6步!教你写一个mqtt调试助手_GREYWALL-CSDN博客点击上方“小麦大叔”,选择“置顶/星标公众号”福利干货,第一时间送达大家好,我是小麦,之前写过一篇MQTT的文章,里面用来测试的mqtt client程序是自己编译的。可以参考上一篇文章《...https://great.blog.csdn.net/article/details/120898177

加入千人技术交流群https://t.1yb.co/FOLAhttps://t.1yb.co/FOLA

大家好,我是小麦,最近做了一个物联网的项目,顺便总结一下MQTT协议。大家都知道,MQTT协议在物联网中很常用,如果你对此还不是很了解,相信这篇文章可以带你入门。

  • mqtt协议

  • 1 MQTT协议特点

    • 发布和订阅

    • QoS(Quality of Service levels)

  • 2 MQTT 数据包结构

    • 2.1 MQTT固定头

    • 2.2 MQTT可变头 / Variable header

    • 2.3 Payload消息体

  • 3 环境搭建

    • 3.1 MQTT服务器搭建

    • 3.2 MQTT Client

  • 4 总结

mqtt协议

MQTT(Message Queuing Telemetry Transport,消息队列遥测传输协议),是一种基于发布/订阅publish/subscribe)模式的“轻量级”通讯协议,该协议构建于TCP/IP协议上,由IBM在1999年发布。

MQTT最大优点在于,用极少的代码和有限的带宽,为连接远程设备提供实时可靠的消息服务

作为一种低开销、低带宽占用的即时通讯协议,使其在物联网、小型设备、移动应用等方面有较广泛的应用。

1 MQTT协议特点

MQTT是一个基于客户端-服务器的消息发布/订阅传输协议。

MQTT协议是轻量、简单、开放和易于实现的,这些特点使它适用范围非常广泛。在很多情况下,包括受限的环境中,如:机器与机器(M2M)通信和物联网(IoT)。

其在,通过卫星链路通信传感器、偶尔拨号的医疗设备、智能家居、及一些小型化设备中已广泛使用。

MQTT协议当前版本为,2014年发布的MQTT v3.1.1。除标准版外,还有一个简化版MQTT-SN,该协议主要针对嵌入式设备,这些设备一般工作于TCP/IP网络,如:ZigBee。

MQTT 与 HTTP 一样,MQTT 运行在传输控制协议/互联网协议 (TCP/IP) 堆栈之上。

MQTT OSI

发布和订阅

MQTT使用的发布/订阅消息模式,它提供了一对多的消息分发机制,从而实现与应用程序的解耦。

这是一种消息传递模式,消息不是直接从发送器发送到接收器(即点对点),而是由MQTT server(或称为 MQTT Broker)分发的。

MQTT 服务器是发布-订阅架构的核心

它可以非常简单地在Raspberry Pi或NAS等单板计算机上实现,当然也可以在大型机或 Internet 服务器上实现。

服务器分发消息,因此必须是发布者,但绝不是订阅者!

客户端可以发布消息(发送方)、订阅消息(接收方)或两者兼而有之。

客户端(也称为节点)是一种智能设备,如微控制器或具有 TCP/IP 堆栈和实现 MQTT 协议的软件的计算机。

消息在允许过滤的主题下发布。主题是分层划分的 UTF-8 字符串。不同的主题级别用斜杠/作为分隔符号。

我们来看看下面的设置。

  • 光伏发电站是发布者(Publisher)。

  • 主要主题(Topic)级别是"PV",这个工厂发布两个子级别"sunshine""data"

  • "PV/sunshine"是一个布尔值(true/false,也可以是 1/0),充电站需要它来知道是否应该装载电动汽车(仅在阳光普照时 :))。

  • 充电站(EVSE)是订阅者,订阅"PV/sunshine"从服务器获取信息。

  • "PV/data" 另一方面,以 kW 为单位传输工厂产生的瞬时功率,并且该主题可以例如通过计算机或平板电脑订阅,以生成一天内传输功率的图表。

这就是一个简单的MQTT的应用场景,具体如下图所示;

MQTT 发布和订阅

QoS(Quality of Service levels)

