend:将图像分割视作渲染问题,显著提升语义/实例分割性能 论文原文 源码 [导读]Facebook人工智能实验室何恺明团队提出一种高效.高质量的目标和场景 ...

  6. 知乎热议 | 何恺明 新作 如何?

    点击上方"机器学习与生成对抗网络",关注星标 获取有趣.好玩的前沿干货! 来源 | 知乎,MLNLP编辑 https://www.zhihu.com/question/498364 ...

  7. ImageNet时代将终结?何恺明新作:Rethinking ImageNet Pre-training

    译者 | 刘畅 林椿眄 整理 | Jane 出品 | AI科技大本营 Google 最新的研究成果 BERT 的热度还没褪去,大家都还在讨论是否 ImageNet 带来的预训练模型之风真的要进入 NL ...

  8. 如何从数学角度解释何恺明新作Masked Autoencoders (MAE)?

    何恺明最新一作论文 Masked Autoencoders(MAE)为自监督学习方法带来了一场革命,自提出以来,在 AI 领域内得到了极大的关注.MAE 不仅在图像预训练上达到了 SOTA 性能,更是 ...

  9. 何恺明新作来了!更快更有效的训练FLIP

    文 | Random 源 | AIWalker paper: https://arxiv.org/abs/2212.00794 本文提出一种用于训练CLIP的简单而有效的方案FLIP(Fast Lan ...

最新文章

  1. python嵩天课后思考题_Python语言程序设计基础(第二版)嵩天等课后习题答案
  2. c 后台输出easyui html,EasyUI——实现展示后台数据代码
  3. 02-NVIDIA Jetson TX2 通过JetPack 3.1刷机完整版(踩坑版)
  4. oracle添加伪列,Oracle伪列 - jifengtang的个人空间 - OSCHINA - 中文开源技术交流社区...
  5. python中扑克牌类设计_Python中的计数 Counter类
  6. vmware虚拟机里的服务器自动关闭,让VirtualBox虚拟机在主机关闭时自动关闭或保存状态VBoxVmService...
  7. 不用计算机怎么连接无线,不用电脑可以装wifi吗 不通过电脑装wifi方法【图文】...
  8. 腾讯智慧金融白皮书:区块链将是未来数字经济基础设施
  9. mysqldump只导出数据或者只导出表结构
  10. 让页面在打开时自动刷新
  11. atitit.重装系统需要备份的资料总结 o84..
  12. Docker - 配置国内加速器加速镜像下载
  13. [bzoj3202][SDOI2013]项链
  14. 炫舞服务器显示方框怎么回事,win10界面全是显示方块如何解决_win10系统界面出现白色方框该怎么去除-win7之家...
  15. CMS自动生成静态任务
  16. python e指数函数,常用的e指数代码
  17. 427. 建立四叉树
  18. 关于IT行业人员吃的都是青春饭?
  19. 征服嵌入式linux,成功征服英语的三十个好习惯
  20. Sep 15 FullCalendar日历插件说明文档

热门文章

  1. 图片文字转word文档的巧妙方法
  2. 浅谈互联网+、挑战杯等创新创业类比赛
  3. Comparator的compare方法如何定义升序降序
  4. [Linux] 输入命令ls -laF后的各字段含义解析
  5. MFC多窗口停靠成Tab页并默认选中第一个TAB页
  6. [Java] 自己写图书馆管理系统(详细版)
  7. 关于爱情和婚姻的一点看法
  8. 语音对讲---基于图灵机器人+科大讯飞
  9. 关闭 macOS Google Chrome 黑暗模式风格
  10. python正则表达式两个条件_python高级正则表达式