服务质量是 MQTT 的一个重要特性。当我们使用 TCP/IP 时,连接已经在一定程度上受到保护。但是在无线网络中,中断和干扰很频繁,MQTT 在这里帮助避免信息丢失及其服务质量水平。这些级别在发布时使用。如果客户端发布到 MQTT 服务器,则客户端将是发送者,MQTT 服务器将是接收者。当MQTT服务器向客户端发布消息时,服务器是发送者,客户端是接收者。

QoS  0

这一级别会发生消息丢失或重复,消息发布依赖于底层TCP/IP网络。即:<=1

QoS  1

QoS 1 承诺消息将至少传送一次给订阅者。

QoS  2

使用 QoS 2,我们保证消息仅传送到目的地一次。为此,带有唯一消息 ID 的消息会存储两次,首先来自发送者,然后是接收者。QoS 级别 2 在网络中具有最高的开销,因为在发送方和接收方之间需要两个流。

2 MQTT 数据包结构

  • 固定头(Fixed header),存在于所有MQTT数据包中,表示数据包类型及数据包的分组类标识;

  • 可变头(Variable header),存在于部分MQTT数据包中,数据包类型决定了可变头是否存在及其具体内容;

  • 消息体(Payload),存在于部分MQTT数据包中,表示客户端收到的具体内容;

整体MQTT的消息格式如下图所示;

2.1 MQTT固定头

固定头存在于所有MQTT数据包中,其结构如下:

下面简单分析一下固定头的消息格式;

MQTT消息类型 / message type

**位置:**byte 1, bits 7-4。

4位的无符号值,类型如下:

名称 流方向 描述
Reserved 0 不可用 保留位
CONNECT 1 客户端到服务器 客户端请求连接到服务器
CONNACK 2 服务器到客户端 连接确认
PUBLISH 3 双向 发布消息
PUBACK 4 双向 发布确认
PUBREC 5 双向 发布收到(保证第1部分到达)
PUBREL 6 双向 发布释放(保证第2部分到达)
PUBCOMP 7 双向 发布完成(保证第3部分到达)
SUBSCRIBE 8 客户端到服务器 客户端请求订阅
SUBACK 9 服务器到客户端 订阅确认
UNSUBSCRIBE 10 客户端到服务器 请求取消订阅
UNSUBACK 11 服务器到客户端 取消订阅确认
PINGREQ 12 客户端到服务器 PING请求
PINGRESP 13 服务器到客户端 PING应答
DISCONNECT 14 客户端到服务器 中断连接
Reserved 15 不可用 保留位

标识位 / DUP

**位置:**byte 1, bits 3-0。

在不使用标识位的消息类型中,标识位被作为保留位。如果收到无效的标志时,接收端必须关闭网络连接:

数据包 标识位 Bit 3 Bit 2 Bit 1 Bit 0
CONNECT 保留位 0 0 0 0
CONNACK 保留位 0 0 0 0
PUBLISH MQTT 3.1.1使用 DUP1 QoS2 QoS2 RETAIN3
PUBACK 保留位 0 0 0 0
PUBREC 保留位 0 0 0 0
PUBREL 保留位 0 0 0 0
PUBCOMP 保留位 0 0 0 0
SUBSCRIBE 保留位 0 0 0 0
SUBACK 保留位 0 0 0 0
UNSUBSCRIBE 保留位 0 0 0 0
UNSUBACK 保留位 0 0 0 0
PINGREQ 保留位 0 0 0 0
PINGRESP 保留位 0 0 0 0
DISCONNECT 保留位 0 0 0 0
  • DUP:发布消息的副本。用来在保证消息的可靠传输,如果设置为 1,则在下面的变长中增加MessageId,并且需要回复确认,以保证消息传输完成,但不能用于检测消息重复发送。

  • QoS发布消息的服务质量(前面已经做过介绍),即:保证消息传递的次数

    • 00:最多一次,即:<=1

    • 01:至少一次,即:>=1

    • 10:一次,即:=1

    • 11:预留

  • RETAIN:发布保留标识,表示服务器要保留这次推送的信息,如果有新的订阅者出现,就把这消息推送给它,如果设有那么推送至当前订阅者后释放。

剩余长度(Remaining Length)

位置:byte 1。

固定头的第二字节用来保存变长头部和消息体的总大小的,但不是直接保存的。这一字节是可以扩展,其保存机制,前7位用于保存长度,后一部用做标识。当最后一位为 1时,表示长度不足,需要使用二个字节继续保存。例如:计算出后面的大小为0

2.2 MQTT可变头 / Variable header

MQTT数据包中包含一个可变头,它驻位于固定的头和负载之间。可变头的内容因数据包类型而不同,较常的应用是做为包的标识:

Bit 7  — 0
byte 1 包标签符(MSB)
byte 2… 包标签符(LSB)

很多类型数据包中都包括一个2字节的数据包标识字段,这些类型的包有:

PUBLISH (QoS > 0)、PUBACK、PUBREC、PUBREL、PUBCOMP、

SUBSCRIBE、SUBACK、UNSUBSCRIBE、UNSUBACK

2.3 Payload消息体

Payload消息体是MQTT数据包的第三部分,CONNECT、SUBSCRIBE、SUBACK、UNSUBSCRIBE四种类型的消息 有消息体:

  • CONNECT,消息体内容主要是:客户端的ClientID、订阅的Topic、Message以及用户名和密码

  • SUBSCRIBE,消息体内容是一系列的要订阅的主题以及QoS

  • SUBACK,消息体内容是服务器对于SUBSCRIBE所申请的主题及QoS进行确认和回复。

  • UNSUBSCRIBE,消息体内容是要订阅的主题。

3 环境搭建

介绍完基础理论部分,下面在Windows平台上搭建一个简单的MQTT应用,进行简单的应用,整体架构如下图所示;

3.1 MQTT服务器搭建

目前MQTT代理的主流平台有下面几个:

  • Mosquitto:https://mosquitto.org/

  • VerneMQ:https://vernemq.com/

  • EMQTT:http://emqtt.io/

本文将使用 Mosquitoo 进行测试,进入到安装页面,下载自己电脑的系统所适配的程序;

下载页面

安装成功之后,进入到安装路径下,找到mosquitto.exe

按住Shift,右键鼠标点击空白处,然后打开Powershell,正常打开一个终端软件即可;

  • 输入./mosquitto.exe -h 可以查看相应的帮助;

  • 输入./mosquitto.exe -p 10086,就开启了MQTT服务,监听的地址是127.0.0.1,端口是10086

具体如下图所示;

3.2 MQTT Client

服务器搭建好了,下面就是开启客户端,进行发布和订阅,这样就可以传输相应的消息。

这里我使用的是自己编译了一个QT mqtt client 程序,是基于Qt的官方库进行编译的,下面打开这个软件,下一期简单介绍一下如何完成这个客户端,并设置好相应参数:

  • 地址:127.0.0.1

  • 端口:10086

然后订阅主题,就可以互相发送数据了,具体如下图所示;

结合前面的图片来看,整体的架构如下所示;

4 总结

本文简单介绍了MQTT协议的工作原理,以及相应的协议格式,简单介绍了协议的一些细节,具体举出了相应的应用场景,作者水平和能力有限,文中难免存在错误和纰漏,请大佬不吝赐教。

本期就到此结束了,我是小麦,我们下期再见。

—— The End ——

推荐好文

RingBuff在多核通讯之间的妙用

STM32使用DMA发送串口数据

BLDC驱动入门最简教程

Sourcetail 一款代码编辑神器,让看源码如丝般顺滑

原创不易,欢迎转发、留言、点赞、分享给你的朋友,感谢您的支持!

长按识别二维码关注我

你点的每个好看,我都认真当成了喜欢

MQTT协议,终于有人讲清楚了相关推荐

  1. 这么多年,终于有人讲清楚Transformer了

    作者 | Jay Alammar 译者 | 香槟超新星,责编 | 夕颜 来源 | CSDN(ID:CSDNnews) 注意力机制是一种在现代深度学习模型中无处不在的方法,它有助于提高神经机器翻译应用程 ...

  2. 水晶报表中对某一栏位值进行处理_终于有人讲清楚了,BI和报表的差异!

    IT系统自带报表功能,为什么还要额外采购BI? 报表和BI都能做数据分析,区别在哪里? 加班加点做了那么多表,为什么还不满足老板需求? 报表分析需要IT团队来开发,那BI呢? 这些应该是大家对商业智能 ...

  3. Go字符串比较,终于有人讲清楚了

    西娅(Thea)是一个刚刚入门Go语言的妹子程序员,今天她遇到了一个让她"surprise"的问题.下面就是那段让妹子西娅困惑的Go代码: func main() {s1 := & ...

  4. 金融的本质是什么?终于有人讲清楚了!(源于网络)

    众所周知,金融行业是一个"多金"的行业,但凡有人在金融圈混,我们都会觉得他自带"光环". 这是为何呢?因为大部分人不懂金融.因为稀缺,所以信息不对等就会存在,而 ...

  5. 这么多年,终于有人讲清楚 Transformer 了!

    注意力机制是一种在现代深度学习模型中无处不在的方法,它有助于提高神经机器翻译应用程序性能的概念.在本文中,我们将介绍Transformer这种模型,它可以通过注意力机制来提高训练模型的速度.在特定任务 ...

  6. mysql索引失效_MySQL索引失效的底层原理详解,终于有人讲清楚了

    前言 吊打面试官又来啦,今天我们讲讲MySQL索引为什么会失效,很多文章和培训机构的教程,都只会告诉你,在什么情况下索引会失效. 比如:没遵循最佳左前缀法则.范围查询的右边会失效.like查询用不到索 ...

  7. BI和报表等于数据分析?终于有人讲清楚了它们的区别

    调研发现,很多人对BI的理解侧重于数据的分析和展示,BI更多地被等同于数据分析与数据可视化.因此在大多数企业中,BI更多地是指分析和前端展示工具,而不是一个完整的体系. <商业智能白皮书> ...

  8. RabbitMQ实现即时通讯-MQTT协议

    有时候我们的项目中会用到即时通讯功能,比如电商系统中的客服聊天功能,还有在支付过程中,当用户支付成功后,第三方支付服务会回调我们的回调接口,此时我们需要通知前端支付成功.最近发现RabbitMQ可以很 ...

  9. 物联网MQTT协议详解

    一.什么是MQTT协议 Message Queuing Telemetry Transport:消息队列遥测传输协议.是一种基于客户端-服务端的发布/订阅模式.与 HTTP 一样,基于TCP/IP协议 ...

最新文章

  1. mysql平均锁_MySQL锁情况分析
  2. 最全Python算法实现资源汇总!
  3. python 模拟浏览器selenium 微信_Spider-Python爬虫之使用Selenium模拟浏览器行为
  4. wget 下载一个网站所有文件
  5. mysql 报错注入 读文件_SQL注入-读写文件
  6. 写了 15 年代码,总结出提升 10 倍效率的三件事
  7. python在工厂中的运用_在python中使用元类实现工厂设计模式
  8. Python | threading02 - 互斥锁解决多个线程之间随机调度,造成“线程不安全”的问题。
  9. 视觉SLAM十四讲学习笔记-第七讲-视觉里程计-对极几何和对极约束、本质矩阵、基础矩阵
  10. Python 父目录获取
  11. Bad client credentials
  12. 相似矩阵、矩阵的相似对角化
  13. 安科瑞企业微电网能效管理平台在某食品加工厂35kV变电站应用分析
  14. 炫酷的 loding效果(canvas)
  15. git fatal: detected dubious ownership in repository
  16. PIL中paste粘贴遇到的问题
  17. android Twitter第三方登陆
  18. 最全面的Android工程师知识图谱推荐
  19. 3 年 CRUD 从 8K 涨到 28K,谁知道这4个月我到底经历了什么?
  20. can例程 ecu_基于CAN的ECU刷写流程

热门文章

  1. 一个都不能死HTML5网页小游戏免费下载
  2. samba客户端不能正常读写的排查步骤(Linux作为服务端)
  3. 智能交通车路协同系统的应用场景和发展趋势
  4. 华为 2020 招聘状态查看_重点关注华为技术有限公司代表一行莅临阳光众创空间参观...
  5. 《文本上的算法——深入浅出自然语言处理》读书笔记:第6章 搜索引擎是什么玩意儿
  6. 爬虫实现:获取微信好友列表爬取进行好友分析
  7. Hadoop+Spark 大数据集群日常1 (There are 0 datanode(s) running报错 处理)
  8. sysbench代码剖析和实践
  9. Python数据分析实战:上海二手房价分析
  10. 英雄不问出处 美女不问归途